In this comprehensive guide, we compare Cohere and Stonly across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between Cohere and Stonly, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose Cohere if: you value industry-leading deployment flexibility: saas, vpc (<1 day), air-gapped on-premise with zero cohere infrastructure access - unmatched among major ai providers
Choose Stonly if: you value exceptional ease of use - 4.8/5 g2 rating with intuitive visual editor praised in 32 reviews
About Cohere
Cohere is enterprise rag api platform with unmatched deployment flexibility. Enterprise-first RAG API platform founded 2019 by Transformer co-author Aidan Gomez with $1.54B raised at $7B valuation. Offers Command A (256K context), Embed v4.0 (multimodal), Rerank 3.5 (128K), and 100+ connectors via Compass. Unmatched deployment flexibility: SaaS, VPC, air-gapped on-premise with zero Cohere data access. SOC 2/ISO 27001/ISO 42001 certified. NO native chat widgets, Slack/WhatsApp integrations, or visual builders—API-first for developers building custom solutions. Token-based pricing from free trials to enterprise. Founded in 2019, headquartered in Toronto, Canada / San Francisco, CA, USA, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
89/100
Starting Price
Custom
About Stonly
Stonly is interactive knowledge base platform with enterprise ai-powered answers. Stonly is a customer support knowledge management platform with embedded AI capabilities focused on interactive step-by-step guides and help desk agent assistance. Its AI Answers feature (Enterprise-only add-on) achieves 71% self-serve success rates, but it's fundamentally a knowledge base platform with AI features—not a pure RAG-as-a-Service solution. Founded in 2017, headquartered in San Francisco, CA, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
96/100
Starting Price
$249/mo
Key Differences at a Glance
In terms of user ratings, Stonly in overall satisfaction. From a cost perspective, Cohere starts at a lower price point. The platforms also differ in their primary focus: RAG Platform versus Knowledge Management. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Multimodal Embed v4.0: Images (PNG, JPEG, WebP, GIF) embedded alongside text - screenshots of PDFs, slide decks, business documents without text extraction pipelines
96 Images Per Batch: Embed Jobs API handles large-scale multimodal processing asynchronously
100+ Prebuilt Connectors: Google Drive, Slack, Notion, Salesforce, GitHub, Pinecone, Qdrant, MongoDB Atlas, Milvus (open-source on GitHub)
Build-Your-Own-Connector: Framework for custom data sources requiring development effort
Automatic Retraining: Connectors fetch documents at query time - source changes reflect immediately without reindexing (Command model retrained weekly)
CRITICAL: CRITICAL GAP - NO YouTube Transcripts: Requires external transcription service + custom connector development
CRITICAL: NO Native Cloud Storage UI: Connectors available but require development setup vs drag-and-drop sync from no-code platforms
PDF uploads confirmed
Public website crawling: Pages not requiring authentication
Zendesk help center content indexing
Proprietary interactive guide format as primary content model
Note: No Google Drive, Dropbox, Notion, or SharePoint integrations for data ingestion
Note: No YouTube transcript extraction (videos can be embedded but not processed)
Note: No direct Word document (.docx) or HTML file imports confirmed
Note: No automatic content syncing from external sources - updates are manual through Stonly's visual editor
Content limits by tier: Basic (5 guides, 400 views/mo), Small Business (unlimited guides, 4K views/mo), Enterprise (custom)
Content versioning: Side-by-side comparison and instant restore on Business and Enterprise plans
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
Developer Frameworks: LangChain, LlamaIndex, Haystack official integrations for RAG orchestration
Zapier: 8,000+ app connections for workflow automation and third-party integrations
Webhooks: Full REST API support for custom real-time integrations
Cohere Toolkit: Open-source (3,150+ GitHub stars, MIT license) Next.js web app with SQL database, full customization access
CRITICAL: CRITICAL LIMITATION - NO Native Messaging: NO Slack chatbot widget, WhatsApp, Telegram, Microsoft Teams integrations for conversational deployment
North Platform Context: Connects to Slack/Teams as DATA SOURCES for retrieval, NOT messaging endpoints for chatbot deployment
CRITICAL: NO Embeddable Chat Widget: Requires custom development using SDKs or deploying Cohere Toolkit - no iframe/JavaScript widget out-of-box
Deep help desk integrations: Zendesk, Salesforce Service Cloud, Freshdesk, ServiceNow
Zendesk features: Update tickets from guides, preserve guide progress in tickets, launch Zendesk Chat from widget
Zapier integration: Webhook triggers for form submissions and guide completions
Analytics integrations: Segment, Google Analytics
Embedding options: JavaScript widget, iframe, API deployment
Note: No native Slack, WhatsApp, Telegram, or Microsoft Teams integrations (confirmed by multiple user reviews)
Note: No omnichannel messaging support
Website embedding: All plans support JS widget and iframe embedding
Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more.
Explore API Integrations
Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc.
Read more here.
Conversation History: Chat API chat_history parameter with prompt_truncation for context management, Cohere Toolkit SQL storage for persistence
Grounded Generation: Inline citations showing exact document spans that informed each response part - built-in hallucination reduction
Document-Level Security: Enterprise controls for access permissions on sensitive data
Compass Connectors: 100+ prebuilt integrations fetch data at query time for real-time knowledge access
CRITICAL: NO Lead Capture, Analytics Dashboards, or Human Handoff: Must implement at application layer - platform focuses on knowledge retrieval, NOT marketing automation or customer service escalation
Conversational AI Bot: Delivers confident answers backed by verified structured knowledge unlike generic LLMs that can hallucinate or invent answers
Knowledge-grounded responses: Provides answers backed by verified structured knowledge from guides you create preventing fabricated information
AI Agent Assist: Automatically summarizes tickets, suggests right path to resolution, and generates responses for support agents
Three core automation functions: Automatically analyzes and summarizes support ticket content, recommends most relevant Stonly guide/knowledge path to resolve issues, drafts complete responses for agents to review/edit/send
Process automation: Define processes to be followed and link them to different back-office tools to resolve customer requests before they reach support
Personalized knowledge: AI-powered solutions and process automation allow creation of guides, walkthroughs, checklists, knowledge bases adapting to each customer's needs
71% self-serve success rate: With AI Answers feature documented in company data
Hallucination reduction: Knowledge-grounding approach vs generic chatbots reduces off-topic responses
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
Command R: 128K context, $0.15 in/$0.60 out - simple RAG, cost-conscious apps (66x cheaper than Command A for output)
Command R7B: 128K context, $0.0375 in/$0.15 out - fastest, lowest cost for chatbots and simple tasks
Cost-Performance Flexibility: 66x price difference enables matching model to use case complexity for optimization
23 Optimized Languages: Command A supports English, French, Spanish, German, Japanese, Korean, Chinese, Arabic, and more
Fine-Tuning: LoRA for Command R models, up to 16,384 tokens training context for domain adaptation
CRITICAL: NO Automatic Model Routing: Developers must implement own logic for query complexity-based selection or use LangChain/third-party orchestration
Note: Undisclosed proprietary LLM - Stonly does not disclose the specific model powering AI Answers
Note: No model selection - users cannot choose between GPT-3.5, GPT-4, Claude, or other models
Note: No temperature controls, fine-tuning, or model routing
AI Profiles: Up to 20 per team for tone and behavior customization
Custom Instructions: Up to 100 per team defining boundaries and style
Guided AI Answers: Define specific questions that trigger predetermined answers, bypassing AI generation for sensitive scenarios
Automatic fallback: When AI confidence is low, system falls back to ML-powered search rather than forcing an answer
Knowledge-grounded approach: AI responses anchored in Stonly guides, external websites, and selected PDFs to reduce hallucinations
Taps into top models—OpenAI’s GPT-5.1 series, GPT-4 series, and even Anthropic’s Claude for enterprise needs (4.5 opus and sonnet, etc ).
Automatically balances cost and performance by picking the right model for each request.
Model Selection Details
Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Developer Experience ( A P I & S D Ks)
Four Official SDKs: Python, TypeScript/JavaScript, Java, Go with comprehensive multi-cloud support
REST API v2: Chat, Embed, Rerank, Classify, Tokenize, Fine-tuning endpoints with OpenAPI specifications
Streaming Support: Server-Sent Events for real-time response rendering
Tool Use API: Multi-step reasoning with parallel execution capabilities for agent workflows
Native RAG: documents parameter in Chat API for grounded generation with inline citations
Structured Outputs: JSON Schema compliance for reliable parsing and validation
North vs Competitors: Internal benchmarks claim superiority over Microsoft Copilot and Google Vertex AI on RAG accuracy
Hallucination Acknowledgment: Documentation candidly notes "RAG does not guarantee accuracy... RAG greatly reduces the risk but doesn't necessarily eliminate it altogether"
Automatic Retraining: Command model retrained weekly, connectors fetch at query time for immediate source updates without reindexing
Binary Embeddings: 8x storage reduction (1024 dim → 128 bytes) with minimal accuracy loss for large-scale deployments
71% self-serve success rate with AI Answers feature (company data)
70-76% support ticket reduction documented in case studies
99.9% uptime claimed but no published SLA details or response time data
Note: No published latency metrics or performance benchmarks
Note: No real-time analytics - Flow reports update every 15 minutes
Hallucination controls: Strong grounding in structured content reduces off-topic responses
Widget lazy loading: Minimizes impact on host website performance
Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
Independent tests rate median answer accuracy at 5/5—outpacing many alternatives.
Benchmark Results
Always cites sources so users can verify facts on the spot.
Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
Connector Customization: Build-Your-Own-Connector framework for non-standard data sources with full control
Multi-Cloud Deployment: Choose provider based on latency, cost, data residency, or compliance requirements
Document-Level Security: Enterprise controls for granular access permissions on sensitive knowledge
CSS and HTML customization: Change layout and look of knowledge base with custom code capabilities
Intuitive customization tools: Easy-to-use tools that don't require code for basic customization
Layout customization: Decide how content is structured and presented with flexible options
Design controls: Manage visual components like colors, logo, or cover image for brand alignment
Personalized content: Use customer data to show personalized content from knowledge base for targeted experiences
Data-driven personalization: Customers see what they need right away when first accessing knowledge base
Analytics insights: Guide usage analytics provide insight into customer behavior for continuous improvement
Highly flexible platform: Users appreciate ability to use Stonly for knowledge bases and guided tours with target properties based on specific user needs
Rich media support: Add images, GIFs, videos, and annotations to bring knowledge base content to life
Third-party scripts: Install scripts from other tools like Google Analytics for extended functionality
Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus.
Learn How to Update Sources
Supports multiple agents per account, so different teams can have their own bots.
Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Pricing & Scalability
Trial/Free: Rate-limited - 20 chat requests/min, 1,000 calls/month total for evaluation
Production Pay-Per-Token: Command A $2.50 in/$10.00 out, Command R+ $2.50 in/$10.00 out, Command R $0.15 in/$0.60 out, Command R7B $0.0375 in/$0.15 out per 1M tokens
66x Cost Difference: Command R7B output tokens 66x cheaper than Command A - match model to use case complexity
Embed v4.0: $0.12 per 1M tokens (text), $0.47 per 1M tokens (images) for multimodal embeddings
Rerank 3.5: $2.00 per 1,000 queries for production RAG reranking
Enterprise Custom Pricing: North platform, Compass, dedicated instances, private deployments, custom model development require sales engagement
NO Fixed Subscription Tiers: Pay-as-you-go token-based pricing for standard API usage - predictable based on volume
Production Unlimited Monthly: No monthly usage caps once on production tier - only per-minute rate limits (500 chat/min)
Note: AI Answers, Mobile SDK, SAML SSO, white-labeling all Enterprise-gated
Average enterprise contract: ~$39,000 annually according to Vendr procurement data
Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates.
View Pricing
Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
SOC 2 Type II Certified: Annual audits with reports available under NDA via Trust Center
ISO 27001 Certified: Information Security Management System compliance
ISO 42001 Certified: AI Management System - industry-leading standard for AI governance
GDPR Compliant: Data Processing Addendums, EU data residency options for compliance
CCPA Compliant: California Consumer Privacy Act requirements met
UK Cyber Essentials: Government-backed cybersecurity certification
Zero Data Retention (ZDR): Available upon approval - enterprise customers opt out of training via dashboard
30-Day Deletion: Logged prompts and generations deleted after 30 days automatically
Third-Party Content: Google Drive and other connected app content NEVER used for model training automatically
Encryption: TLS in transit, AES-256 at rest for comprehensive data protection
Air-Gapped Deployment: Full private on-premise deployment behind customer firewall with ZERO Cohere access to infrastructure or data
VPC Deployment: <1 day setup within customer virtual private cloud for network isolation
Document-Level Security: Enterprise controls for granular access permissions on sensitive knowledge
CRITICAL: NO HIPAA Certification: Healthcare organizations processing PHI must verify compliance with sales team - no explicit BAA documentation like competitors
Yes SOC 2 Type 2
Yes GDPR compliant
Yes HIPAA compliant
Yes ISO 27001
Yes PCI compliant
Yes CSA Star Level 1
Trust Center: trust.stonly.com with security documentation, subprocessor lists, controls information
Rerank 3.5 Integration: 128K context window filters emails, tables, JSON, code to most relevant passages
Native RAG API: documents parameter in Chat API enables grounded generation without external orchestration
Transparent Limitations: Documentation candidly states "RAG does not guarantee accuracy... RAG greatly reduces the risk but doesn't necessarily eliminate it altogether"
Competitive Advantage: Most RAG platforms require custom citation implementation - Cohere provides built-in with Command models
N/A
N/A
Multimodal Embed v4.0 ( Differentiator)
Text + Images: Single vectors combining text and images eliminate complex extraction pipelines
96 Images Per Batch: Embed Jobs API handles large-scale multimodal processing asynchronously
Document Understanding: Embed screenshots of PDFs, slide decks, business documents without OCR or text extraction
Matryoshka Learning: Flexible dimensionality (256/512/1024/1536) for cost-performance optimization
100+ Languages: Cross-lingual retrieval without translation for global content
Binary Embeddings: 8x storage reduction (1024 dim → 128 bytes) for large-scale vector databases
Deployment Flexibility: SaaS, VPC, air-gapped on-premise - unmatched among major AI providers for enterprise control
CRITICAL: CRITICAL GAPS vs No-Code Platforms: NO native chat widgets, Slack/WhatsApp integrations, visual agent builders, analytics dashboards
Comparison Validity: Architectural comparison to CustomGPT.ai is VALID but highlights different priorities - Cohere backend API infrastructure vs CustomGPT likely more accessible deployment tools
Use Case Fit: Enterprises with developer resources building custom RAG integrations, regulated industries requiring air-gapped deployment, multilingual global knowledge retrieval
Note: NOT a RAG-as-a-Service platform - fundamentally a knowledge base tool with embedded AI
Data source flexibility: Limited (PDF, public web, Zendesk only) vs comprehensive RAG platforms
LLM model options: None (undisclosed proprietary model, no user selection)
API-first architecture: Weak (widget-focused, limited SDKs, no server-side SDKs)
Performance benchmarks: Not published
Self-service AI pricing: Not available (Enterprise-gated, ~$39K/year)
Help desk integration depth: Excellent (best-in-class Zendesk, Salesforce, Freshdesk)
Hallucination controls: Strong (grounded in structured content)
Best for: Customer support ticket deflection, not flexible RAG backends
Not ideal for: Developers seeking pure RAG API, multi-tenant SaaS RAG backends, use cases needing model selection/fine-tuning
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Competitive Positioning
Market Position: Enterprise-first RAG API platform with unmatched deployment flexibility and security certifications
Deployment Differentiator: Air-gapped on-premise option with ZERO Cohere data access vs SaaS-only competitors (OpenAI, Anthropic, Google)
Security Leadership: SOC 2 + ISO 27001 + ISO 42001 (AI Management System - rare) + GDPR + CCPA + UK Cyber Essentials
Multimodal Strength: Embed v4.0 text + images in single vectors, 96 images/batch vs text-only competitors
Multilingual Excellence: 100+ languages (Embed/Rerank), 23 optimized (Command A) with cross-lingual retrieval
Cost Optimization: Command R7B 66x cheaper than Command A enables matching model to use case complexity
Research Pedigree: Founded by Transformer co-author Aidan Gomez with $1.54B funding, major enterprise customers (RBC, Dell, Oracle, LG)
vs. CustomGPT: Cohere superior RAG technology + enterprise security + deployment flexibility vs likely more accessible no-code tools from CustomGPT
vs. OpenAI: Cohere air-gapped deployment + enterprise focus vs OpenAI consumer accessibility
vs. Anthropic: Cohere deployment flexibility + multimodal embeddings vs Anthropic Claude quality
vs. Chatling/Jotform: Cohere API-first developer platform vs no-code SMB chatbot tools - fundamentally different markets
vs. Progress: Cohere enterprise deployment + citations vs Progress REMi quality monitoring + open-source NucliaDB
CRITICAL: SMB Accessibility Gap: NO chat widgets, visual builders, omnichannel messaging disqualifies Cohere for non-technical teams vs Chatling, Jotform, Drift
CRITICAL: HIPAA Gap: No explicit certification vs competitors with documented BAA - healthcare requires sales verification
Unique strength: Interactive guide format for structured support content
vs CustomGPT: Not comparable - different product categories (knowledge base vs RAG-as-a-Service)
vs Zendesk: Lighter-weight alternative focused on self-service guides vs full customer service platform
vs traditional chatbots: Interactive guides provide structured paths vs free-form conversation
Target audience: Support teams using Zendesk/Salesforce, not developers building RAG applications
70-76% ticket reduction documented in case studies
71% self-serve success rate with AI Answers
Enterprise compliance suitable for regulated industries
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
Deployment & Infrastructure
SaaS Cloud: Instant setup via Cohere API with global infrastructure and automatic scaling
AWS Bedrock: Managed deployment on AWS with integrated billing and infrastructure
AWS SageMaker: Custom model deployment with full AWS ecosystem integration
Microsoft Azure: Azure-native deployment with regional data residency options
Google Cloud Platform (GCP): GCP-managed deployment with Google infrastructure
Oracle OCI: Oracle Cloud Infrastructure deployment for Oracle ecosystem customers
VPC Deployment: <1 day setup within customer virtual private cloud for network isolation
On-Premises/Air-Gapped: Full private deployment behind customer firewall with ZERO Cohere infrastructure access
Cloud-Agnostic Portability: Switch providers without code changes - consistent API across all deployment options
Regional Data Residency: Enterprise customers choose data center locations for compliance (EU, US, APAC)
Complete Data Sovereignty: Private deployments ensure Cohere has NO access to customer data, queries, or infrastructure
N/A
N/A
Customer Base & Case Studies
RBC (Royal Bank of Canada): Banking deployment for financial services knowledge retrieval and compliance
Dell: Enterprise IT knowledge management and customer support optimization
Oracle: Database and enterprise software documentation search and retrieval
LG Electronics: Multinational corporation using multilingual capabilities for global operations
Ensemble Health Partners: First healthcare deployment for clinical knowledge retrieval (HIPAA verification required)
Jasper: Content creation platform leveraging Cohere for AI-powered writing
LivePerson: Conversational AI integration for customer engagement
Enterprise Focus: Major global corporations in regulated industries (finance, healthcare, technology, manufacturing)
Discord Community: 21,691+ members indicating active developer ecosystem
Cohere Labs: 4,500+ research community members, 100+ publications including Aya multilingual model (101 languages)
N/A
N/A
A I Models
Command A: 256K context, $2.50 in/$10.00 out per 1M tokens - most performant for complex RAG and agents, 75% faster than GPT-4o, 2-GPU deployment minimum
Command A Reasoning (August 2025): First enterprise reasoning LLM with 256K context for multi-step problem solving and advanced agentic workflows
Command R: 128K context, $0.15 in/$0.60 out - cost-conscious simple RAG applications (66x cheaper than Command A for output tokens)
Command R7B: 128K context, $0.0375 in/$0.15 out - fastest, lowest cost for chatbots and simple tasks with minimal latency
Model Retraining: Command model retrained weekly to stay current with latest data and improve performance continuously
23 Optimized Languages: Command A supports English, French, Spanish, German, Japanese, Korean, Chinese, Arabic, and more with native language understanding
Fine-Tuning Support: LoRA for Command R models with up to 16,384 tokens training context for domain-specific adaptation
LIMITATION: NO automatic model routing - developers must implement own logic for query complexity-based selection or use LangChain/third-party orchestration
Undisclosed Proprietary LLM: Stonly does not publicly disclose the specific model powering AI Answers feature
No Model Selection: Users cannot choose between GPT-3.5, GPT-4, Claude, Gemini, or other LLM providers
No Temperature Controls: No user-facing controls for adjusting response creativity, randomness, or formatting
No Fine-Tuning or Model Routing: Cannot customize model behavior beyond predefined AI Profiles and Custom Instructions
AI Profiles (Up to 20): Define tone, boundaries, and behavior for different use cases or audiences
Custom Instructions (Up to 100): Set specific rules and style guidelines for AI response generation
Guided AI Answers: Predefined responses for specific questions bypassing AI generation for sensitive scenarios
Automatic Fallback: Low-confidence scenarios trigger fallback to ML-powered search rather than forcing unreliable AI answer
Knowledge-Grounded Approach: AI responses anchored in Stonly guides, external websites, and PDFs to reduce hallucinations
Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request
Model Selection Details
Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
Grounded Generation Built-In: Native documents parameter in Chat API for RAG without external orchestration, with fine-grained inline citations showing exact document spans
Embed v4.0 Multimodal: Text + images in single vectors (PNG, JPEG, WebP, GIF), 96 images per batch via Embed Jobs API, eliminates complex extraction pipelines
Binary Embeddings: 8x storage reduction (1024 dimensions → 128 bytes) with minimal accuracy loss for large-scale vector database deployments
Rerank 3.5: 128K token context window handles long documents, emails, tables, JSON, code for production RAG with filtering to most relevant passages
100+ Prebuilt Connectors: Google Drive, Slack, Notion, Salesforce, GitHub, Pinecone, Qdrant, MongoDB Atlas, Milvus (open-source on GitHub)
Automatic Retraining: Compass connectors fetch documents at query time - source changes reflect immediately without reindexing
North vs Competitors: Internal benchmarks claim superiority over Microsoft Copilot and Google Vertex AI on RAG accuracy
Hallucination Acknowledgment: Documentation candidly notes "RAG does not guarantee accuracy... RAG greatly reduces the risk but doesn't necessarily eliminate it altogether"
LIMITATION: NO YouTube transcript support requires external transcription service + custom connector development
AI Answers (Enterprise Add-On): Generative AI responses grounded in Stonly guides, external websites, and selected PDFs
Knowledge-Grounding: Responses anchored to structured content (interactive guides, decision trees, checklists) reducing hallucinations vs generic chatbots
Confidence-Based Fallback: Automatic switch to ML-powered search when AI confidence is low preventing unreliable answers
Multi-Source Ingestion: PDF uploads, public website crawling, Zendesk help center content indexing
Interactive Guide Format: Proprietary content model combining structured workflows with AI-generated answers
Limited Data Sources: No Google Drive, Dropbox, Notion, SharePoint, or YouTube transcript extraction
Manual Content Updates: Updates through Stonly's visual editor—no automatic syncing from external sources
71% Self-Serve Success Rate: Documented effectiveness of AI Answers in reducing support escalations
Hallucination Controls: Strong grounding in structured content vs open-ended conversational AI
Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks
RAG Performance
Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content
Benchmark Details
Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
Source verification: Always cites sources so users can verify facts on the spot
Use Cases
Financial Services: RBC (Royal Bank of Canada) deployment for banking knowledge retrieval, compliance documentation, and North for Banking secure generative AI platform (January 2025)
Healthcare: Ensemble Health Partners for clinical knowledge retrieval, medical documentation search (HIPAA verification required for PHI processing)
Enterprise IT: Dell for enterprise IT knowledge management, customer support optimization, and internal documentation search
Technology Companies: Oracle (database/software documentation), LG Electronics (multinational operations with multilingual needs)
Content Creation: Jasper content platform leveraging Cohere for AI-powered writing and content generation
Conversational AI: LivePerson integration for customer engagement and support automation
Industries Served: Finance, healthcare, life sciences, insurance, supply chain, logistics, legal, hospitality, manufacturing, energy, public sector
Team Sizes: Enterprise-focused platform designed for large organizations with complex content ecosystems requiring comprehensive RAG infrastructure
North Platform (GA August 2025): Customizable AI agents for HR, finance, IT, customer support with MCP (Model Context Protocol) extensibility
Customer Support Ticket Deflection: 70-76% ticket reduction through interactive self-service guides and AI Answers
Help Desk Integration: Deep Zendesk, Salesforce Service Cloud, Freshdesk, ServiceNow integration for unified support workflows
Interactive Onboarding: Step-by-step guides, decision trees, and checklists for product onboarding and user education
Knowledge Base Enhancement: Augment traditional help centers with interactive guides and AI-powered search
Agent Assistance: Provide support agents with guided workflows and AI answers during live interactions
Multi-Language Support: Auto-translation on Enterprise plan for global support teams and multilingual customers
Complex Troubleshooting: Decision tree logic guides users through multi-step troubleshooting processes
Compliance & Training: Structured guides ensuring consistent information delivery for regulated industries
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
SOC 2 Type II Certified: Annual audits with reports available under NDA via Trust Center demonstrating robust security controls
ISO 27001 Certified: Information Security Management System compliance for international security standards
ISO 42001 Certified: AI Management System - industry-leading standard for AI governance and responsible AI practices
GDPR Compliant: Data Processing Addendums available, EU data residency options for compliance with European privacy regulations
CCPA Compliant: California Consumer Privacy Act requirements met for US data privacy compliance
UK Cyber Essentials: Government-backed cybersecurity certification for UK market requirements
Zero Data Retention (ZDR): Available upon approval - enterprise customers opt out of training via dashboard
30-Day Automatic Deletion: Logged prompts and generations deleted after 30 days automatically for data minimization
Third-Party Content Protection: Google Drive and other connected app content NEVER used for model training automatically
Encryption: TLS in transit, AES-256 at rest for comprehensive data protection
Air-Gapped Deployment: Full private on-premise deployment behind customer firewall with ZERO Cohere access to infrastructure or data
VPC Deployment: <1 day setup within customer virtual private cloud for network isolation and security
Document-Level Security: Enterprise controls for granular access permissions on sensitive knowledge
CRITICAL LIMITATION: NO explicit HIPAA certification - healthcare organizations processing PHI must verify compliance with sales team; no documented BAA availability like competitors
SOC 2 Type 2: Service Organization Control certification for security, availability, and confidentiality
GDPR Compliant: European data protection regulation compliance with data processing agreements
HIPAA Compliant: Healthcare data protection requirements for medical organizations and patient information
ISO 27001: International information security management system standard
PCI Compliant: Payment Card Industry Data Security Standard for handling payment information
CSA Star Level 1: Cloud Security Alliance STAR self-assessment certification
Trust Center: Public trust.stonly.com with security documentation, subprocessor lists, and controls information
SAML 2.0 SSO (Enterprise): Single sign-on integration with enterprise identity providers
IP Allowlisting (Enterprise): Restrict access to specific IP ranges for enhanced security
Advanced RBAC (Enterprise): Role-based access control with granular permissions and activity tracking
International Data Transfers: Standard Contractual Clauses for EU compliance and data protection
Data Residency: Options not publicly documented—may limit deployment in certain jurisdictions
Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
SOC 2 Type II certification: Industry-leading security standards with regular third-party audits
Security Certifications
GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
Data isolation: Customer data stays isolated and private - platform never trains on user data
Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
Free Tier: Trial API key with rate limits - 20 chat requests/min, 1,000 calls/month total for evaluation; access to all endpoints, ticket support, Cohere Discord community
Production Tier: Pay-per-token usage - Command A $2.50 in/$10.00 out, Command R+ $2.50 in/$10.00 out, Command R $0.15 in/$0.60 out, Command R7B $0.0375 in/$0.15 out per 1M tokens
66x Cost Difference: Command R7B output tokens 66x cheaper than Command A - enables matching model to use case complexity for cost optimization
Embed v4.0 Pricing: $0.12 per 1M tokens (text), $0.47 per 1M tokens (images) for multimodal embeddings
Rerank 3.5 Pricing: $2.00 per 1,000 queries for production RAG reranking and relevance filtering
Enterprise Custom Pricing: North platform, Compass, dedicated instances, private deployments, custom model development require sales engagement
NO Fixed Subscription Tiers: Pay-as-you-go token-based pricing for standard API usage - predictable costs based on volume
Production Unlimited Monthly: No monthly usage caps once on production tier - only per-minute rate limits (500 chat/min)
Binary Embeddings Savings: 8x storage reduction translates to significant infrastructure cost savings for large-scale deployments
Automatic Tier Upgrades: Exceeding limits for 2 consecutive months triggers automatic upgrade and billing adjustment
Enterprise-Gated Features: AI Answers, Mobile SDKs, SAML SSO, white-labeling all require Enterprise plan
Average Enterprise Contract: ~$39,000 annually according to Vendr procurement data
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
Interactive Documentation: docs.cohere.com with 'Try it' API testing, code examples in all SDKs, Playground 'View Code' export for production deployment
Discord Community: 21,691+ members with API discussions, troubleshooting, 'Maker Spotlight' developer sessions for peer support
Cohere Labs: 4,500+ research community members, 100+ publications including Aya multilingual model (101 languages) demonstrating research leadership
LLM University (LLMU): Structured learning paths for LLM fundamentals, embeddings, AWS SageMaker deployment with hands-on tutorials
Cookbook Library: Practical working examples for agents, RAG, semantic search, summarization with production-ready code
Trust Center: SOC 2 Type II reports (requires NDA), penetration test reports, Data Processing Addendums for enterprise compliance
Enterprise Support: Dedicated account management, custom deployment support, bespoke pricing negotiations for large customers
Rate Limit Increases: Available by contacting support team for production scale requirements exceeding standard 500 chat/min
Cohere Toolkit (3,150+ Stars): Open-source Next.js foundation (MIT license) with community contributions and active development
LIMITATION: NO live chat or phone support for standard API customers - support via Discord and email only without real-time channels
4.8/5 G2 Rating: 132 reviews with consistently high satisfaction scores
Ease of Use Praised: "Ease of use" mentioned 32 times in G2 reviews indicating intuitive platform
Help Center Documentation: Comprehensive guides and tutorials for platform features
Email and Chat Support: Standard support channels for all paid plans
Dedicated Support (Enterprise): Priority support with dedicated account team and faster response times
Pre-Built Templates: Common support scenario templates accelerating guide creation
Quick Onboarding: Users report creating guides in under 30 minutes with small learning curve
REST API Documentation: API reference for user provisioning, content management, and widget control
Mobile SDKs (Enterprise): iOS, Android, React Native, Flutter for native app integration
Limited Developer Resources: No Python/Node.js SDKs, GraphQL, OpenAPI specs, or API Explorer/sandbox
Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding
Developer Docs
Email and in-app support: Quick support via email and in-app chat for all users
Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
Code samples: Cookbooks, step-by-step guides, and examples for every skill level
API Documentation
Active community: User community plus 5,000+ app integrations through Zapier ecosystem
Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
Developer-First Platform: Optimized for teams with coding skills building custom RAG applications, NOT business users seeking no-code solutions
NO Visual Agent Builder: Agent creation requires code via Python SDK - not accessible to non-technical users without development resources
NO Pre-Built Templates: Cookbooks provide code examples but require development expertise - NO drag-and-drop templates or visual workflows
NO Native Messaging Integrations: NO Slack chatbot widget, WhatsApp, Telegram, Microsoft Teams integrations for conversational deployment (North Platform connects as DATA SOURCE only)
NO Embeddable Chat Widget: Requires custom development using SDKs or deploying Cohere Toolkit - no iframe/JavaScript widget out-of-box
NO Built-In Analytics Dashboards: Conversation metrics, user engagement, success rates must be implemented at application layer
Limited RBAC: Owner (full access) and User (shared keys/models) roles only - NO granular permissions or custom roles for team management
HIPAA Gap: No explicit certification with documented BAA availability - healthcare requires sales verification for PHI processing compliance
NO Native Real-Time Alerts: Proactive monitoring and automated alerting require external integrations (Dynatrace, PostHog, New Relic, Grafana)
No Real-Time Analytics: Flow reports update every 15 minutes—not true real-time monitoring
Limited Developer API: No Python/Node.js SDKs, GraphQL, Swagger specs, or API sandbox for testing
Overage Pricing Escalation: View limits can trigger expensive automatic upgrades after 2 consecutive months
Not Ideal For: Developers seeking pure RAG API, multi-tenant SaaS RAG backends, use cases needing model selection/fine-tuning, or flexible data source integration
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Additional Considerations
Enterprise Focus & Customization: Collaborates directly with clients to create solutions addressing specific needs with extensive customization capabilities
Data Privacy Leadership: Complete control over where data is processed and stored - crucial for enterprises with sensitive or regulated data
Deployment Flexibility Advantage: Bring models to customer data vs forcing data to models - massive advantage for data governance and compliance
Private Deployment Capability: Fine-tune on proprietary data without data ever leaving your control - build unique competitive advantage while mitigating risk
Cloud-Agnostic Strategy: Deploy on AWS Bedrock, Azure, GCP, Oracle OCI - switch providers without code changes for vendor-agnostic AI future
Cost Efficiency: RAG-optimized Command R/R+ models allow building scalable, factual applications without breaking bank on compute costs
Performance-Per-Dollar Focus: Move projects from prototype to production more viably with focus on cost efficiency and scalability
Integration Simplicity: NLP platform allows businesses to integrate capabilities with tools like chatbots while simplifying process for developers
Regulatory Compliance Enabler: Air-gapped deployment enables finance, government, defense use cases requiring complete infrastructure control
Data Sovereignty Guarantee: Private deployments ensure Cohere has ZERO access to customer data, queries, or infrastructure for maximum privacy
Unmatched Among Major Providers: OpenAI, Anthropic, Google lack comparable air-gapped on-premise deployment options
Limited UI customization: Limited ability to customize user interface and workflows to match specific brand requirements is primary user concern
Basic collaboration tools: Without real-time editing or advanced team management features can hinder team productivity when multiple people need to work together
No offline access: Guides unavailable without internet connectivity reducing usability in areas with unreliable internet
Performance degradation: Can degrade with very large or complex guides causing slower responsiveness indicating scalability concerns
Restricted language options: Limit efficient creation of multilingual content which may be barrier for global organizations
Mixed media support missing: Users find missing features wishing for mixed media support and enhanced reporting tools
Step ordering difficulties: Users report limitations in feature usability and difficulties with step ordering though support offers helpful workarounds
Requires coding knowledge: Unlike most competitors, doesn't advertise as no-code platform - need coding knowledge to track events, target users, stream data, and style content
Image workflow limitations: Inability to use images in base offering limits utility in some workflows with some advanced features requiring extra costs
View-based pricing: Charges additional fees based on guide views - customers exceeding 4,000 guide views/month pay extra $250-500 monthly depending on volume
Integration reliability: Users find lack of integrations limits ability to fully connect Stonly with other tools - Stonly/Zendesk integration isn't as reliable as desired (stops working every few weeks)
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
Core Chatbot Features
Chat API: Multi-turn dialog capability with state/memory of previous turns to maintain conversation context
Retrieval-Augmented Generation (RAG): "Document mode" allows developers to specify which documents chatbot references when answering user prompts
Information Source Control: Constrain chatbot to enterprise data or expand to scan entire world wide web via Chat API configuration
Customer Support Solutions: Latest large language models extract knowledge ensuring customers get accurate answers all the time
Generative AI Extraction: Automatically extracts answers from agent responses (after human approval) and replies whenever same question asked again
Intent-Based AI: Cutting-edge intent-based AI goes beyond keyword search surfacing relevant snippets for plain English queries
Cohere Toolkit Integration: Open-source (3,150+ GitHub stars, MIT license) Next.js web app for rapid chatbot deployment with full customization
North Platform Integration: Chat capabilities integrated with North for Banking (January 2025) - secure generative AI platform for financial services
Multi-Turn Conversations: Chatbot API handles conversations through multi-turn dialog requiring state of all previous turns
Command Model Foundation: Built on proprietary Command LLM enabling third-party developers to build chat applications
Advanced Language Understanding: Natural language processing enabling nuanced understanding beyond simple keyword matching
Limitation - Requires Development: Building chatbot requires code using Chat API and SDKs - NOT no-code chatbot builder like SMB platforms
After analyzing features, pricing, performance, and user feedback, both Cohere and Stonly are capable platforms that serve different market segments and use cases effectively.
When to Choose Cohere
You value industry-leading deployment flexibility: saas, vpc (<1 day), air-gapped on-premise with zero cohere infrastructure access - unmatched among major ai providers
Enterprise security gold standard: SOC 2 Type II + ISO 27001 + ISO 42001 (AI Management System - rare) + GDPR + CCPA + UK Cyber Essentials
Grounded generation with inline citations showing exact document spans - built-in hallucination reduction vs competitors requiring custom implementation
Best For: Industry-leading deployment flexibility: SaaS, VPC (<1 day), air-gapped on-premise with ZERO Cohere infrastructure access - unmatched among major AI providers
When to Choose Stonly
You value exceptional ease of use - 4.8/5 g2 rating with intuitive visual editor praised in 32 reviews
Deep help desk integrations - bidirectional Zendesk, Salesforce, Freshdesk, ServiceNow connections
Strong compliance - SOC 2 Type 2, GDPR, HIPAA, ISO 27001, PCI, CSA Star Level 1
Best For: Exceptional ease of use - 4.8/5 G2 rating with intuitive visual editor praised in 32 reviews
Migration & Switching Considerations
Switching between Cohere and Stonly requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
Cohere starts at custom pricing, while Stonly begins at $249/month. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between Cohere and Stonly comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 12, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...