In this comprehensive guide, we compare Chatling and Voiceflow across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between Chatling and Voiceflow, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose Chatling if: you value broadest ai model selection (32 models) among no-code platforms - includes gpt-5, claude 4.5, gemini 2.5 with per-block flexibility
Choose Voiceflow if: you value visual workflow builder enables non-technical teams to build complex agents
About Chatling
Chatling is no-code ai chatbot platform with 32-model llm selection. No-code AI chatbot platform with 32-model LLM selection and SMB-focused pricing starting at $25/month. Developed by Envision Labs Inc. (Ontario, Canada), Chatling balances visual builder simplicity with REST API v2 access and native WhatsApp integration. 4.8/5 G2 rating (53-63 reviews). Critical gaps: NO SOC 2/HIPAA certifications, NO native human handoff, NO official SDKs, NO source citations. Founded in Year not disclosed, headquartered in Ontario, Canada, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
85/100
Starting Price
$25/mo
About Voiceflow
Voiceflow is collaborative ai agent building platform for teams. Voiceflow is a collaborative workflow-first platform for building, deploying, and scaling AI agents. Born from Alexa skill development (2017-2019), it evolved into a full-stack agent platform with visual canvas design, function calling, and enterprise-grade observability. Used by Mercedes-Benz, JP Morgan, and 200K+ teams. Founded in 2017, headquartered in Toronto, Canada, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
90/100
Starting Price
$40/mo
Key Differences at a Glance
In terms of user ratings, both platforms score similarly in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: Chatbot Platform versus AI Agent Platform. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
Chatling
Voiceflow
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
File Formats: PDF, DOCX, plain text ONLY
CRITICAL LIMITATION: NO CSV, Excel, or structured data format support
Website Crawler: Up to 1,000 pages per domain with automatic content extraction
Sitemap Ingestion: Required for sites larger than 1,000 pages
Help Desk Integration: Zendesk and Zoho for importing help articles
Manual Upload: Files, text snippets, FAQs via dashboard interface
NO Cloud Storage: Google Drive, Dropbox, Notion, OneDrive require manual downloads before upload - significant workflow friction
NO YouTube Transcripts: Video content ingestion not supported
Automatic Syncing: Daily, weekly, or monthly schedules on paid plans - NO real-time continuous sync
API Resync: /resync endpoint for programmatic knowledge base updates
Knowledge Base (KB) feature with RAG-powered document retrieval
Supports file uploads: PDF, Word docs, plain text, CSV
Website crawling with sitemap ingestion
Note: Accuracy concerns: User reviews note KB "often inaccurate" and "too general"
Manual document chunking and preprocessing required for optimal results
Integrations for knowledge: Google Drive, Notion, Confluence, Zendesk
Auto-sync available for connected sources (Pro+)
Vector search with semantic matching for knowledge retrieval
Custom metadata tagging for organized knowledge management
No explicit document limits on plans - scales based on storage tier
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
WhatsApp Business API: Native robust integration with full chatbot functionality, media sharing, automated responses
Website Embedding: Floating chat bubble (bottom-left/right), inline iframe, full-page deployment with custom domain support
Zapier Integration: 7,000+ apps with triggers (new contacts/conversations) and actions (send messages)
AI Intents: Train on example phrases for intent recognition without exact keyword matching
Visual Flow Builder: No-code interface with drag-and-drop conversation design
HTTP Request Blocks: Real-time API integrations within chatbot flows (e.g., order confirmations, CRM lookups)
Lead Capture: Built-in system variables for name, email, phone collection with embedded forms
Multi-language Detection: 85+ languages with automatic browser-based preference detection
Satisfaction Surveys: Helpful/unhelpful tracking at conversation end with analytics integration
CRITICAL LIMITATION: NO native human handoff - fallback collects contact info for follow-up vs live agent transfer
Third-Party Escalation: Requires Zapier integration to Zendesk, Freshdesk, or similar platforms - adds complexity and latency
AI Agents (Beta): Task-oriented assistants with intent detection, decision-making, API execution beyond simple chatbots
Agent step (2024): Autonomous AI conversation flow with tool use and decision making - Agent step decides when to use tools, access knowledge base, or call other Agent steps
Multi-agent orchestration: Connect multiple Agent steps to create sophisticated frameworks including Supervisor pattern where specialized agents handle different conversation aspects
Conversation context management: Multi-turn conversations with context preservation across sessions, persistent history, and comprehensive conversation management
Hybrid architecture: Combine hard business logic with Agent networks layered on top for both risk mitigation and conversational flexibility
Human handoff protocols: Smooth transitions for complex situations with full conversation history transfer, enabling training sales teams to take over seamlessly when prospects request "real person"
Lead capture & CRM integration: Automatic lead creation in HubSpot, Salesforce, or Pipedrive, log call outcomes, and update deal stages based on conversation results
Multi-channel orchestration: Combine outbound calling with email sequences and SMS outreach for comprehensive customer engagement
Custom Action step: Trigger live chat handoff when customers request human assistance, with services like hitlchat enabling WhatsApp integration with live agents
Intent recognition & entity extraction: NLU models with slot filling for form-based data collection and hybrid Intent + RAG capabilities (March 2024 research)
100+ language support: Leverages underlying LLM multilingual capabilities with locale-based routing for global deployments
Analytics & optimization: Dashboard tracking sessions, users, completion rates, drop-offs with A/B testing framework for agent performance optimization
LIMITATION: Knowledge Base accuracy: User reviews note KB "often inaccurate" and "too general" - manual document chunking and preprocessing required for optimal results
LIMITATION: Workflow complexity: Steep learning curve despite visual interface - more complex than simple chatbot builders, requires training for team ramp-up
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
Free Tier Access: 8 models available without payment (GPT-4.1, GPT-4o, GPT-4o Mini, Claude 4 Sonnet, etc.)
Hybrid Deployment Capability: Per-block model selection enables using GPT-4o for complex queries, GPT-4o Mini for simple FAQs within same chatbot
Cost Optimization: Model flexibility allows balancing quality vs credit consumption per conversation stage
Temperature & Token Control: Exposed at both global and per-block levels for fine-tuned model behavior
Competitive Advantage: Exceeds CustomGPT, Drift, Yellow.ai, Lindy.ai in sheer model variety and flexibility
Manual Selection Required: NO automatic routing based on query complexity - users must configure model per use case
Credit System Integration: Different models consume different credit amounts - documented per model for budgeting
N/A
N/A
Whats App Native Integration ( Differentiator)
WhatsApp Business API: Native robust integration vs third-party workarounds required by many competitors
Full Chatbot Functionality: All chatbot features work on WhatsApp including AI responses, knowledge base queries, lead capture
Media Sharing: Images, documents, voice messages supported in WhatsApp conversations
Automated Responses: 24/7 WhatsApp availability with AI-powered replies
Consumer-Facing Strength: Strong for e-commerce, SMBs, global markets where WhatsApp dominates customer communication
Competitive Gap: Progress, CustomGPT, many RAG platforms lack native WhatsApp - Chatling advantage for consumer use cases
B2B Messaging Gap: WhatsApp strength doesn't offset missing Slack/Teams integrations for enterprise internal use
N/A
N/A
Multi- Lingual Support
85+ Languages Supported: Broad coverage for global deployments
Automatic Browser-Based Detection: Chatbot detects user language preference from browser settings and responds accordingly
NO Manual Configuration Required: Language switching happens automatically without admin setup
Interface Language: Configurable for chatbot UI elements (buttons, prompts, system messages)
Multi-Language Model Support: All 32 AI models support multilingual conversations
Knowledge Base Processing: Supports multi-language content ingestion and retrieval
Global Customer Base: Valuable for international businesses serving diverse markets without language barriers
N/A
N/A
R A G-as-a- Service Assessment
Platform Type: NO-CODE CHATBOT PLATFORM with RAG capabilities - NOT pure RAG-as-a-Service like CustomGPT or Progress
RAG Implementation: Knowledge base grounding embedded within visual chatbot builder vs API-first RAG backend
Developer Access: REST API v2 provides programmatic knowledge base queries (/ai/kb/chat endpoint) but NO official SDKs
Transparency Limitation: NO source citations displayed to end users - responses don't show which documents informed answers
NO Confidence Scoring: Hallucination detection mechanisms not documented - only temperature control
Target Market: SMBs and non-technical teams prioritizing rapid chatbot deployment vs developers needing deep RAG customization
Comparison Validity: Architectural comparison to CustomGPT.ai is partially valid - both offer RAG but Chatling emphasizes no-code chatbot vs developer-first RAG API
Use Case Fit: Organizations prioritizing customer-facing chatbots with simple knowledge retrieval over complex RAG pipelines, embeddings control, or advanced retrieval strategies
Platform Type: WORKFLOW-FIRST PLATFORM WITH RAG CAPABILITIES - specialized in complex multi-step orchestration and team collaboration, NOT a pure RAG-as-a-Service platform
Core Architecture: Visual workflow canvas with 50+ drag-and-drop blocks combining intent-based approaches with RAG integration for knowledge-based responses (hybrid Intent + RAG architecture)
RAG Integration: Knowledge Base feature with vector search (Qdrant) querying documents using GPT-4, but RAG is secondary to workflow automation capabilities
Developer Experience: Comprehensive REST API, JavaScript/TypeScript and Python SDKs, custom code blocks (JavaScript execution within workflows), GraphQL API for flexible querying
No-Code Alternative: Google Docs-style collaboration with visual canvas builder - 10+ people editing simultaneously with real-time cursor tracking, comments, and mentions
Hybrid Target Market: Enterprise teams (200K+ users, Mercedes-Benz, JP Morgan, Shopify) needing sophisticated multi-agent workflows beyond simple Q&A - less suitable for pure document retrieval use cases
RAG Limitations: Knowledge Base "often inaccurate" per reviews, no configurable RAG parameters (chunking strategy, embedding models, similarity thresholds), manual preprocessing required
Workflow Strengths: Excels at complex orchestration with API integrations, multi-agent coordination, human handoff, CRM/helpdesk integrations (15+), and sophisticated customer journeys
Industry Positioning (2024): Moved toward hybrid approaches combining workflows, intent recognition, and RAG - pure vector databases lead to low recall/hit rates, workflows remain essential for integrating systems and controlled task execution
Deployment Flexibility: 15+ channel integrations (Slack, Teams, WhatsApp, Alexa, Google Assistant), webhook support, website embed widget, native mobile SDKs (iOS/Android)
Use Case Fit: Ideal for complex multi-step workflows requiring API integrations/orchestration, real-time team collaboration (10+ editors), voice assistants (Alexa/Google/telephony); NOT ideal for simple document Q&A due to KB accuracy issues
Competitive Positioning: More sophisticated than no-code chatbots (Chatbase, WonderChat) but less specialized than pure RAG platforms (CustomGPT) - competes with Botpress, Rasa, Microsoft Power Virtual Agents
LIMITATION: Not pure RAG: Workflow-first platform where RAG is feature, not core offering - organizations needing advanced RAG controls should consider specialized platforms (CustomGPT, Ragie, Vertex AI)
LIMITATION: Pricing escalation: Per-seat charges ($15-25/user) and per-agent fees ($20-50) can escalate quickly - best value for teams needing collaboration and workflows over simple RAG
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Competitive Positioning
Market Position: SMB-focused no-code chatbot platform with strongest appeal to non-technical teams and budget-conscious startups
32-Model Differentiator: Broadest LLM selection among no-code platforms - exceeds competitors in model flexibility
Free Tier Generosity: 100 AI credits, 2 chatbots, 8 models without credit card - strongest trial experience for evaluation
WhatsApp Strength: Native integration vs third-party workarounds - competitive advantage for consumer-facing businesses
G2 Validation: 4.8/5 rating from 53-63 reviews with reliability praised ("chatbots have never gone down")
vs. CustomGPT: Chatling offers no-code simplicity + WhatsApp vs CustomGPT developer-first RAG with deeper API/SDK access
vs. Progress: Chatling $25/month + visual builder vs Progress $700/month + REMi quality monitoring + enterprise compliance
vs. Drift: Chatling customer support automation vs Drift B2B sales engagement - different use case focus
vs. Lindy.ai: Chatling has REST API v2 vs Lindy NO public API - developer accessibility advantage
Enterprise Gaps: NO SOC 2/HIPAA/ISO 27001, NO SSO, NO human handoff - disqualifies for regulated industries and large enterprises
B2B Messaging Gaps: NO native Slack/Teams/Telegram - limits enterprise internal use cases vs omnichannel competitors
Developer Limitations: NO official SDKs, NO source citations, NO confidence scoring - gaps vs developer-focused RAG platforms
Market Presence: Absent from Product Hunt, AppSumo vs competitors - limited growth marketing exposure
Market position: Workflow-first conversational AI platform (founded 2017, $28M funding) specializing in complex multi-step orchestration and team collaboration, not pure RAG tool
Target customers: Enterprise teams (200K+ users, customers: Mercedes-Benz, JP Morgan, Shopify) needing sophisticated multi-agent workflows, organizations requiring team collaboration (10+ simultaneous editors), and companies building voice assistants for Alexa/Google/telephony beyond simple Q&A
Key competitors: Botpress, Rasa, Microsoft Power Virtual Agents, and workflow automation platforms; less comparable to pure RAG tools (CustomGPT, Botsonic)
Competitive advantages: Visual workflow canvas with 50+ drag-and-drop blocks for complex orchestration, Google Docs-style real-time collaboration (10+ editors), multi-model support (GPT-4, GPT-3.5, Claude, Gemini) with per-step selection, 15+ native integrations (CRM, helpdesk, messaging, e-commerce), SOC 2/GDPR/HIPAA compliance with on-prem deployment, comprehensive API/SDKs (JS, Python) with webhook system, 99.9% uptime SLA (Enterprise), A/B testing framework, and Voiceflow Academy for training/certification
Pricing advantage: Free Sandbox tier (2 agents, unlimited interactions); Pro at $50/month reasonable for startups; Team ($625/month) and Enterprise (custom) can escalate quickly with per-seat charges ($15-25/user) and per-agent fees ($20-50); best value for teams needing complex workflows and collaboration over simple RAG; Knowledge Base accuracy concerns make it less suitable for pure document Q&A
Use case fit: Ideal for enterprises building complex multi-step workflows requiring API integrations and orchestration, teams needing real-time collaboration (10+ people) on conversational AI development, and organizations building voice assistants (Alexa, Google) or sophisticated customer journeys; NOT ideal for simple document Q&A due to Knowledge Base accuracy issues ("often inaccurate" per reviews)
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
Deployment & Infrastructure
Cloud-Only SaaS: NO on-premise or hybrid deployment options - cloud-only hosted on DigitalOcean
Data Center: Amsterdam (DigitalOcean) for GDPR compliance with EU data residency
Website Embedding: Three modes - floating chat bubble (customizable position), inline iframe for page sections, full-page deployment
Custom Domain Support: Branded chatbot URLs available for white-labeled deployments
Domain Whitelisting: Security control limiting widget embedding to authorized domains
Mobile Deployment: NO native SDKs - app integration requires webview embedding
NO Multi-Region: Single data center (Amsterdam) - no US, Asia-Pacific, or other regional options documented
NO On-Premise: Cannot deploy on private infrastructure or air-gapped environments
N/A
N/A
Customer Feedback & Case Studies
G2 Rating: 4.8/5 from 53-63 reviews with strong reliability scores
Trustpilot Rating: 4.3/5 from 8 reviews
Support Quality (G2): 9.2/10 despite email-only channel and response time concerns
Setup Time Praise: "5-minute setup" consistently highlighted by users as genuine rapid deployment
Reliability Testimonial: "Chatbots have never gone down" - uptime performance praised
Support Deflection: One user reported 45% of support questions resolved, reducing email inquiries from 1,500+ monthly
Large-Scale Deployment: User uploaded 4,000+ website URLs with "reliable answers in real time"
Fine-Tuning from Traffic: "Game changer" - ability to improve from live conversation data
Recurring Criticism: Single flow architecture unwieldy for complex bots, NO import/export flows, NO screen reader accessibility, email support can be slow
NO Named Enterprise Customers: Public case studies limited to G2/Trustpilot testimonials vs named Fortune 500 deployments
N/A
N/A
A I Models
Free Tier (8 Models): GPT-4.1, GPT-4o, GPT-4o Mini, GPT-4, Claude 4 Sonnet, Claude 3.5 Haiku without payment
Paid Tiers (32 Total): GPT-5, GPT-5 Mini, GPT-5 Nano, GPT-4.5, o4 Mini, o3 Mini, Claude 4.5 Sonnet, Claude 4.5 Haiku, Claude 4 Opus, Claude 3.7 Sonnet, Gemini 2.5 Flash, Gemini 2.5 Pro, Gemini 2.0 Flash - broadest selection among no-code platforms
Model Flexibility: Configure globally per chatbot OR per individual AI response block for hybrid deployments optimizing cost-quality balance
Temperature & Max Tokens: Exposed at both global and per-block levels for fine-tuned control over creativity and verbosity
Manual Selection Only: No query complexity-based automatic model routing - users manually configure model per use case
Credit Consumption: 1 credit per AI response on GPT-4o, consumption varies by model with monthly reset (no carryover)
Competitive Advantage: 32-model roster exceeds most no-code platforms (Botsonic, Chatbase, SiteGPT) in LLM flexibility
Multi-model support: GPT-4, GPT-3.5-turbo, Claude (Anthropic), Google Gemini with per-agent or per-step model selection
Function calling: GPT-4 and Claude function calling for real-time action triggering during conversations
Custom model integration: Integrate proprietary LLMs via API for specialized domain requirements
Temperature and token controls: Configurable per request for balancing creativity vs predictability (0.0-2.0 range)
Automatic fallback models: Configure backup models for reliability when primary model unavailable
Cost optimization routing: Route simple queries to GPT-3.5, complex queries to GPT-4 for cost management
Prompt engineering tools: System prompts, few-shot examples, response formatting templates for domain-specific behavior
Primary models: GPT-4, GPT-3.5 Turbo from OpenAI, and Anthropic's Claude for enterprise needs
Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request
Model Selection Details
Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
Knowledge Base Training: Upload documents (PDF, DOCX, TXT, CSV) and website URLs to train chatbot on custom content
Retrieval-Augmented Responses: Grounds answers in uploaded knowledge base for factual accuracy and reduced hallucinations compared to pure LLM responses
Auto-Retraining: Daily, weekly, or monthly schedules on paid plans - NO real-time continuous sync with cloud storage
Simple RAG Workflow: No advanced features like semantic chunking controls, confidence scoring, or source citations - basic upload-and-query model
Manual Updates: Knowledge base updates require manual re-upload or retraining via dashboard or API /resync endpoint
NO Source Citations: Responses don't show which specific documents or URLs informed each answer - reduces transparency vs competitors (CustomGPT, Progress)
NO Confidence Scoring: No hallucination detection mechanisms documented - only indirect temperature control
Best for Simple Bots: Works well for small to medium-sized knowledge bases (500K-90M characters) - not designed for massive enterprise deployments
Performance Claims: 45% support question resolution, 4,000+ URLs processed with "reliable answers in real time" per user testimonials
Knowledge Base feature: RAG-powered document retrieval with vector search and semantic matching
Document support: PDF, Word docs, plain text, CSV with manual preprocessing required for optimal results
Website crawling: Sitemap ingestion for automated knowledge base building from URLs
Cloud integrations: Google Drive, Notion, Confluence, Zendesk with auto-sync on Pro+ plans
Custom metadata tagging: Organize knowledge management with structured metadata fields
LIMITATION: Accuracy concerns: User reviews note Knowledge Base "often inaccurate" and "too general" - manual preprocessing recommended
LIMITATION: No RAG parameter controls: Cannot configure chunking strategy, embedding models, or similarity thresholds
Multi-turn context: Maintains conversation context across sessions for coherent multi-turn dialogues
Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks
RAG Performance
Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content
Benchmark Details
Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
Source verification: Always cites sources so users can verify facts on the spot
Use Cases
Website Chatbots: Quick embedding on websites for customer support and lead generation with simple JavaScript widget
WhatsApp Business: Native WhatsApp integration for conversational commerce and customer engagement on mobile-first platforms
Customer Support Automation: FAQ automation and basic support ticket routing reducing email inquiries by 45% (user testimonial: 1,500+ monthly inquiries)
Lead Generation: Built-in lead capture with system variables (name, email, phone) and qualification flows for sales pipeline building
Multi-Language Support: Automatic browser-based language detection across 85+ languages for global SMB audiences
Zapier Workflows: Connect to 7,000+ apps through Zapier for sales/marketing automation without coding
HTTP Request Actions: Custom API calls within visual builder for order lookups, CRM updates, external automations
E-commerce Support: Product information, order status, customer inquiry automation for online stores
SMB-Focused: Designed for small to mid-size businesses with straightforward chatbot needs and limited technical resources (5-minute setup time)
Complex multi-step workflows: API integrations, orchestration, and multi-agent coordination requiring sophisticated flow logic
Team collaboration: Real-time simultaneous editing (10+ people) with Google Docs-style cursor tracking and comments
Voice assistants: Alexa, Google Assistant, custom telephony integration for voice-based conversational AI
Customer service automation: 15+ native integrations (Zendesk, Salesforce, HubSpot, Intercom, Freshdesk) for support workflows
Lead generation: Conversational marketing with Calendly scheduling, form-based data collection, CRM sync
E-commerce: Shopify integration for order management and product recommendations within conversation flows
NOT ideal for: Simple document Q&A (Knowledge Base accuracy issues), teams needing advanced RAG features, budget-constrained startups (pricing escalates with seats/agents)
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
Per-seat charges: Additional editors $50/month on Pro, $15-25/month on Team tier
Per-agent fees: Extra agents $20-50/month depending on tier beyond plan limits
Annual discount: ~20% savings when billed annually vs monthly across all paid tiers
Note: Call costs separate: Pricing does not include Twilio/Vonage telephony fees ($0.01-$0.03/minute)
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
Email-Only Support: support@chatling.ai - NO live chat, phone support, or published SLAs (email support can be slow per reviews)
G2 Support Rating: 9.2/10 quality despite email-only channel and response time concerns
Comprehensive Documentation: docs.chatling.ai with getting started guides, API reference, integration tutorials, flow builder instructions
Video Tutorials: Supplement written documentation for visual learners
Action Tutorial Library: Practical HTTP request examples for common integrations (e.g., "Fetch and Email Order Confirmation")
Trust Center: trust.chatling.ai for security documentation and compliance details
REST API v2: https://api.chatling.ai/v2/ with Bearer token authentication and 300 requests/minute rate limit
MISSING ECOSYSTEM: NO community forum, Discord, Slack workspace, or public status page for peer support
NO Public Roadmap: Feature development transparency limited compared to competitors
Enterprise Support: Requires contacting sales - no dedicated support tiers publicly documented
Company background: Founded 2017, $28M raised (Series A: $20M from Felicis, OpenAI Startup Fund, Tiger Global)
Customer base: 200K+ teams including Mercedes-Benz, JP Morgan, Shopify demonstrating enterprise validation
Community: 15K+ developers on Discord/Slack with active forum for peer support and knowledge sharing
Template marketplace: 100+ pre-built agent templates for common use cases and rapid deployment
Support tiers: Sandbox (community), Pro (priority email 24-48hr), Team (priority email + chat), Enterprise (dedicated Slack, CSM, 24/7, SLA)
Documentation: Comprehensive guides, video tutorials, API docs at docs.voiceflow.com
Training: Voiceflow Academy with certification programs for team ramp-up and skill development
Partner program: Agency partnerships for white-label development and reseller opportunities
Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding
Developer Docs
Email and in-app support: Quick support via email and in-app chat for all users
Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
Code samples: Cookbooks, step-by-step guides, and examples for every skill level
API Documentation
Active community: User community plus 5,000+ app integrations through Zapier ecosystem
Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
Single Flow Management: Larger bots get unwieldy because everything lives inside single flow - no folder organization like ManyChat for complex conversation trees
NO Live Chat Support: Doesn't include live chat feature - blended human-AI support approach unavailable without Zapier workarounds
Separate Bots Per Channel: Need to build separate chatbot for website vs WhatsApp - no unified multi-channel bot creation
Limited Advanced Features: Once you need fallback behavior, confidence scoring, or content indexing control, limitations appear
Barebones Analytics: Analytics pretty barebones compared to enterprise platforms with detailed conversation intelligence and custom report builders
Knowledge Base Management Challenges: For e-shop or site with lots of pages, nightmare to sort which pages to add - no Excel import for bulk management
Data Quality Dependency: If data isn't clean, bot might pull irrelevant answers - heavily dependent on training data quality and curation
NO Flow Import/Export: Cannot import or export flows, no option to copy or duplicate full group of blocks for version control
Screen Reader Accessibility: Does not support accessibility for blind users using screen readers - inclusivity limitation cited in reviews
Setup Time Investment: Configuring chatbot tone takes manual effort, assembling strong knowledge base not plug-and-play despite 5-minute claims
Learning Curve: Takes while to learn how to use builder and tools despite drag-and-drop interface and visual design
Integration Gaps: Heavy reliance on Zapier might limit functionality if service experiences downtime - not all third-party platforms supported natively
Interface Overwhelm: Drag-and-drop can be overwhelming for new users unfamiliar with chatbot design principles and flow logic
Best for Small-to-Medium Bots: Works best for small to medium-sized bots rather than massive enterprise-level projects with complex requirements
B2B Messaging Gaps: NO native Slack, Microsoft Teams, or Telegram integrations - limits enterprise internal use cases
NO Official SDKs: Must build own HTTP clients or rely on community implementations - no official JavaScript or Python SDKs
Enterprise Compliance Gaps: NO SOC 2, HIPAA, ISO 27001 certifications disqualifies platform for regulated industries (healthcare, finance, government)
Knowledge Base accuracy issues: Multiple reviews cite KB as "often inaccurate" - not ideal for pure document Q&A use cases
Workflow-first, not RAG-first: Excels at complex orchestration but lags specialized RAG platforms for knowledge retrieval
Steep learning curve: More complex than simple chatbot builders despite visual interface - requires training
Pricing complexity: Per-seat charges and per-agent fees can escalate quickly beyond base plan costs
Visual canvas overwhelm: Very complex agents (100+ blocks) become difficult to manage and visualize
No SOC 2 on lower tiers: SOC 2 compliance only available on Enterprise tier, blocking some enterprise sales
Limited analytics depth: 8.7/10 ease of use but analytics require improvement for enterprise needs
99.9% uptime SLA Enterprise-only: No SLA guarantees on Pro/Team tiers for mission-critical deployments
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-4, GPT-3.5) and Anthropic (Claude) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Additional Considerations
Simplicity as Strength: Platform strongest feature is simplicity designed so anyone regardless of technical background can build powerful GPT-enabled chatbot quickly
No-Code Accessibility: Drag-and-drop interface makes creating AI chatbots accessible to non-technical users with minimal learning curve
Multilingual Versatility: Supports over 85 languages ensuring chatbot can communicate with diverse linguistic backgrounds automatically
Integration Flexibility: Seamless integration with HubSpot, Zendesk, Zoho, Google Sheets, Cal.com, and Zapier for workflow automation
Cost-Effective Free Plan: Unique free plan doesn't cap conversations - if you don't need AI-powered replies, stay free forever making it most cost-effective for SMBs
Latest AI Models: Powered by latest large language models including GPT, Gemini, and Claude ensuring cutting-edge performance
WhatsApp Native Integration: Works seamlessly on websites and WhatsApp providing mobile-first customer engagement capabilities
Proven Reliability: G2 reviews praise "chatbots have never gone down" with 4.8/5 rating from 53-63 reviews demonstrating strong uptime
Support Deflection Success: User reported 45% of support questions resolved reducing email inquiries from 1,500+ monthly for efficiency gains
Security & Privacy: Industry-standard security with data encryption in transit and at rest, GDPR compliant with regular security audits
Training Flexibility: Upload documents, add websites, connect data sources to train AI chatbot automatically on custom content
Trade-Off: Simplicity vs Advanced Features: Exceptional usability and ease comes at cost of advanced features like custom flows, live chat, enterprise compliance
Best Fit: Small to mid-size businesses prioritizing rapid deployment, simplicity, and cost-effectiveness over enterprise-grade features and compliance
Workflow-first vs. RAG-first: Voiceflow excels at complex workflows, but KB accuracy lags specialized RAG platforms
Learning curve: Steeper than simple chatbot builders despite visual interface
Visual canvas can become overwhelming for very complex agents (100+ blocks)
Best use case: Multi-step workflows requiring orchestration, API integrations, and team collaboration
Not ideal for: Simple document Q&A or pure knowledge retrieval use cases
Competitive positioning: More sophisticated than no-code chatbots (Chatbase, WonderChat), less specialized than pure RAG (CustomGPT)
Voice capabilities: Strong for voice assistants (Alexa, Google), but not general telephony
Enterprise customers praise collaboration features and workflow flexibility
Pricing can escalate quickly with additional seats and agents
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
Core Chatbot Features
AI-Powered Responses: Accurate, round-the-clock customer support trained on business data from URLs, FAQs, knowledge bases, documents, text inputs
No-Code Visual Builder: Intuitive drag-and-drop builder requiring no coding expertise - heart of Chatling 2.0 update and game-changer for non-technical users
Multi-Turn Conversations: Maintains conversation history and context for natural, flowing dialogues rather than treating each query independently
Multi-Language Support: 85+ languages with automatic browser-based language detection - bot responds in user's detected language without manual configuration
24/7 Availability: Operates around the clock ensuring customers receive feedback when needed without human intervention
Lead Capture Forms: Built-in form builder for embedding within conversation flows to collect customer information seamlessly
Analytics & Insights: Tracks customer conversations to identify gaps in support resources with visual metrics, heatmaps, and trend graphs
Customization Options: Tailor every aspect from chat interface to conversational logic matching brand tone and style with color picker, icon uploader, settings toggles
Integration Capabilities: Easily integrates with websites (WordPress, Squarespace, Shopify) and platforms like HubSpot, Zendesk, Zoho, Zapier
Multiple Chatbots: Create multiple chatbots per account (1 on Free, 2 on Pro, 5 on Pro, 35 on Ultimate) for different use cases
Conversation Management: Real-time monitoring, message history viewing, popular question identification for knowledge base optimization
45% Resolution Rate: User testimonial reports 45% of support questions successfully resolved with email reduction from 1,500+ monthly inquiries
Visual workflow canvas with 50+ drag-and-drop blocks
Block types: Text, Cards, Buttons, Carousels, Forms, Condition logic, API calls, Set variables
Multi-turn conversations with context preservation across sessions
Agent handoff orchestration: Route between multiple specialized agents
Intent recognition and entity extraction (via NLU models)
Slot filling for form-based data collection
100+ language support via underlying LLM capabilities
Conversation history with full transcript logging
Human handoff with context transfer to support agents
After analyzing features, pricing, performance, and user feedback, both Chatling and Voiceflow are capable platforms that serve different market segments and use cases effectively.
When to Choose Chatling
You value broadest ai model selection (32 models) among no-code platforms - includes gpt-5, claude 4.5, gemini 2.5 with per-block flexibility
Generous free tier: 100 AI credits, 2 chatbots, 8 models, 500K characters - meaningful testing capacity without credit card
Unlimited non-AI chats across all tiers reduces usage anxiety and cost unpredictability
Best For: Broadest AI model selection (32 models) among no-code platforms - includes GPT-5, Claude 4.5, Gemini 2.5 with per-block flexibility
When to Choose Voiceflow
You value visual workflow builder enables non-technical teams to build complex agents
Real-time collaboration features rival Figma - 10+ people editing simultaneously
Function calling and API integrations allow true action-taking agents
Best For: Visual workflow builder enables non-technical teams to build complex agents
Migration & Switching Considerations
Switching between Chatling and Voiceflow requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
Chatling starts at $25/month, while Voiceflow begins at $40/month. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between Chatling and Voiceflow comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 4, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...