In this comprehensive guide, we compare Ragie and SimplyRetrieve across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between Ragie and SimplyRetrieve, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose Ragie if: you value true multimodal support including audio/video
Choose SimplyRetrieve if: you value completely free and open source
About Ragie
Ragie is fully managed rag-as-a-service for developers. Ragie is a fully managed RAG-as-a-Service platform that enables developers to build AI applications connected to their data with simple APIs. Originally developed for Glue chat app, it offers multimodal support including audio/video RAG, advanced features like hybrid search, and seamless data source integrations. Founded in 2024, headquartered in San Francisco, CA, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
88/100
Starting Price
Custom
About SimplyRetrieve
SimplyRetrieve is lightweight retrieval-centric generative ai platform. SimplyRetrieve is an open-source tool providing a fully localized, lightweight, and user-friendly GUI and API platform for Retrieval-Centric Generation (RCG). It emphasizes privacy and can run on a single GPU while maintaining clear separation between LLM context interpretation and knowledge memorization. Founded in 2019, headquartered in Tokyo, Japan, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
82/100
Starting Price
Custom
Key Differences at a Glance
In terms of user ratings, Ragie in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: RAG Platform versus RAG Platform. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
Ragie
SimplyRetrieve
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
Comes with ready-made connectors for Google Drive, Gmail, Notion, Confluence, and more, so data syncs automatically.
Upload PDFs, DOCX, TXT, Markdown, or point it at a URL / sitemap to crawl an entire site and build your knowledge base.
Choose manual or automatic retraining, so your RAG stays up-to-date whenever content changes.
Uses a hands-on, file-based flow: drop PDFs, text, DOCX, PPTX, HTML, etc. into a folder and run a script to embed them.
A new GUI Knowledge-Base editor lets you add docs on the fly, but there’s no web crawler or auto-refresh yet.
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
Drop a chat widget on your site or hook straight into Slack, Telegram, WhatsApp, Facebook Messenger, and Microsoft Teams.
Webhooks and Zapier let you kick off external actions—think tickets, CRM updates, and more.
Built with customer-support workflows in mind, complete with real-time chat and easy escalation.
Ships with a local Gradio GUI and Python scripts for queries—no out-of-the-box Slack or site widget.
Want other channels? Write a small wrapper that forwards messages to your local chatbot.
Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more.
Explore API Integrations
Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc.
Read more here.
Update the KB anytime—just hit “retrain,” recrawl, or upload new files in the dashboard.
Set Personas and Quick Prompts to nail the bot’s tone and style.
Spin up multiple bots under one account—handy for different teams or domains.
Lets you tweak everything—KnowledgeBase weight, retrieval params, system prompts—for deep control.
Encourages devs to swap embedding models or hack the pipeline code as needed.
Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus.
Learn How to Update Sources
Supports multiple agents per account, so different teams can have their own bots.
Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Pricing & Scalability
Three tiers: Growth (~$79/mo), Pro/Scale (~$259/mo), plus Enterprise for big deployments.
Costs scale with message credits, bots, pages crawled, and uploads—add capacity as you grow.
Designed to scale smoothly without costs ballooning linearly.
Free, MIT-licensed open source—no fees, but you supply the GPUs or cloud servers.
Scaling means spinning up more hardware and managing it yourself.
Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates.
View Pricing
Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
Uses HTTPS/TLS in transit and encrypts data at rest—industry standard.
Data stays inside your workspace; formal SOC-2-style certifications are on the roadmap.
Entirely local: all docs and chat data stay on your own machine—great for sensitive use cases.
No built-in auth or enterprise security—lock things down in your own deployment setup.
Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private.
Security Certifications
Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Observability & Monitoring
Dashboard shows chat histories, sentiment, and key metrics.
Daily email digests keep your team in the loop without extra logins.
An “Analysis” tab shows which docs were pulled and how the query was built; logs print to the console.
No fancy dashboard—add your own logging or monitoring if you need broader stats.
Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
Lets you export logs and metrics via API to plug into third-party monitoring or BI tools.
Analytics API
Provides detailed insights for troubleshooting and ongoing optimization.
Support & Ecosystem
Email support plus a “Submit a Request” form for new features or integrations.
Growing ecosystem—blog posts, Product Hunt launches, and a partner program for agencies.
Open-source on GitHub; support is community-driven via issues and lightweight docs.
Smaller ecosystem: you’re free to fork or extend, but there’s no paid SLA or enterprise help desk.
Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast.
Developer Docs
Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs.
Enterprise Solutions
Benefits from an active user community plus integrations through Zapier and GitHub resources.
Core Agent Features
Agentic Retrieval: Next-generation multi-step retrieval engine designed for complex queries - decomposes questions, identifies relevant sources, self-checks results, compiles grounded answers with citations
Context-Aware MCP Server: Native Streamable HTTP MCP Server with Context-Aware descriptions enabling agents to understand actual knowledge base content for accurate tool routing
Multi-Step Reasoning: Agent-ready capabilities for breaking down complex queries into sequential retrieval operations with self-validation
Real-Time Indexing: Launch RAG pipelines for LLMs with immediate content updates and synchronization
Entity Extraction: Extract structured data from unstructured documents automatically for advanced querying
Summary Index: Avoid document affinity problems through intelligent summarization techniques
Multi-Turn Context: Maintains conversation history and context across dialogue turns for coherent multi-turn interactions
LIMITATION - No Built-In Chatbot UI: RAG-as-a-Service API platform requiring developers to build custom chat interfaces - not a turnkey chatbot solution
LIMITATION - No Lead Capture/Handoff: Focuses on retrieval infrastructure - lead generation and human escalation must be implemented at application layer
Retrieval-Centric Generation (RCG): Research-backed approach separating LLM reasoning capabilities from knowledge memorization—more efficient than traditional RAG architectures
Retrieval Tuning Module: Developer-focused transparency layer showing which documents were retrieved, how queries were constructed, and how answers were generated
Knowledge Base Mixing (MoKB): Route queries across multiple selectable knowledge bases with intelligent source selection and weighting
Explicit Prompt Weighting (EPW): Fine-grained control over retrieved knowledge base influence in final answer generation
Single-Turn Q&A Focus: Primarily designed for single-turn question answering—limited multi-turn conversation and context memory
Analysis Tab Transparency: Visual debugging interface showing document retrieval process and query construction for answer inspection
Local Agent Execution: All agent processing happens on-premises with zero external API calls—complete control over agent behavior and data
LIMITATION - No Chatbot UI: Gradio interface for developers only—no polished conversational interface for end users or production deployment
LIMITATION - No Lead Capture: No built-in lead generation, email collection, or CRM integration capabilities—manual implementation required
LIMITATION - No Human Handoff: No escalation workflows, live agent transfer, or fallback mechanisms for complex queries—developer must build these features
LIMITATION - No Multi-Channel Support: No native integrations with Slack, Teams, WhatsApp, or website widgets—requires custom wrapper development
LIMITATION - No Session Management: Stateless interactions without conversation history tracking or multi-turn context retention
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
Additional Considerations
"Functions" feature lets the bot perform real actions (e.g., make a ticket) right in the chat.
Headless RAG API (SourceSync) gives devs a fully customizable retrieval layer.
Great for offline / on-prem labs where data never leaves the server—perfect for tinkering.
Takes more hands-on upkeep and won’t match proprietary giants in sheer capability out of the box.
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No- Code Interface & Usability
Guided dashboard: paste a URL or upload files and you're up and running fast.
Pre-built templates, live demo, and a simple embed snippet make deployment painless.
Seven-day free trial lets teams test everything risk-free.
Basic Gradio UI is developer-focused; non-tech users might find the settings overwhelming.
No slick, no-code admin—if you need polish or branding, you'll build your own front end.
Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing.
User Experience Review
Uses role-based access so business users and devs can collaborate smoothly.
Competitive Positioning
Market position: Developer-friendly RAG platform balancing no-code dashboard usability with API flexibility, focused on customer support workflows and multi-channel deployment
Target customers: Small to mid-size businesses needing quick chatbot deployment, support teams requiring multi-channel presence (Slack, Telegram, WhatsApp, Messenger, Teams), and developers wanting flexible API with straightforward pricing
Key competitors: Chatbase.co, Botsonic, SiteGPT, CustomGPT, and other SMB-focused no-code chatbot platforms
Competitive advantages: Hybrid search with re-ranking and smart partitioning for improved accuracy, headless SourceSync API for custom RAG backends, "Functions" feature enabling bot actions (tickets, CRM updates), 95+ language support, ready-made Google Drive/Gmail/Notion/Confluence connectors, and flexible mode switching between "fast" (GPT-4o-mini) and "accurate" (GPT-4o)
Pricing advantage: Mid-range at ~$79/month (Growth) and ~$259/month (Pro/Scale); straightforward tiered pricing without confusing jumps; scales smoothly with message credits and capacity add-ons; best value for growing teams needing multi-channel support
Use case fit: Ideal for support teams needing multi-channel chatbot deployment (Slack, WhatsApp, Teams, Messenger, Telegram), developers wanting simple REST API without heavy SDK requirements, and SMBs requiring webhook/Zapier automation for CRM and ticket system integration
Market position: MIT-licensed open-source local RAG solution running entirely on-premises with open-source LLMs (no cloud dependency), designed for developers and tinkerers
Target customers: Developers experimenting with RAG locally, organizations with strict data isolation requirements (healthcare, government, defense), and teams wanting complete control without cloud costs or vendor dependencies
Key competitors: LangChain/LlamaIndex (frameworks), PrivateGPT, LocalGPT, and cloud RAG platforms for teams needing simplicity
Competitive advantages: Completely free and open-source (MIT license) with no fees or subscriptions, 100% local execution keeping all data on-premises, full control over model choice (any Hugging Face model), Python-based with full source code access for customization, "Retrieval Tuning Module" for transparency into answer generation, and zero external dependencies beyond local compute
Pricing advantage: Completely free with MIT license; only cost is GPU hardware or cloud compute; best value for teams with existing GPU infrastructure wanting to avoid subscription costs; requires technical expertise and hands-on maintenance
Use case fit: Ideal for offline/air-gapped environments requiring complete data isolation (defense, healthcare with strict PHI requirements), developers learning RAG internals and experimenting locally, and organizations with GPU infrastructure wanting zero cloud costs and complete control over LLM stack without vendor dependencies
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
OpenAI GPT-4o: Primary "accurate" mode for depth and comprehensive analysis - highest quality responses with advanced reasoning
OpenAI GPT-4o-mini: "Fast" mode for speed-optimized responses - balances quality with rapid response times for high-volume scenarios
Claude 3.5 Sonnet Integration: Confirmed support through RAG-as-a-Service architecture - enables Anthropic Claude model deployment for production systems
Flexible Model Selection: Switch between "fast" and "accurate" modes per chatbot configuration - adapt to specific use case requirements
Mode Toggle: Simple dashboard control to flip between GPT-4o-mini (speed) and GPT-4o (depth) without code changes
2024 Model Support: Updated for latest models including gpt-4o-mini with improved long-context behavior and minimal performance deterioration
Performance Optimization: Modern LLMs (gpt-4o, claude-3.5-sonnet, gpt-4o-mini) show little to no degradation as context length increases - ideal for RAG applications
No Model Agnosticism: Focused on OpenAI and Claude ecosystems - not designed for Llama, Mistral, or custom model deployment
Automatic Updates: Platform maintains compatibility with latest OpenAI and Anthropic model releases automatically
Hugging Face Compatibility: Swap in any Hugging Face model with sufficient GPU resources (Llama 2, Falcon, Mistral, etc.)
Full Local Control: Models run entirely on-premises with no external API calls or cloud dependencies
Embedding Model: Default multilingual-e5-base for retrieval with option to swap for other embedding models
Model Customization: Fine-tune or quantize models for specific use cases and hardware constraints
No Vendor Lock-In: Complete flexibility to use any open-source LLM without subscription fees or API limits
GPU Requirements: Smaller models may not match GPT-4 depth but enable complete data isolation and zero operational costs
Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request
Model Selection Details
Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
Retrieval-Augmented Generation: Core RAG architecture providing accurate, context-aware answers pulled exclusively from your data - reduces hallucinations dramatically
Hybrid Search: Combines semantic vector search with keyword-based retrieval for comprehensive document matching
Re-Ranking Engine: Advanced re-ranking algorithm surfaces most relevant content from retrieved documents - improves answer precision
Smart Partitioning: Intelligent document chunking and partitioning for optimized retrieval across large knowledge bases
SourceSync Headless API: Fully customizable retrieval layer for developers building custom RAG backends without UI constraints
Multi-Turn Conversation: Maintains full session history and context across dialogue turns for coherent long conversations
Citation Support: Answers grounded in source documents with traceable references - transparency into information sources
Automatic Retraining: Choose manual or automatic knowledge base updates - keeps RAG system synchronized with latest content changes
Ready-Made Connectors: Google Drive, Gmail, Notion, Confluence integrations enable automatic data sync for continuous RAG updates
Multi-Format Ingestion: PDF, DOCX, TXT, Markdown, URL crawling, and sitemap ingestion for comprehensive knowledge base building
95+ Language Support: Multilingual RAG capabilities handling diverse global customer bases without separate configurations
Fast vs Accurate Modes: "Fast mode" skims essentials for speedy replies; detailed mode provides comprehensive analysis when depth matters
Fallback Mechanisms: Human handoff and fallback messages keep users supported when bot confidence is low
Retrieval-Centric Generation (RCG): Research-backed approach explicitly separating LLM roles from knowledge memorization for more efficient implementation
Retrieval Tuning Module: Transparency into answer generation showing which documents were retrieved and how queries were built
Mixtures-of-Knowledge-Bases (MoKB): Multiple selectable knowledge bases with intelligent routing between knowledge sources
Explicit Prompt-Weighting (EPW): Control over retrieved knowledge base weighting in final answer generation
FAISS Vector Search: Fast approximate nearest neighbor search using Facebook's FAISS library for efficient retrieval
On-the-Fly Knowledge Base Creation: Drag-and-drop documents in GUI to create knowledge bases without manual preprocessing
Analysis Tab: Visual debugging showing document retrieval process and query construction for transparency
Multiple Document Support: Handles PDFs, text files, DOCX, PPTX, HTML, and other common formats
Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks
RAG Performance
Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content
Benchmark Details
Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
Source verification: Always cites sources so users can verify facts on the spot
Use Cases
Customer Support Chatbots: Deploy self-service bots retrieving accurate answers from help articles, manuals, past tickets - reduce support ticket volume up to 70%
Internal AI Assistants: Power employee-facing assistants with company-specific knowledge from Google Drive, Notion, Confluence - instant answers across enterprise tools
Multi-Channel Support: Unified chatbot deployment across Slack, Telegram, WhatsApp, Facebook Messenger, Microsoft Teams - consistent support experience everywhere
Website Chat Widgets: Embed conversational AI on websites for real-time customer engagement, lead capture, and instant question answering
Sales Enablement: Surface relevant product data and customer interaction insights for sales teams - precise, high-recall retrieval from sales collateral
Legal Research Tools: Query legal texts and regulatory frameworks with high accuracy and contextual understanding - cite sources transparently
Compliance & Policy Assistants: Internal bots answering employee questions about company policies, compliance requirements, HR procedures from knowledge bases
Product Documentation: Technical documentation chatbots for developers and customers - quick answers from API docs, tutorials, troubleshooting guides
Educational Assistants: Course material Q&A, student support, academic research assistance with citation-backed responses from course content
CRM Integration: "Functions" feature enables bots to create tickets, update CRM records, trigger workflows directly from chat conversations
Enterprise SaaS Products: Embed RAG-powered assistance into SaaS applications for context-rich user support and feature discovery
Air-Gapped Environments: Defense, classified research, and secure facilities requiring complete offline operation without external connectivity
Healthcare PHI Compliance: HIPAA-regulated organizations needing 100% data isolation for protected health information
RAG Research & Education: Developers learning RAG internals with full visibility into retrieval and generation processes
Local Experimentation: Prototype RAG applications locally before committing to cloud infrastructure and subscription costs
Data Sovereignty: Organizations with strict data residency requirements preventing cloud storage or processing
Zero-Cost RAG: Teams with existing GPU infrastructure wanting to avoid subscription fees for RAG capabilities
Custom Model Development: Research teams fine-tuning and testing custom LLMs and embedding models for specific domains
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
HTTPS/TLS Encryption: Industry-standard transport layer security encrypting all data in transit between clients and servers
Data at Rest Encryption: Encrypted storage protecting customer data and knowledge bases from unauthorized access
Workspace Data Isolation: Customer data stays isolated within dedicated workspaces - no cross-tenant information leakage
SOC 2 Roadmap: Formal SOC 2 Type II certification in progress - planned compliance milestone for enterprise customers
GDPR Considerations: Data handling aligns with GDPR principles - customer data processing under user control
Domain Allowlisting: Lock chatbots to approved domains for enhanced security - prevent unauthorized embedding or access
Access Controls: Dashboard-level permissions and API key management for secure multi-user team access
Data Retention: Configurable data retention policies for conversation histories and uploaded documents
Audit Logging: Activity tracking for compliance monitoring and security incident investigation
Third-Party Dependencies: Relies on OpenAI and Anthropic cloud APIs - inherits their security certifications (OpenAI SOC 2 Type II, Anthropic security standards)
No On-Premise Option: Cloud-only SaaS deployment - not suitable for air-gapped or on-premise requirements
Data Processing Agreement: Standard DPA available for enterprise customers requiring contractual data protection commitments
100% Local Execution: All data and processing stays on-premises with zero external transmission or cloud dependencies
No Third-Party APIs: No external API calls to OpenAI, Anthropic, or other cloud LLM providers
Complete Data Isolation: Ideal for classified, PHI, PII, or confidential data requiring air-gapped processing
No Built-In Authentication: Security implementation is user responsibility in deployment environment
Open-Source Auditing: MIT license with full source code transparency for security reviews and compliance validation
Compliance Flexibility: Can be configured to meet HIPAA, FedRAMP, GDPR, or other regulatory requirements through deployment architecture
Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
SOC 2 Type II certification: Industry-leading security standards with regular third-party audits
Security Certifications
GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
Data isolation: Customer data stays isolated and private - platform never trains on user data
Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
Free Trial: 7-day free trial with full feature access - test everything risk-free before commitment
Growth Plan: ~$79/month - ideal for small teams starting with chatbot deployment and basic multi-channel support
Pro/Scale Plan: ~$259/month - expanded capacity with increased message credits, bots, pages crawled, and file uploads
Enterprise Plan: Custom pricing for large deployments - tailored capacity, dedicated support, SLA commitments
Message Credits System: Pay for usage through message credits - scales costs with actual chatbot utilization
Capacity Scaling: Add message credits, additional bots, crawl pages, and upload limits as you grow - no plan switching required
Multi-Bot Support: Spin up multiple chatbots under one account - manage different teams, domains, or use cases independently
Smooth Scaling: Designed to scale costs predictably without linear cost explosions - efficient pricing for growing businesses
Transparent Pricing: Straightforward tiered structure without hidden fees or confusing per-feature charges
Cost Predictability: Fixed monthly subscription with capacity limits - budget-friendly for SMBs vs unpredictable pay-per-API-call models
Best Value: Mid-range pricing competitive with Chatbase, SiteGPT, Botsonic - best value for multi-channel support teams
Annual Discounts: Likely available for annual commitments - standard SaaS discount practices apply
Completely Free: MIT open-source license with no subscription fees, API charges, or usage limits
Infrastructure Costs Only: GPU hardware or cloud compute (AWS/GCP/Azure GPU instances) are the only expenses
No Per-Query Charges: Unlimited queries without per-request pricing or rate limits
No Vendor Fees: Zero payments to SaaS providers or LLM API vendors (OpenAI, Anthropic, etc.)
GPU Requirements: Single GPU sufficient for development; scale hardware based on throughput needs
Open-Source Ecosystem: Leverage free Hugging Face models, FAISS library, and PyTorch without licensing costs
Best Value For: Teams with existing GPU infrastructure or ability to provision cloud GPU instances economically
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
Email Support: Standard email support channel for troubleshooting, feature questions, and technical assistance
Submit a Request Form: Dedicated form for feature requests, integration suggestions, and custom needs
REST API Documentation: Clear API docs with live examples covering bot management, data ingestion, query endpoints
Dashboard Guides: In-platform guidance for no-code users - visual walkthrough of configuration and deployment
Daily Email Digests: Automated summaries of chatbot performance, conversation metrics, and key insights without extra logins
Blog & Resources: Growing content library with blog posts, Product Hunt launches, case studies, and best practices
Partner Program: Agency partnership program for consultants and implementers - ecosystem development for resellers
Live Demo: Interactive demo environment for evaluating platform capabilities before trial signup
Active community: User community plus 5,000+ app integrations through Zapier ecosystem
Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
R A G-as-a- Service Assessment
Platform Type: TRUE RAG-AS-A-SERVICE API PLATFORM - fully managed developer-first infrastructure announced August 2024 with $5.5M seed funding
Core Mission: Enable developers to build AI applications connected to their own data with outstanding RAG results in record time using managed infrastructure
Developer Target Market: Built by industry veterans (Bob Remeika, Mohammed Rafiq) for development teams requiring production-grade RAG without infrastructure management
API-First Architecture: TypeScript and Python SDKs with robust data ingest pipeline and retrieval API using latest RAG techniques for chunking, searching, re-ranking
RAG Technology Leadership: Advanced features include Summary Index (avoiding document affinity), Entity Extraction (structured data from unstructured), Agentic Retrieval (multi-step reasoning), Context-Aware MCP Server
Managed Service Benefits: Free developer tier, pro plan for production, enterprise for scale - eliminates infrastructure complexity while maintaining developer control
Security & Compliance: AES-256 storage, TLS transmission, GDPR/SOC 2 Type II/HIPAA/CASA/CCPA certified - zero customer data usage for model training
Data Source Integration: Ragie Connect handles authentication and auto-sync from Google Drive, Salesforce, Notion, Confluence with real-time indexing
LIMITATION vs No-Code Platforms: NO native chat widgets, Slack/WhatsApp integrations, visual chatbot builders, analytics dashboards, or lead capture/handoff - requires custom UI development
Comparison Validity: Architectural comparison to CustomGPT.ai is VALID but highlights different priorities - Ragie.ai managed RAG infrastructure vs CustomGPT likely more accessible no-code deployment
Use Case Fit: Development teams building custom RAG applications requiring managed infrastructure, enterprises needing production-grade retrieval with agent-ready capabilities, organizations wanting security compliance without infrastructure overhead
NOT Ideal For: Non-technical teams seeking turnkey chatbot solutions, businesses requiring pre-built UI widgets, organizations needing immediate deployment without developer resources
Platform Type: NOT A RAG-AS-A-SERVICE PLATFORM - Open-source academic research project for local Retrieval-Centric Generation experimentation and learning
Core Mission: Provide localized, lightweight, user-friendly interface to Retrieval-Centric Generation (RCG) approach for machine learning community exploration and research
Academic Foundation: Published research tool from RCGAI with arXiv paper (2308.03983) explaining RCG methodology and architectural design decisions
Target Market: Researchers, developers, and organizations experimenting with RAG locally without cloud dependencies—NOT commercial service users
Self-Hosted Infrastructure: MIT-licensed tool requiring user-managed GPU hardware or cloud compute—no managed infrastructure, APIs, or service-level agreements
Developer-First Design: Python-based with Gradio GUI and script execution—intended for technical users comfortable with GPU infrastructure and model management
RAG Implementation: Retrieval-Centric Generation (RCG) philosophy emphasizing retrieval over memorization—FAISS vector search with open-source LLMs (WizardVicuna-13B default, any Hugging Face model supported)
API Availability: NO formal REST API or SDKs—interaction via Python scripts and local Gradio interface requiring subprocess calls or custom wrappers
Data Privacy Advantage: 100% local execution with zero external transmission—ideal for classified, PHI, PII, or confidential data requiring air-gapped processing
Pricing Model: Completely free (MIT license) with no subscription fees—only cost is GPU hardware or cloud compute infrastructure
Support Model: Community-driven GitHub Issues and lightweight documentation—no paid support, SLAs, or customer success teams
LIMITATION vs Managed Services: NO managed infrastructure, automatic scaling, production-grade monitoring, enterprise security controls, or commercial support—users responsible for all operational aspects
LIMITATION - No Service Features: NO authentication systems, multi-tenancy, user management, analytics dashboards, or SaaS conveniences—pure research/development tool
Comparison Validity: Architectural comparison to commercial RAG-as-a-Service platforms like CustomGPT.ai is MISLEADING—SimplyRetrieve is open-source research tool for on-premises experimentation, not production service
Use Case Fit: Perfect for offline/air-gapped RAG research, developers learning RAG internals with full transparency, organizations with strict data isolation requirements (defense, healthcare PHI compliance), and teams wanting zero cloud costs with existing GPU infrastructure
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Limitations & Considerations
No Multi-Language SDKs: REST API only - no official Python, JavaScript, Java SDKs yet; developers must use raw HTTP requests
OpenAI/Claude Dependency: Tied to OpenAI and Anthropic models - cannot deploy Llama, Mistral, or custom open-source models
Cloud-Only Deployment: SaaS-only platform - no self-hosting, on-premise, or air-gapped deployment options for regulated industries
Limited Model Selection: Only GPT-4o and GPT-4o-mini toggle - no granular model selection or multi-model routing based on query complexity
No Enterprise Certifications: SOC 2 Type II on roadmap but not yet achieved - may disqualify for enterprise procurement requiring active certifications
Message Credit Limits: Plans have message credit caps - high-volume scenarios require plan upgrades or Enterprise custom pricing
Crawler Limitations: URL and sitemap crawling scope limited by plan tier - large websites may require higher tiers
No Advanced Analytics: Basic dashboard metrics - not as comprehensive as dedicated analytics platforms for deep conversation analysis
Retraining Workflow: Manual retraining required unless automatic mode enabled - knowledge base updates not always real-time
Functions Feature Complexity: "Functions" for bot actions (tickets, CRM) require technical setup - not fully no-code for advanced workflows
Limited Customization: Moderate UI customization - not as extensive as fully white-labeled or completely custom-built solutions
No Advanced RAG Features: Missing GraphRAG, knowledge graphs, agentic workflows, or advanced retrieval strategies found in developer-first platforms
Support Response Times: Email-based support may be slower than platforms offering live chat or phone support on standard plans
Emerging Platform: Newer platform vs established competitors - smaller ecosystem of integrations and third-party tools
Developer-Only Tool: Requires Python expertise, GPU knowledge, and technical setup—not suitable for non-technical users
GPU Infrastructure Required: Needs dedicated GPU hardware or cloud GPU instances with associated costs and management overhead
Basic UI: Gradio interface is functional but not polished—requires custom front-end development for production use
Limited Scalability: Scaling requires manual infrastructure management and load balancing vs auto-scaling cloud platforms
No Enterprise Features: Missing multi-tenancy, user management, advanced analytics, and production-grade monitoring
Slower Inference: Open-source models on single GPU (few to 10+ seconds per reply) vs sub-second cloud API responses
Manual Knowledge Base Updates: No automatic web crawling, syncing, or scheduled reindexing capabilities
No Pre-Built Integrations: Requires custom development to integrate with Slack, websites, or support platforms
Limited Context Memory: Primarily single-turn Q&A with minimal conversation history retention
Maintenance Burden: User responsible for updates, model management, troubleshooting, and infrastructure maintenance
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
After analyzing features, pricing, performance, and user feedback, both Ragie and SimplyRetrieve are capable platforms that serve different market segments and use cases effectively.
When to Choose Ragie
You value true multimodal support including audio/video
Extremely developer-friendly with simple APIs
Fully managed service - no infrastructure hassle
Best For: True multimodal support including audio/video
When to Choose SimplyRetrieve
You value completely free and open source
Strong privacy focus - fully localized
Lightweight - runs on single GPU
Best For: Completely free and open source
Migration & Switching Considerations
Switching between Ragie and SimplyRetrieve requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
Ragie starts at custom pricing, while SimplyRetrieve begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between Ragie and SimplyRetrieve comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 15, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...