Azumo vs OpenAI

Make an informed decision with our comprehensive comparison. Discover which RAG solution perfectly fits your needs.

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT.ai

Fact checked and reviewed by Bill Cava

Published: 01.04.2025Updated: 25.04.2025

In this comprehensive guide, we compare Azumo and OpenAI across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.

Overview

When choosing between Azumo and OpenAI, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.

Quick Decision Guide

  • Choose Azumo if: you value highly skilled nearshore developers in same timezone
  • Choose OpenAI if: you value industry-leading model performance

About Azumo

Azumo Landing Page Screenshot

Azumo is top-rated nearshore ai development services for custom solutions. Azumo is a leading nearshore software development company specializing in custom AI and machine learning solutions, offering dedicated teams and enterprise-grade development services for businesses looking to build intelligent applications. Founded in 2016, headquartered in San Francisco, CA, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
92/100
Starting Price
$100000/mo

About OpenAI

OpenAI Landing Page Screenshot

OpenAI is leading ai research company and api provider. OpenAI provides state-of-the-art language models and AI capabilities through APIs, including GPT-4, assistants with retrieval capabilities, and various AI tools for developers and enterprises. Founded in 2015, headquartered in San Francisco, CA, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
90/100
Starting Price
Custom

Key Differences at a Glance

In terms of user ratings, both platforms score similarly in overall satisfaction. From a cost perspective, OpenAI offers more competitive entry pricing. The platforms also differ in their primary focus: AI Development versus AI Platform. These differences make each platform better suited for specific use cases and organizational requirements.

⚠️ What This Comparison Covers

We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.

Detailed Feature Comparison

logo of azumo
Azumo
logo of openai
OpenAI
logo of customGPT logo
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
  • Custom ETL Pipelines – Pulls from proprietary systems, SharePoint, wikis, cloud storage into single index
  • Unstructured + Structured – PDFs, HTML, multimedia, databases, spreadsheets unified knowledge base Learn more
  • Vector Databases – Pinecone, Weaviate integration for domain-specific data indexing and retrieval
  • ✅ Embeddings API – text-embedding models generate vectors for semantic search workflows
  • ⚠️ DIY Pipeline – No ready-made ingestion; build chunking, indexing, refreshing yourself
  • Azure File Search – Beta preview tool accepts uploads for semantic search
  • Manual Architecture – Embed docs → vector DB → retrieve chunks at query time
  • 1,400+ file formats – PDF, DOCX, Excel, PowerPoint, Markdown, HTML + auto-extraction from ZIP/RAR/7Z archives
  • Website crawling – Sitemap indexing with configurable depth for help docs, FAQs, and public content
  • Multimedia transcription – AI Vision, OCR, YouTube/Vimeo/podcast speech-to-text built-in
  • Cloud integrations – Google Drive, SharePoint, OneDrive, Dropbox, Notion with auto-sync
  • Knowledge platforms – Zendesk, Freshdesk, HubSpot, Confluence, Shopify connectors
  • Massive scale – 60M words (Standard) / 300M words (Premium) per bot with no performance degradation
Integrations & Channels
  • Bespoke Connectors – Custom integrations for CRM, ERP, internal intranets, legacy systems
  • Multi-Channel Deployment – Web, mobile, Slack, Microsoft Teams via custom interfaces Integration services
  • ⚠️ No First-Party Channels – Build Slack bots, widgets, integrations yourself or use third-party
  • ✅ API Flexibility – Run GPT anywhere; channel-agnostic engine for custom implementations
  • Community Tools – Zapier, community Slack bots exist but aren't official OpenAI
  • Manual Wiring – Everything is code-based; no out-of-the-box UI or connectors
  • Website embedding – Lightweight JS widget or iframe with customizable positioning
  • CMS plugins – WordPress, WIX, Webflow, Framer, SquareSpace native support
  • 5,000+ app ecosystem – Zapier connects CRMs, marketing, e-commerce tools
  • MCP Server – Integrate with Claude Desktop, Cursor, ChatGPT, Windsurf
  • OpenAI SDK compatible – Drop-in replacement for OpenAI API endpoints
  • LiveChat + Slack – Native chat widgets with human handoff capabilities
Core Chatbot Features
  • RAG Agents – Context-rich answers via advanced relevancy search and prompt engineering
  • Multi-Turn Conversations – Context retention with source attribution for trust See approach
  • Multi-Agent Systems – Complex agent orchestration and multi-step reasoning for business workflows
  • ✅ Multi-Turn Chat – GPT-4/3.5 handle conversations; you resend history for context
  • ⚠️ No Agent Memory – OpenAI doesn't store conversational state; you manage it
  • Function Calling – Model triggers your functions (search endpoints); you wire retrieval
  • ChatGPT Web UI – Separate from API; not brand-customizable for private data
  • ✅ #1 accuracy – Median 5/5 in independent benchmarks, 10% lower hallucination than OpenAI
  • ✅ Source citations – Every response includes clickable links to original documents
  • ✅ 93% resolution rate – Handles queries autonomously, reducing human workload
  • ✅ 92 languages – Native multilingual support without per-language config
  • ✅ Lead capture – Built-in email collection, custom forms, real-time notifications
  • ✅ Human handoff – Escalation with full conversation context preserved
Customization & Branding
  • ✅ Unlimited Customization – Persona, tone, fully branded UI through bespoke development
  • Brand Voice Matching – Voice, greetings, fonts, colors, layouts tailored collaboratively Learn more
  • ⚠️ No Turnkey UI – Build branded front-end yourself; no theming layer provided
  • System Messages – Set tone/style via prompts; white-label chat requires development
  • ChatGPT Custom Instructions – Apply only inside ChatGPT app, not embedded widgets
  • Developer Project – All branding, UI customization is your responsibility
  • Full white-labeling included – Colors, logos, CSS, custom domains at no extra cost
  • 2-minute setup – No-code wizard with drag-and-drop interface
  • Persona customization – Control AI personality, tone, response style via pre-prompts
  • Visual theme editor – Real-time preview of branding changes
  • Domain allowlisting – Restrict embedding to approved sites only
L L M Model Options
  • ✅ Model-Agnostic – GPT-4, Claude, LLaMA, Gemini, Cohere, open-source alternatives supported
  • Domain Fine-Tuning – Custom model tuning on business data for performance boost Learn more
  • ✅ GPT-4 Family – GPT-4 (8k/32k), GPT-4 Turbo (128k), GPT-4o top-tier performance
  • ✅ GPT-3.5 Family – GPT-3.5 Turbo (4k/16k) cost-effective for high-volume use
  • ⚠️ OpenAI-Only – Cannot swap to Claude, Gemini; locked to OpenAI ecosystem
  • Manual Routing – Developer chooses model per request; no automatic selection
  • ✅ Frequent Upgrades – Regular releases with larger context windows and better benchmarks
  • GPT-5.1 models – Latest thinking models (Optimal & Smart variants)
  • GPT-4 series – GPT-4, GPT-4 Turbo, GPT-4o available
  • Claude 4.5 – Anthropic's Opus available for Enterprise
  • Auto model routing – Balances cost/performance automatically
  • Zero API key management – All models managed behind the scenes
Developer Experience ( A P I & S D Ks)
  • ⚠️ Custom APIs Only – Tailor-made microservices, no off-the-shelf SDKs or self-service
  • LangChain/Haystack – Internal frameworks with docs and code reviews on delivery See process
  • ✅ Excellent Docs – Official Python/Node.js SDKs; comprehensive API reference and guides
  • Function Calling – Simplifies prompting; you build RAG pipeline (indexing, retrieval, assembly)
  • Framework Support – Works with LangChain/LlamaIndex (third-party tools, not OpenAI products)
  • ⚠️ No Reference Architecture – Vast community examples but no official RAG blueprint
  • REST API – Full-featured for agents, projects, data ingestion, chat queries
  • Python SDK – Open-source customgpt-client with full API coverage
  • Postman collections – Pre-built requests for rapid prototyping
  • Webhooks – Real-time event notifications for conversations and leads
  • OpenAI compatible – Use existing OpenAI SDK code with minimal changes
Performance & Accuracy
  • ✅ High Accuracy – Fine-tuned retrieval, advanced reranking for relevant context only
  • Scalable Infrastructure – Efficient vector search, low latency on complex queries Benchmarks
  • ✅ GPT-4 Top-Tier – Leading performance for language tasks; requires RAG for domain accuracy
  • ⚠️ Hallucination Risk – Can hallucinate on private/recent data without retrieval implementation
  • Well-Built RAG Delivers – High accuracy achievable with proper indexing, chunking, prompt design
  • Latency Considerations – Larger models (128k context) add latency; scales well under load
  • Sub-second responses – Optimized RAG with vector search and multi-layer caching
  • Benchmark-proven – 13% higher accuracy, 34% faster than OpenAI Assistants API
  • Anti-hallucination tech – Responses grounded only in your provided content
  • OpenGraph citations – Rich visual cards with titles, descriptions, images
  • 99.9% uptime – Auto-scaling infrastructure handles traffic spikes
Customization & Flexibility ( Behavior & Knowledge)
  • ✅ Complete Control – Multiple datastores, role-based access, custom system prompt tuning
  • Continuous Refinement – Add training data, tune prompts, custom logic integration Learn more
  • ✅ Fine-Tuning Available – GPT-3.5 fine-tuning for style; knowledge injection via RAG code
  • ⚠️ Content Freshness – Re-embed, re-fine-tune, or pass context each call; developer overhead
  • Tool Calling Power – Powerful moderation/tools but requires thoughtful design; no unified UI
  • Maximum Flexibility – Extremely flexible for general AI; lacks built-in document management
  • Live content updates – Add/remove content with automatic re-indexing
  • System prompts – Shape agent behavior and voice through instructions
  • Multi-agent support – Different bots for different teams
  • Smart defaults – No ML expertise required for custom behavior
Pricing & Scalability
  • ⚠️ Project-Based Pricing – $10K+ minimum, higher upfront than SaaS subscriptions Pricing
  • ✅ Enterprise Scale – Infrastructure scales with query volume and data growth automatically
  • ✅ Pay-As-You-Go – $0.0015/1K tokens GPT-3.5; ~$0.03-0.06/1K GPT-4 token pricing
  • ⚠️ Scale Costs – Great low usage; bills spike at scale with rate limits
  • No Flat Rate – Consumption-based only; cover external hosting (vector DB) separately
  • Enterprise Contracts – Higher concurrency, compliance features, dedicated capacity via sales
  • Standard: $99/mo – 60M words, 10 bots
  • Premium: $449/mo – 300M words, 100 bots
  • Auto-scaling – Managed cloud scales with demand
  • Flat rates – No per-query charges
Security & Privacy
  • ✅ Data Sovereignty – On-prem or VPC deployments for complete data control
  • Enterprise Compliance – HIPAA, FINRA, GDPR with encryption and granular access Security
  • ✅ API Data Privacy – Not used for training; 30-day retention for abuse checks
  • ✅ Encryption Standard – TLS in transit, at rest encryption; ChatGPT Enterprise adds SOC 2/SSO
  • ⚠️ Developer Responsibility – You secure user inputs, logs, auth, HIPAA/GDPR compliance
  • No User Portal – Build auth/access control in your own front-end
  • SOC 2 Type II + GDPR – Third-party audited compliance
  • Encryption – 256-bit AES at rest, SSL/TLS in transit
  • Access controls – RBAC, 2FA, SSO, domain allowlisting
  • Data isolation – Never trains on your data
Observability & Monitoring
  • Comprehensive Logging – Query performance, retrieval success, response times tracked out-of-box
  • Stack Integration – Splunk, CloudWatch integration for real-time alerts and analytics Learn more
  • ⚠️ Basic Dashboard – Tracks monthly token spend, rate limits; no conversation analytics
  • DIY Logging – Log Q&A traffic yourself; no specialized RAG metrics
  • Status Page – Uptime monitoring, error codes, rate-limit headers available
  • Community Solutions – Datadog/Splunk setups shared; you build monitoring pipeline
  • Real-time dashboard – Query volumes, token usage, response times
  • Customer Intelligence – User behavior patterns, popular queries, knowledge gaps
  • Conversation analytics – Full transcripts, resolution rates, common questions
  • Export capabilities – API export to BI tools and data warehouses
Support & Ecosystem
  • ✅ White-Glove Support – Dedicated manager, direct dev team access during and post-deployment Details
  • Technology Partnerships – Snowflake partnership, deep expertise across multiple AI platforms
  • ✅ Massive Community – Thorough docs, code samples; direct support requires Enterprise
  • Third-Party Frameworks – Slack bots, LangChain, LlamaIndex building blocks abound
  • Broad AI Focus – Text, speech, images; RAG is one of many use cases
  • Enterprise Premium Support – Success managers, SLAs, compliance environment for Enterprise customers
  • Comprehensive docs – Tutorials, cookbooks, API references
  • Email + in-app support – Under 24hr response time
  • Premium support – Dedicated account managers for Premium/Enterprise
  • Open-source SDK – Python SDK, Postman, GitHub examples
  • 5,000+ Zapier apps – CRMs, e-commerce, marketing integrations
Core Agent Features
  • Custom RAG – Context-rich answers via relevancy search and prompt engineering Approach
  • Multi-Agent Systems – Orchestration and multi-step reasoning for complex workflows
  • Voice & Text – Voice agents, text chatbots, hybrid solutions per channel
  • CRM Integration – Salesforce, HubSpot, Dynamics integration for lead capture and management
  • Human Handoff – Context transfer when AI confidence drops or queries complex
  • ✅ Bespoke Development – No off-the-shelf limits on functionality or integration capabilities
  • ✅ Assistants API (v2) – Built-in conversation history, persistent threads, tool access management
  • ✅ Function Calling – Models invoke external functions/tools; describe structure, receive calls with arguments
  • ✅ Parallel Tool Execution – Access Code Interpreter, File Search, custom functions simultaneously
  • Responses API (2024) – New primitive with web search, file search, computer use
  • ✅ Structured Outputs – strict: true guarantees arguments match JSON Schema for reliable parsing
  • ⚠️ Agent Limitations – Less control vs LangChain for complex workflows; simpler assistant paradigm
  • Custom AI Agents – Autonomous GPT-4/Claude agents for business tasks
  • Multi-Agent Systems – Specialized agents for support, sales, knowledge
  • Memory & Context – Persistent conversation history across sessions
  • Tool Integration – Webhooks + 5,000 Zapier apps for automation
  • Continuous Learning – Auto re-indexing without manual retraining
R A G-as-a- Service Assessment
  • ⚠️ Custom Agency NOT SaaS – Bespoke RAG solutions, not self-service platform
  • Target Audience – Enterprises with $10K+ budgets, complex needs, not rapid prototyping
  • ✅ Complete Pipeline – Chunking, embeddings, vector DBs, retrieval, reranking customized
  • Agentic RAG – Multi-agent reasoning, self-validation, real-time orchestration Approach
  • ✅ Code Ownership – Clients own code and infrastructure for complete control
  • ⚠️ Timeline – Weeks to months delivery, not instant API access
  • ⚠️ NOT RAG-AS-A-SERVICE – Provides LLM models/APIs, not managed RAG infrastructure
  • DIY RAG Architecture – Embed docs → external vector DB → retrieve → inject into prompt
  • File Search (Beta) – Azure preview includes minimal semantic search; not production RAG
  • ⚠️ No Managed Infrastructure – Unlike CustomGPT/Vectara, leaves chunking, indexing, retrieval to developers
  • Framework vs Service – Compare to LLM APIs (Claude, Gemini), not managed RAG platforms
  • External Costs – RAG needs vector DBs (Pinecone $70+/month), hosting, embeddings API
  • Platform type – TRUE RAG-AS-A-SERVICE with managed infrastructure
  • API-first – REST API, Python SDK, OpenAI compatibility, MCP Server
  • No-code option – 2-minute wizard deployment for non-developers
  • Hybrid positioning – Serves both dev teams (APIs) and business users (no-code)
  • Enterprise ready – SOC 2 Type II, GDPR, WCAG 2.0, flat-rate pricing
Additional Considerations
  • ✅ Best For – Mission-critical AI, legacy system integration, complex multi-step workflows
  • ✅ Code Ownership – Ultimate flexibility to maintain or extend post-delivery Approach
  • ⚠️ Investment – Higher upfront cost, longer rollout than SaaS tools
  • ✅ Maximum Freedom – Best for bespoke AI solutions beyond RAG (code gen, creative writing)
  • ✅ Regular Upgrades – Frequent model releases with bigger context windows keep tech current
  • ⚠️ Coding Required – Near-infinite customization comes with setup complexity; developer-friendly only
  • Cost Management – Token pricing cost-effective at small scale; maintaining RAG adds ongoing effort
  • Time-to-value – 2-minute deployment vs weeks with DIY
  • Always current – Auto-updates to latest GPT models
  • Proven scale – 6,000+ organizations, millions of queries
  • Multi-LLM – OpenAI + Claude reduces vendor lock-in
No- Code Interface & Usability
  • ⚠️ No Pre-Built UI – Admin/user interfaces built as part of custom solution
  • Developer Required – Non-developers need developer help for changes despite polished UI
  • ⚠️ Not No-Code – Requires coding embeddings, retrieval, chat UI; no-code OpenAI options minimal
  • ChatGPT Web App – User-friendly but not embeddable with your data/branding by default
  • Third-Party Tools – Zapier/Bubble offer partial integrations; not official OpenAI solutions
  • Developer-Focused – Extremely capable for coders; less for non-technical teams wanting self-serve
  • 2-minute deployment – Fastest time-to-value in the industry
  • Wizard interface – Step-by-step with visual previews
  • Drag-and-drop – Upload files, paste URLs, connect cloud storage
  • In-browser testing – Test before deploying to production
  • Zero learning curve – Productive on day one
Competitive Positioning
  • Market Position – Premium custom AI agency for mission-critical enterprise RAG solutions
  • Target Customers – Large enterprises, regulated industries (HIPAA, FINRA) with legacy integration needs
  • Key Competitors – Deviniti, Contextual.ai, Azure AI, OpenAI enterprise, internal dev teams
  • ✅ Advantages – Model-agnostic, white-glove support, code ownership, on-prem/VPC deployment, Snowflake partnerships
  • Pricing Value – Higher upfront, no recurring costs; best for complex unique requirements
  • Ideal Use Cases – Legacy integration, specialized workflows, fine-tuning, compliance needing on-prem control
  • Market Position – Leading AI model provider; top GPT models as custom AI building blocks
  • Target Customers – Dev teams building bespoke solutions; enterprises needing flexibility beyond RAG
  • Key Competitors – Anthropic Claude API, Google Gemini, Azure AI, AWS Bedrock, RAG platforms
  • ✅ Competitive Advantages – Top GPT-4 performance, frequent upgrades, excellent docs, massive ecosystem, Enterprise SOC 2/SSO
  • ✅ Pricing Advantage – Pay-as-you-go highly cost-effective at small scale; best value low-volume use
  • Use Case Fit – Ideal for custom AI requiring flexibility; less suitable for turnkey RAG without dev resources
  • Market position – Leading RAG platform balancing enterprise accuracy with no-code usability. Trusted by 6,000+ orgs including Adobe, MIT, Dropbox.
  • Key differentiators – #1 benchmarked accuracy • 1,400+ formats • Full white-labeling included • Flat-rate pricing
  • vs OpenAI – 10% lower hallucination, 13% higher accuracy, 34% faster
  • vs Botsonic/Chatbase – More file formats, source citations, no hidden costs
  • vs LangChain – Production-ready in 2 min vs weeks of development
A I Models
  • ✅ Model-Agnostic – GPT-4, Claude 3.5, Gemini, LLaMA 3.3, Qwen, Cohere, open-source
  • ⚠️ Selection Process – Azumo team determines during discovery, not self-service configuration
  • Fine-Tuning – Domain-specific tuning on curated datasets reflecting real business environments
  • Provider Relationships – OpenAI, Anthropic, Google, Meta, DeepSeek, xAI, Mistral partnerships
  • ✅ GPT-4 Family – GPT-4 (8k/32k), GPT-4 Turbo (128k), GPT-4o - top language understanding/generation
  • ✅ GPT-3.5 Family – GPT-3.5 Turbo (4k/16k) cost-effective with good performance
  • ✅ Frequent Upgrades – Regular releases with improved capabilities, larger context windows
  • ⚠️ OpenAI-Only – Cannot swap to Claude, Gemini; locked to OpenAI models
  • ✅ Fine-Tuning – GPT-3.5 fine-tuning for domain-specific customization with training data
  • OpenAI – GPT-5.1 (Optimal/Smart), GPT-4 series
  • Anthropic – Claude 4.5 Opus/Sonnet (Enterprise)
  • Auto-routing – Intelligent model selection for cost/performance
  • Managed – No API keys or fine-tuning required
R A G Capabilities
  • Vector Databases – Pinecone, Weaviate, Qdrant integration for domain-specific data handling
  • Semantic Chunking – Breaks docs by topic/intent, sizes vary by content type
  • Advanced Retrieval – Relevancy search with reranking for high accuracy context
  • 128K Context Window – Large document processing and complex queries supported
  • ✅ Complete Pipeline – Chunking, embedding, vector search, reranking, answer generation with citations
  • ⚠️ NO Built-In RAG – LLM models only; build entire RAG pipeline yourself
  • ✅ Embeddings API – text-embedding-ada-002 and newer for vector embeddings/semantic search
  • DIY Architecture – Embed docs → external vector DB → retrieve → inject into prompt
  • Azure Assistants Preview – Beta File Search tool; minimal, preview-stage only
  • Framework Integration – Works with LangChain/LlamaIndex (third-party, not OpenAI products)
  • ⚠️ Developer Responsibility – Chunking, indexing, retrieval optimization all require custom code
  • GPT-4 + RAG – Outperforms OpenAI in independent benchmarks
  • Anti-hallucination – Responses grounded in your content only
  • Automatic citations – Clickable source links in every response
  • Sub-second latency – Optimized vector search and caching
  • Scale to 300M words – No performance degradation at scale
Use Cases
  • Primary Industries – E-commerce, healthcare, finance, manufacturing/logistics with complex AI needs
  • Enterprise Apps – Custom ETL, wiki integration, SharePoint connectors, multi-agent systems
  • Team Sizes – Large enterprises, 1-15 Azumo members working alongside client teams
  • Common Projects – Legacy modernization, Azure migrations, health screening, CRM integration with AI
  • ⚠️ Timeline – 12-18 month pilots typical before company-wide rollout, slower than SaaS
  • ✅ Custom AI Applications – Bespoke solutions requiring maximum flexibility beyond pre-packaged platforms
  • ✅ Code Generation – GitHub Copilot-style tools, IDE integrations, automated review
  • ✅ Creative Writing – Content generation, marketing copy, storytelling at scale
  • ✅ Data Analysis – Natural language queries over structured data, report generation
  • Customer Service – Custom chatbots integrated with business systems and knowledge bases
  • ⚠️ NOT IDEAL FOR – Non-technical teams wanting turnkey RAG chatbot without coding
  • Customer support – 24/7 AI handling common queries with citations
  • Internal knowledge – HR policies, onboarding, technical docs
  • Sales enablement – Product info, lead qualification, education
  • Documentation – Help centers, FAQs with auto-crawling
  • E-commerce – Product recommendations, order assistance
Security & Compliance
  • ✅ Certifications – HIPAA with BAA, FINRA, GDPR compliance for regulated industries
  • ✅ Deployment Options – On-premise or VPC for data sovereignty, cloud-agnostic architecture
  • Encryption – Enterprise-grade at rest/transit, granular access controls, role-based permissions
  • Custom Retention – Data retention policies tailored to industry compliance mandates
  • Monitoring – Logging tied to Splunk, CloudWatch for real-time alerts and analytics
  • Vulnerability Management – Continuous security scanning and threat detection for production systems
  • ✅ API Data Privacy – Not used for training; 30-day retention for abuse checks only
  • ✅ ChatGPT Enterprise – SOC 2 Type II, SSO, stronger privacy, enterprise-grade security
  • ✅ Encryption – TLS in transit, at rest encryption with enterprise standards
  • ✅ GDPR/HIPAA – DPA for GDPR; BAA for HIPAA; regional data residency available
  • ✅ Zero-Retention Option – Enterprise/API customers can opt for no data retention
  • ⚠️ Developer Responsibility – User auth, input validation, logging entirely on you
  • SOC 2 Type II + GDPR – Regular third-party audits, full EU compliance
  • 256-bit AES encryption – Data at rest; SSL/TLS in transit
  • SSO + 2FA + RBAC – Enterprise access controls with role-based permissions
  • Data isolation – Never trains on customer data
  • Domain allowlisting – Restrict chatbot to approved domains
Pricing & Plans
  • ⚠️ Project-Based – $10K+ minimum, $4,200-$70K+ range, higher upfront than SaaS
  • Hourly Rate – Average $25-49/hour, costs scale by scope and complexity
  • Billing Flexibility – Week-by-week exploratory pricing, custom enterprise agreements (average 3.2+ years)
  • Team Size – 1-15 members ensuring quality service and timely delivery
  • ✅ Value – Full code ownership, no recurring costs, long-term investment payoff
  • ✅ Pay-As-You-Go – $0.0015/1K tokens GPT-3.5; ~$0.03-0.06/1K GPT-4 token pricing
  • ✅ No Platform Fees – Pure consumption pricing; no subscriptions, monthly minimums
  • Rate Limits by Tier – Usage tiers auto-increase limits as spending grows
  • ⚠️ Cost at Scale – Bills spike without optimization; high-volume needs token management
  • External Costs – RAG incurs vector DB (Pinecone, Weaviate) and hosting costs
  • ✅ Best Value For – Low-volume use or teams with existing infrastructure
  • Standard: $99/mo – 10 chatbots, 60M words, 5K items/bot
  • Premium: $449/mo – 100 chatbots, 300M words, 20K items/bot
  • Enterprise: Custom – SSO, dedicated support, custom SLAs
  • 7-day free trial – Full Standard access, no charges
  • Flat-rate pricing – No per-query charges, no hidden costs
Support & Documentation
  • ✅ White-Glove – Dedicated manager, direct dev team access during and post-deployment
  • Project Management – Weekly meetings, backlog system, continuous engagement beyond original scope
  • Custom Docs – Endpoint design, architecture diagrams, implementation guides delivered with code
  • Training – In-person knowledge transfer sessions with client teams, clear docs
  • ⚠️ No SLAs – Direct communication, high responsiveness reported but no formal SLAs
  • ⚠️ No Community – Professional services model only, no public forums
  • ✅ Excellent Documentation – Comprehensive guides, API reference, code samples at platform.openai.com
  • ✅ Official SDKs – Well-maintained Python, Node.js libraries with examples
  • ✅ Massive Community – Extensive tutorials, LangChain/LlamaIndex integrations, ecosystem resources
  • ⚠️ Limited Direct Support – Community forums for standard users; Enterprise gets premium support
  • OpenAI Cookbook – Practical examples and recipes for common use cases including RAG
  • Documentation hub – Docs, tutorials, API references
  • Support channels – Email, in-app chat, dedicated managers (Premium+)
  • Open-source – Python SDK, Postman, GitHub examples
  • Community – User community + 5,000 Zapier integrations
Limitations & Considerations
  • ⚠️ High Initial Cost – $10K+ minimum, not suitable for small businesses
  • ⚠️ Long Timeline – 12-18 month pilots, weeks to months vs. hours for SaaS
  • ⚠️ Requires Dev Teams – Need internal developers to maintain and extend post-delivery
  • ⚠️ Services-Driven – Azumo determines config, not self-service dashboard controls
  • Learning Curve – Significant onboarding and training needed for client teams
  • Not Ideal For – Simple use cases, rapid deployment needs, budget-constrained startups
  • ⚠️ NO Built-In RAG – Entire retrieval infrastructure must be built by developers
  • ⚠️ Developer-Only – Requires coding expertise; no no-code interface for non-technical teams
  • ⚠️ Rate Limits – Usage tiers start restrictive (Tier 1: 500 RPM GPT-4)
  • ⚠️ Model Lock-In – Cannot use Claude, Gemini; tied to OpenAI ecosystem
  • ⚠️ NO Chat UI – ChatGPT web interface not embeddable or customizable for business
  • ⚠️ Cost at Scale – Token pricing can spike without optimization; needs cost management
  • Managed service – Less control over RAG pipeline vs build-your-own
  • Model selection – OpenAI + Anthropic only; no Cohere, AI21, open-source
  • Real-time data – Requires re-indexing; not ideal for live inventory/prices
  • Enterprise features – Custom SSO only on Enterprise plan

Ready to experience the CustomGPT difference?

Start Free Trial →

Final Thoughts

Final Verdict: Azumo vs OpenAI

After analyzing features, pricing, performance, and user feedback, both Azumo and OpenAI are capable platforms that serve different market segments and use cases effectively.

When to Choose Azumo

  • You value highly skilled nearshore developers in same timezone
  • Extensive AI/ML expertise since 2016
  • Flexible engagement models (staff aug or project-based)

Best For: Highly skilled nearshore developers in same timezone

When to Choose OpenAI

  • You value industry-leading model performance
  • Comprehensive API features
  • Regular model updates

Best For: Industry-leading model performance

Migration & Switching Considerations

Switching between Azumo and OpenAI requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.

Pricing Comparison Summary

Azumo starts at $100000/month, while OpenAI begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.

Our Recommendation Process

  1. Start with a free trial - Both platforms offer trial periods to test with your actual data
  2. Define success metrics - Response accuracy, latency, user satisfaction, cost per query
  3. Test with real use cases - Don't rely on generic demos; use your production data
  4. Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
  5. Check vendor stability - Review roadmap transparency, update frequency, and support quality

For most organizations, the decision between Azumo and OpenAI comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.

📚 Next Steps

Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.

  • Review: Check the detailed feature comparison table above
  • Test: Sign up for free trials and test with real queries
  • Calculate: Estimate your monthly costs based on expected usage
  • Decide: Choose the platform that best aligns with your requirements

Last updated: January 4, 2026 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.

Ready to Get Started with CustomGPT?

Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.

Why Choose CustomGPT?

97% Accuracy

Industry-leading benchmarks

5-Min Setup

Get started instantly

24/7 Support

Expert help when you need it

Enterprise Ready

Scale with confidence

Trusted by leading companies worldwide

Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us

Join the Discussion

Loading comments...

Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.

Watch: Understanding AI Tool Comparisons