Data Ingestion & Knowledge Sources
100+ document loaders – PDF, CSV, JSON, HTML, Markdown, Notion, Confluence, GitHub via code
Custom pipelines – Build proprietary ingestion for any data source with full control
⚠️ Code-first only – No UI for data upload; requires Python/JS development
✅ Enterprise Integrations – APIs connect to Snowflake, Databricks, Salesforce, data lakes
✅ High Volume Processing – Async APIs handle millions/billions of records efficiently
PII/PHI Scanning – Detects sensitive data across structured and unstructured sources
⚠️ No File Uploads – Designed for data pipelines, not document upload workflows
1,400+ file formats – PDF, DOCX, Excel, PowerPoint, Markdown, HTML + auto-extraction from ZIP/RAR/7Z archives
Website crawling – Sitemap indexing with configurable depth for help docs, FAQs, and public content
Multimedia transcription – AI Vision, OCR, YouTube/Vimeo/podcast speech-to-text built-in
Cloud integrations – Google Drive, SharePoint, OneDrive, Dropbox, Notion with auto-sync
Knowledge platforms – Zendesk, Freshdesk, HubSpot, Confluence, Shopify connectors
Massive scale – 60M words (Standard) / 300M words (Premium) per bot with no performance degradation
No built-in UI – Build your own with Streamlit, React, or custom frontend
Slack/Discord examples – Community libraries available, but you handle coding
⚠️ DIY deployment – All integrations require custom development
Security Middleware – API layer sanitizes data before reaching any LLM
✅ Data Pipeline Integration – Works with Snowflake, Kafka, Databricks for AI workflows
⚠️ No Chat Widgets – Backend security layer, not end-user interface platform
Website embedding – Lightweight JS widget or iframe with customizable positioning
CMS plugins – WordPress, WIX, Webflow, Framer, SquareSpace native support
5,000+ app ecosystem – Zapier connects CRMs, marketing, e-commerce tools
MCP Server – Integrate with Claude Desktop, Cursor, ChatGPT, Windsurf
OpenAI SDK compatible – Drop-in replacement for OpenAI API endpoints
LiveChat + Slack – Native chat widgets with human handoff capabilities
RAG chains – Retrieval-augmented QA combining LLMs with vector stores
Multi-turn memory – Configurable conversation memory modules
Tool-calling agents – External API and tool execution capabilities
⚠️ No built-in citations – Manual implementation required for source links
⚠️ Not a Chatbot – Detects and masks sensitive data, doesn't generate responses
✅ Advanced NER + Regex – Spots PII/PHI while preserving context and accuracy
Content Moderation – Safety checks ensure compliance and prevent data exposure
✅ #1 accuracy – Median 5/5 in independent benchmarks, 10% lower hallucination than OpenAI
✅ Source citations – Every response includes clickable links to original documents
✅ 93% resolution rate – Handles queries autonomously, reducing human workload
✅ 92 languages – Native multilingual support without per-language config
✅ Lead capture – Built-in email collection, custom forms, real-time notifications
✅ Human handoff – Escalation with full conversation context preserved
Total flexibility – Design any UI you want from scratch
⚠️ No white-label features – No out-of-box branding tools
⚠️ Extra development – Custom frontend required for any UI
⚠️ No Visual Branding – Backend middleware, no UI to customize or brand
✅ Policy Customization – Tailor masking rules via dashboard or config files
Compliance-Focused – Configure policies to match GDPR, HIPAA, PCI DSS requirements
Full white-labeling included – Colors, logos, CSS, custom domains at no extra cost
2-minute setup – No-code wizard with drag-and-drop interface
Persona customization – Control AI personality, tone, response style via pre-prompts
Visual theme editor – Real-time preview of branding changes
Domain allowlisting – Restrict embedding to approved sites only
Model-agnostic – OpenAI, Anthropic, Cohere, Hugging Face, local models
Any vector DB – FAISS, Pinecone, Weaviate, Chroma, Qdrant supported
Self-hosted option – Run Llama, Mistral locally for data privacy
Easy switching – Change providers with minimal code changes
✅ Model-Agnostic – Works with any LLM: GPT, Claude, LLaMA, Gemini, custom models
✅ LangChain Integration – Orchestrates multi-model workflows and complex AI pipelines
✅ Context-Preserving – Maintains 99% accuracy (RARI) despite masking sensitive data
GPT-5.1 models – Latest thinking models (Optimal & Smart variants)
GPT-4 series – GPT-4, GPT-4 Turbo, GPT-4o available
Claude 4.5 – Anthropic's Opus available for Enterprise
Auto model routing – Balances cost/performance automatically
Zero API key management – All models managed behind the scenes
Developer Experience ( A P I & S D Ks)
Python & JS libraries – Import directly, no hosted REST API
Largest LLM community – 100K+ GitHub stars, 50K+ Discord members
Extensive docs – Tutorials, API reference, community plugins
⚠️ Programming required – No no-code or low-code options
✅ REST APIs + Python SDK – Straightforward scanning, masking, and tokenizing implementation
Detailed Documentation – Step-by-step guides for data pipelines and AI apps
Real-Time + Batch – Supports ETL, CI/CD pipelines with comprehensive examples
REST API – Full-featured for agents, projects, data ingestion, chat queries
Python SDK – Open-source customgpt-client with full API coverage
Postman collections – Pre-built requests for rapid prototyping
Webhooks – Real-time event notifications for conversations and leads
OpenAI compatible – Use existing OpenAI SDK code with minimal changes
You control quality – Accuracy depends on LLM and prompt tuning
DIY optimization – Response speed depends on your infrastructure
⚠️ No built-in benchmarks – Test and optimize yourself
✅ 99% RARI Accuracy – Context-preserving masking vs 70% vanilla masking accuracy
✅ Low Latency – Async APIs and auto-scaling maintain performance at high volume
Semantic Preservation – Masked data retains context for accurate LLM responses
Sub-second responses – Optimized RAG with vector search and multi-layer caching
Benchmark-proven – 13% higher accuracy, 34% faster than OpenAI Assistants API
Anti-hallucination tech – Responses grounded only in your provided content
OpenGraph citations – Rich visual cards with titles, descriptions, images
99.9% uptime – Auto-scaling infrastructure handles traffic spikes
On-premise deployment – Run in your VPC for data sovereignty
Self-hosted models – Llama, Mistral via Ollama for full privacy
⚠️ DIY security – No built-in encryption, auth, or compliance
⚠️ No SLA – Open-source means no uptime guarantees
✅ GDPR/HIPAA/PCI DSS: Pre-configured policies, BAA support, Safe Harbor PHI masking
PDPL/DPDP Compliance: Saudi Arabia PDPL, India DPDP with regional policies
✅ End-to-End Encryption: TLS in transit, encryption at rest with audit logs
✅ Role-Based Access: Privileged users see unmasked data, others see tokens
✅ Deployment Flexibility: SaaS, VPC, on-prem for strict data residency
Zero Data Egress: On-prem ensures data never leaves organizational boundaries
SOC 2 Type II + GDPR – Regular third-party audits, full EU compliance
256-bit AES encryption – Data at rest; SSL/TLS in transit
SSO + 2FA + RBAC – Enterprise access controls with role-based permissions
Data isolation – Never trains on customer data
Domain allowlisting – Restrict chatbot to approved domains
Framework: FREE – MIT license, unlimited commercial use
LangSmith Dev: Free – 5K traces/month for debugging
LangSmith Plus: $39/seat/mo – Team collaboration, 10K traces
⚠️ Hidden costs – LLM APIs + vector DB + hosting + dev time
Enterprise Pricing: Custom quotes based on volume, throughput, deployment model
✅ Free Trial: Test platform capabilities before commitment with hands-on evaluation
Volume Discounts: Pricing scales with usage, better rates for higher volumes
Cost Justification: Prevents regulatory fines (GDPR €20M, HIPAA $1.5M penalties)
⚠️ No Public Pricing: Contact sales for custom quotes tailored to needs
Standard: $99/mo – 10 chatbots, 60M words, 5K items/bot
Premium: $449/mo – 100 chatbots, 300M words, 20K items/bot
Enterprise: Custom – SSO, dedicated support, custom SLAs
7-day free trial – Full Standard access, no charges
Flat-rate pricing – No per-query charges, no hidden costs
Observability & Monitoring
LangSmith – Debugging and tracing for agent workflows
⚠️ No native dashboard – Requires LangSmith subscription or DIY
Comprehensive Audit Logs – Tracks every masking action and sensitive data detection
✅ SIEM Integration – Real-time compliance and performance monitoring with alerting
RARI Metrics – Reports accuracy preservation and data protection effectiveness
Real-time dashboard – Query volumes, token usage, response times
Customer Intelligence – User behavior patterns, popular queries, knowledge gaps
Conversation analytics – Full transcripts, resolution rates, common questions
Export capabilities – API export to BI tools and data warehouses
Active community – Discord, GitHub, Stack Overflow support
700+ integrations – Community-contributed plugins and tools
⚠️ No enterprise SLA – Community support only for free tier
✅ Enterprise Support – Dedicated account managers and SLA-backed assistance
Rich Documentation – API guides, whitepapers, and secure AI pipeline best practices
Industry Partnerships – Active thought leadership and compliance standards collaboration
Comprehensive docs – Tutorials, cookbooks, API references
Email + in-app support – Under 24hr response time
Premium support – Dedicated account managers for Premium/Enterprise
Open-source SDK – Python SDK, Postman, GitHub examples
5,000+ Zapier apps – CRMs, e-commerce, marketing integrations
Custom RAG apps – Enterprise knowledge bases with full control
Multi-step agents – Research, analysis, automation workflows
Code assistance – Generation, review, documentation tools
⚠️ Weeks to deploy – Unlike 2-minute turnkey platforms
Healthcare AI: HIPAA-compliant patient analysis, clinical support, PHI masking in medical records
Financial Services: PCI DSS payment data compliance, financial records, customer service chatbots
Government & Defense: Classified data protection, citizen privacy, strict data residency requirements
Customer Support: Secure analysis of tickets, emails, transcripts with PII for AI insights
Multi-Agent Workflows: Role-based data access across AI agents for global enterprises
Claims Processing: Insurance PHI protection for accurate, privacy-preserving RAG workflows
Customer support – 24/7 AI handling common queries with citations
Internal knowledge – HR policies, onboarding, technical docs
Sales enablement – Product info, lead qualification, education
Documentation – Help centers, FAQs with auto-crawling
E-commerce – Product recommendations, order assistance
Limitations & Considerations
⚠️ Programming mandatory – Python/JS skills required
⚠️ Weeks-months to production – Not rapid deployment
⚠️ DIY everything – Security, UI, monitoring, compliance
⚠️ Breaking changes – Frequent API updates require maintenance
⚠️ Hidden infrastructure costs – LLM + DB + hosting adds up
Ideal for: Teams with ML engineers wanting maximum control
⚠️ NOT A RAG PLATFORM: Requires separate RAG/LLM infrastructure for complete solution
⚠️ NO Chat UI: Technical dashboard only, not end-user chatbot interface
⚠️ Developer Integration Required: APIs/SDKs need coding expertise for pipeline integration
Higher Cost: Enterprise pricing but prevents GDPR €20M, HIPAA $1.5M fines
Performance Overhead: Real-time masking adds sub-second latency in high-throughput systems
Best For: Regulated industries (healthcare, finance, government) requiring compliance, not general-purpose
Managed service – Less control over RAG pipeline vs build-your-own
Model selection – OpenAI + Anthropic only; no Cohere, AI21, open-source
Real-time data – Requires re-indexing; not ideal for live inventory/prices
Enterprise features – Custom SSO only on Enterprise plan
LangGraph – Low-level agentic framework launched 2024
Tool calling – Agents autonomously invoke APIs and functions
Multi-step workflows – Average 7.7 steps per trace in 2024
Custom architectures – Build specialized agent systems
✅ Multi-Agent Access Control: Fine-grained identity-based access enforcement across agentic workflows
✅ Role-Based Security: Controls who sees what at inference time with role-specific permissions
LangChain/CrewAI Integration: Comprehensive agentic workflow protection with major orchestration frameworks
Agent Context Sanitization: Masks PII/PHI in prompts, context, and responses during multi-step reasoning
SecRAG for Agents: RBAC integrated into retrieval, checks authorization before agent access
⚠️ NOT Agent Orchestration: Secures workflows but requires LangChain/CrewAI for coordination
Custom AI Agents – Autonomous GPT-4/Claude agents for business tasks
Multi-Agent Systems – Specialized agents for support, sales, knowledge
Memory & Context – Persistent conversation history across sessions
Tool Integration – Webhooks + 5,000 Zapier apps for automation
Continuous Learning – Auto re-indexing without manual retraining
Full RAG toolkit – Loaders, splitters, embeddings, retrievers, chains
100+ vector stores – Pinecone, Chroma, Weaviate, FAISS, Milvus
Hybrid search – Combine vector + keyword (BM25) retrieval
Reranking – Cohere Rerank, cross-encoder models supported
⚠️ NOT A RAG PLATFORM: Security middleware only, not retrieval-augmented generation platform
RAG Protection Layer: Masks PII/PHI before RAG indexing and vector database storage
✅ Real-Time Sanitization: Intercepts data to/from RAG systems preventing sensitive data leakage
✅ Context Preservation: Maintains semantic meaning for accurate RAG retrieval despite masking
Query + Response Security: Masks sensitive data in queries and post-processes responses
Integration Point: Security middleware between data sources and RAG platforms
GPT-4 + RAG – Outperforms OpenAI in independent benchmarks
Anti-hallucination – Responses grounded in your content only
Automatic citations – Clickable source links in every response
Sub-second latency – Optimized vector search and caching
Scale to 300M words – No performance degradation at scale
Market position – Leading open-source LLM framework, largest developer community
Target users – Developers/ML engineers wanting maximum flexibility
vs CustomGPT – Weeks of coding vs 2-minute deployment; full control vs managed service
vs Haystack/LlamaIndex – Larger community, more integrations
NOT for: Non-technical users, rapid deployment, teams without ML expertise
Market position: Enterprise data security middleware for AI, not RAG platform
Target customers: Healthcare, finance, government needing GDPR/HIPAA/PCI compliance and on-prem deployment
Key competitors: Presidio (Microsoft), Private AI, Nightfall AI, traditional DLP tools
✅ Competitive advantages: 99% RARI vs 70% vanilla, handles billions of records
Pricing advantage: Higher cost but prevents regulatory fines (GDPR €20M, HIPAA $1.5M)
Use case fit: Critical for healthcare PII/PHI, financial records, government data compliance
Market position – Leading RAG platform balancing enterprise accuracy with no-code usability. Trusted by 6,000+ orgs including Adobe, MIT, Dropbox.
Key differentiators – #1 benchmarked accuracy • 1,400+ formats • Full white-labeling included • Flat-rate pricing
vs OpenAI – 10% lower hallucination, 13% higher accuracy, 34% faster
vs Botsonic/Chatbase – More file formats, source citations, no hidden costs
vs LangChain – Production-ready in 2 min vs weeks of development
R A G-as-a- Service Assessment
Platform type – FRAMEWORK, NOT RAG-AS-A-SERVICE
DIY architecture – Build entire pipeline from scratch with code
No managed infrastructure – You host vector DB, LLM, servers
Best for: Teams building custom RAG with full control
Alternative: For managed RaaS, use CustomGPT, Vectara, or Azure AI
⚠️ NOT RAG-AS-A-SERVICE: Data security middleware, not retrieval-augmented generation platform
Security Middleware: Sits between data sources and RAG platforms as protection layer
RAG Protection: Sanitizes documents before indexing, queries before retrieval, responses before delivery
✅ Context-Preserving RAG: 99% RARI vs 70% vanilla masking for accurate retrieval
Stack Position: Protecto (security) + CustomGPT/Vectara (RAG) + OpenAI (LLM) = complete solution
Best Comparison: Compare to Presidio, Private AI, Nightfall AI, not RAG platforms
Platform type – TRUE RAG-AS-A-SERVICE with managed infrastructure
API-first – REST API, Python SDK, OpenAI compatibility, MCP Server
No-code option – 2-minute wizard deployment for non-developers
Hybrid positioning – Serves both dev teams (APIs) and business users (no-code)
Enterprise ready – SOC 2 Type II, GDPR, WCAG 2.0, flat-rate pricing
OpenAI – GPT-4, GPT-4 Turbo, GPT-3.5 with full control
Anthropic – Claude 3 Opus/Sonnet with 200K context
Hugging Face – 100K+ models including Llama, Mistral, Falcon
Self-hosted – Ollama, GPT4All for complete privacy
✅ Model-Agnostic: Works with GPT-4, Claude, LLaMA, Gemini, custom models
Pre-Processing Layer: Masks data before LLM access, not tied to providers
✅ LangChain Integration: Orchestrates multi-model workflows and complex AI pipelines
✅ Context-Preserving: 99% RARI vs 70% vanilla masking accuracy
No Lock-In: Switch LLM providers without changing Protecto configuration
OpenAI – GPT-5.1 (Optimal/Smart), GPT-4 series
Anthropic – Claude 4.5 Opus/Sonnet (Enterprise)
Auto-routing – Intelligent model selection for cost/performance
Managed – No API keys or fine-tuning required
No- Code Interface & Usability
No no-code interface – Developer-only framework
Community wrappers – Streamlit, Gradio for basic UIs
⚠️ Custom dev required – Full end-to-end UX needs coding
⚠️ No Chatbot Builder – Technical dashboard for policy setup, not end-user interface
IT/Security Focus – Config panels for technical teams, not wizard-style tools
✅ Guided Presets – HIPAA Mode, GDPR Mode for rapid compliance onboarding
2-minute deployment – Fastest time-to-value in the industry
Wizard interface – Step-by-step with visual previews
Drag-and-drop – Upload files, paste URLs, connect cloud storage
In-browser testing – Test before deploying to production
Zero learning curve – Productive on day one
Customization & Flexibility ( Behavior & Knowledge)
Full control – Prompts, retrieval, chains, agents customizable
Custom logic – Add any behavioral rules or decision patterns
Mix data sources – Combine multiple knowledge bases on the fly
✅ Custom Regex Rules – Fine-tune masking with granular entity types and patterns
✅ Role-Based Access – Privileged users see unmasked data, others see tokens
Dynamic Policies – Update masking rules without model retraining for new regulations
Live content updates – Add/remove content with automatic re-indexing
System prompts – Shape agent behavior and voice through instructions
Multi-agent support – Different bots for different teams
Smart defaults – No ML expertise required for custom behavior
Framework: Free – MIT license, no usage limits
DIY scaling – Manage hosting, vector DB growth, optimization
⚠️ Total cost – LLM APIs + infra + dev time often exceeds managed platforms
Enterprise Pricing – Custom quotes based on data volume and throughput
✅ Massive Scale – Handles millions/billions of records, cloud or on-prem deployment
Volume Discounts – Free trial available, pricing optimized for large organizations
Standard: $99/mo – 60M words, 10 bots
Premium: $449/mo – 300M words, 100 bots
Auto-scaling – Managed cloud scales with demand
Flat rates – No per-query charges
Official docs – python.langchain.com with tutorials, API reference
Community – 50K+ Discord, 7K+ GitHub discussions
⚠️ Doc quality mixed – Some gaps, rapidly changing APIs
✅ Enterprise Support: Dedicated account managers, SLA-backed assistance for large deployments
Comprehensive Docs: REST API, Python SDK, integration guides for data pipelines
Whitepapers & Best Practices: Security frameworks, compliance guides, AI pipeline architectures
Integration Guides: Snowflake, Databricks, Kafka, LangChain, CrewAI, model gateways
Professional Services: Implementation help, custom policy setup, security workflow design
✅ Training Resources: HIPAA Mode, GDPR Mode presets for rapid deployment
Documentation hub – Docs, tutorials, API references
Support channels – Email, in-app chat, dedicated managers (Premium+)
Open-source – Python SDK, Postman, GitHub examples
Community – User community + 5,000 Zapier integrations
Additional Considerations
Significant engineering investment – Weeks to months for production
Hidden costs – Infrastructure often exceeds managed platform fees
Breaking changes – Frequent updates require code maintenance
Ideal for: Teams with dedicated ML engineers
✅ Secure RAG Focus – Protects sensitive data in third-party LLMs while preserving context
✅ On-Prem Deployment – Total isolation for highly regulated sectors
Proprietary RARI Metric – Proves aggressive masking maintains 99% model accuracy
Time-to-value – 2-minute deployment vs weeks with DIY
Always current – Auto-updates to latest GPT models
Proven scale – 6,000+ organizations, millions of queries
Multi-LLM – OpenAI + Claude reduces vendor lock-in
N/A
✅ Privacy-First – Masks PII/PHI before LLM access, meets GDPR/HIPAA/PCI DSS
✅ End-to-End Encryption – TLS in transit, encryption at rest with audit logs
✅ Deployment Flexibility – Public cloud, private cloud, or on-prem for data residency
SOC 2 Type II + GDPR – Third-party audited compliance
Encryption – 256-bit AES at rest, SSL/TLS in transit
Access controls – RBAC, 2FA, SSO, domain allowlisting
Data isolation – Never trains on your data
Join the Discussion
Loading comments...