Deviniti vs OpenAI: A Detailed Comparison

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT
Comparison Image cover for the blog Deviniti vs OpenAI

Fact checked and reviewed by Bill. Published: 01.04.2024 | Updated: 25.04.2025

In this article, we compare Deviniti and OpenAI across various parameters to help you make an informed decision.

Welcome to the comparison between Deviniti and OpenAI!

Here are some unique insights on Deviniti:

No content available.

And here's more information on OpenAI:

OpenAI’s API gives you raw access to GPT-3.5, GPT-4, and more—leaving you to handle embeddings, storage, and retrieval. It’s the most flexible approach, but also the most hands-on.

Enjoy reading and exploring the differences between Deviniti and OpenAI.

Comparison Matrix

Feature
logo of devinitiDeviniti
logo of openaiOpenAI
logo of customGPT logoCustomGPT
Data Ingestion & Knowledge Sources
  • Builds custom pipelines to pull in pretty much any source—internal docs, FAQs, websites, databases, even proprietary APIs.
  • Works with all the usual suspects (PDF, DOCX, etc.) and can tap uncommon sources if the project needs it. Project case study
  • Designs scalable setups—hardware, storage, indexing—to handle huge data sets and keep everything fresh with automated pipelines. Learn more
  • OpenAI gives you the GPT brains, but no ready-made pipeline for feeding it your documents—if you want RAG, you’ll build it yourself.
  • The typical recipe: embed your docs with the OpenAI Embeddings API, stash them in a vector DB, then pull back the right chunks at query time.
  • If you’re using Azure, the “Assistants” preview includes a beta File Search tool that accepts uploads for semantic search, though it’s still minimal and in preview.
  • You’re in charge of chunking, indexing, and refreshing docs—there’s no turnkey ingestion service straight from OpenAI.
  • Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
  • Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
  • Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text. View Transcription Guide
  • Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier. See Zapier Connectors
  • Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
  • Plugs the chatbot into any channel you need—web, mobile, Slack, Teams, or even legacy apps—tailored to your stack.
  • Spins up custom API endpoints or webhooks to hook into CRMs, ERPs, or ITSM tools (dev work included). Integration approach
  • OpenAI doesn’t ship Slack bots or website widgets—you wire GPT into those channels yourself (or lean on third-party libraries).
  • The API is flexible enough to run anywhere, but everything is manual—no out-of-the-box UI or integration connectors.
  • Plenty of community and partner options exist (Slack GPT bots, Zapier actions, etc.), yet none are first-party OpenAI products.
  • Bottom line: OpenAI is channel-agnostic—you get the engine and decide where it lives.
  • Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
  • Offers ready-made hooks for Slack, Microsoft Teams, WhatsApp, Telegram, and Facebook Messenger. Explore API Integrations
  • Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
  • Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
Core Chatbot Features
  • Builds a domain-tuned AI chatbot with multi-turn memory, context, and any language you need (local LLMs included).
  • Can add lead capture, human handoff, and tight workflow hooks (e.g., IT tickets) exactly as you specify. Case study
  • GPT-4 and GPT-3.5 handle multi-turn chat as long as you resend the conversation history; OpenAI doesn’t store “agent memory” for you.
  • Out of the box, GPT has no live data hook—you supply retrieval logic or rely on the model’s built-in knowledge.
  • “Function calling” lets the model trigger your own functions (like a search endpoint), but you still wire up the retrieval flow.
  • The ChatGPT web interface is separate from the API and isn’t brand-customizable or tied to your private data by default.
  • Powers retrieval-augmented Q&A with GPT-4 and GPT-3.5 Turbo, keeping answers anchored to your own content.
  • Reduces hallucinations by grounding replies in your data and adding source citations for transparency. Benchmark Details
  • Handles multi-turn, context-aware chats with persistent history and solid conversation management.
  • Speaks 90+ languages, making global rollouts straightforward.
  • Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Customization & Branding
  • Everything’s bespoke: UI, tone, flows—whatever matches your brand.
  • Slots into your existing tools with custom styling and domain-specific dialogs—changes just take dev effort. Custom approach
  • No turnkey chat UI to re-skin—if you want a branded front-end, you’ll build it.
  • System messages help set tone and style, yet a polished white-label chat solution remains a developer project.
  • ChatGPT custom instructions apply only inside ChatGPT itself, not in an embedded widget.
  • In short, branding is all on you—the API focuses purely on text generation, with no theming layer.
  • Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand. White-label Options
  • Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
  • Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
  • Uses domain allowlisting to ensure the chatbot appears only on approved sites.
LLM Model Options
  • Pick any model—GPT-4, Claude, Llama 2, Falcon—whatever fits your needs.
  • Fine-tune on proprietary data for insider terminology, but swapping models means a new build/deploy cycle. Our services
  • Choose from GPT-3.5 (including 16k context), GPT-4 (8k / 32k), and newer variants like GPT-4 128k or “GPT-4o.”
  • It’s an OpenAI-only clubhouse—you can’t swap in Anthropic or other providers within their service.
  • Frequent releases bring larger context windows and better models, but you stay locked to the OpenAI ecosystem.
  • No built-in auto-routing between GPT-3.5 and GPT-4—you decide which model to call and when.
  • Taps into top models—OpenAI’s GPT-4, GPT-3.5 Turbo, and even Anthropic’s Claude for enterprise needs.
  • Automatically balances cost and performance by picking the right model for each request. Model Selection Details
  • Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
  • Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Developer Experience (API & SDKs)
  • Delivers a project-specific API—JSON over HTTP—made exactly for your endpoints.
  • Docs, samples, and support come straight from Deviniti engineers, not a public SDK. Project example
  • Excellent docs and official libraries (Python, Node.js, more) make hitting ChatCompletion or Embedding endpoints straightforward.
  • You still assemble the full RAG pipeline—indexing, retrieval, and prompt assembly—or lean on frameworks like LangChain.
  • Function calling simplifies prompting, but you’ll write code to store and fetch context data.
  • Vast community examples and tutorials help, but OpenAI doesn’t ship a reference RAG architecture.
  • Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat. API Documentation
  • Offers open-source SDKs—like the Python customgpt-client—plus Postman collections to speed integration. Open-Source SDK
  • Backs you up with cookbooks, code samples, and step-by-step guides for every skill level.
Integration & Workflow
  • Deeply embeds into enterprise flows—internal portals, mobile apps, you name it—using custom code.
  • Can trigger ERP actions or open tickets automatically when the bot escalates a query. Integration case
  • Workflows are DIY: wire the OpenAI API into Slack, websites, CRMs, etc., via custom scripts or third-party tools.
  • Official automation connectors are scarce—Zapier or partner solutions fill the gap.
  • Function calling lets GPT hit your internal APIs, yet you still code the plumbing.
  • Great flexibility for complex use cases, but no turnkey “chatbot in Slack” or “website bubble” from OpenAI itself.
  • Gets you live fast with a low-code dashboard: create a project, add sources, and auto-index content in minutes.
  • Fits existing systems via API calls, webhooks, and Zapier—handy for automating CRM updates, email triggers, and more. Auto-sync Feature
  • Slides into CI/CD pipelines so your knowledge base updates continuously without manual effort.
Performance & Accuracy
  • Uses best-practice retrieval (multi-index, tuned prompts) to serve precise answers.
  • Fine-tunes on your data to squash hallucinations, though perfecting it may need ongoing tweaks. Our approach
  • GPT-4 is top-tier for language tasks, but domain accuracy needs RAG or fine-tuning.
  • Without retrieval, GPT can hallucinate on brand-new or private info outside its training set.
  • A well-built RAG layer delivers high accuracy, but indexing, chunking, and prompt design are on you.
  • Larger models (GPT-4 32k/128k) can add latency, though OpenAI generally scales well under load.
  • Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
  • Independent tests rate median answer accuracy at 5/5—outpacing many alternatives. Benchmark Results
  • Always cites sources so users can verify facts on the spot.
  • Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
Customization & Flexibility (Behavior & Knowledge)
  • Total control: add new sources with custom pipelines, tweak bot tone, inject live API calls—whatever you dream up.
  • Everything’s bespoke, so updates usually involve a quick dev sprint. Case details
  • You can fine-tune (GPT-3.5) or craft prompts for style, but real-time knowledge injection happens only through your RAG code.
  • Keeping content fresh means re-embedding, re-fine-tuning, or passing context each call—developer overhead.
  • Tool calling and moderation are powerful but require thoughtful design; no single UI manages persona or knowledge over time.
  • Extremely flexible for general AI work, but lacks a built-in document-management layer for live updates.
  • Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
  • Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus. Learn How to Update Sources
  • Supports multiple agents per account, so different teams can have their own bots.
  • Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Pricing & Scalability
  • Project-based pricing plus optional maintenance—great for unique enterprise needs.
  • Your infra (cloud or on-prem) handles the load; the solution is built to scale to millions of queries. Client portfolio
  • Pay-as-you-go token billing: GPT-3.5 is cheap (~$0.0015/1K tokens) while GPT-4 costs more (~$0.03-0.06/1K). [OpenAI API Rates]
  • Great for low usage, but bills can spike at scale; rate limits also apply.
  • No flat-rate plan—everything is consumption-based, plus you cover any external hosting (e.g., vector DB). [API Reference]
  • Enterprise contracts unlock higher concurrency, compliance features, and dedicated capacity after a chat with sales.
  • Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
  • Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates. View Pricing
  • Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
  • Deploy on-prem or private cloud for full data control and compliance peace of mind.
  • Uses strong encryption, access controls, and hooks into your existing security stack. Security details
  • API data isn’t used for training and is deleted after 30 days (abuse checks only). [Data Policy]
  • Data is encrypted in transit and at rest; ChatGPT Enterprise adds SOC 2, SSO, and stronger privacy guarantees.
  • Developers must secure user inputs, logs, and compliance (HIPAA, GDPR, etc.) on their side.
  • No built-in access portal for your users—you build auth in your own front-end.
  • Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
  • Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private. Security Certifications
  • Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Observability & Monitoring
  • Custom monitoring ties into tools like CloudWatch or Prometheus to track everything.
  • Can add an admin dashboard or SIEM feeds for real-time analytics and alerts. More info
  • A basic dashboard tracks monthly token spend and rate limits in the dev portal.
  • No conversation-level analytics—you’ll log Q&A traffic yourself.
  • Status page, error codes, and rate-limit headers help monitor uptime, but no specialized RAG metrics.
  • Large community shares logging setups (Datadog, Splunk, etc.), yet you build the monitoring pipeline.
  • Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
  • Lets you export logs and metrics via API to plug into third-party monitoring or BI tools. Analytics API
  • Provides detailed insights for troubleshooting and ongoing optimization.
Support & Ecosystem
  • Hands-on support from Deviniti—from kickoff through post-launch—direct access to the dev team.
  • Docs, training, and integrations are built around your stack, not one-size-fits-all. Our services
  • Massive dev community, thorough docs, and code samples—direct support is limited unless you’re on enterprise.
  • Third-party frameworks abound, from Slack GPT bots to LangChain building blocks.
  • OpenAI tackles broad AI tasks (text, speech, images)—RAG is just one of many use cases you can craft.
  • ChatGPT Enterprise adds premium support, success managers, and a compliance-friendly environment.
  • Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast. Developer Docs
  • Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs. Enterprise Solutions
  • Benefits from an active user community plus integrations through Zapier and GitHub resources.
Additional Considerations
  • Can build hybrid agents that run complex, transactional tasks—not just Q&A.
  • You own the solution end-to-end and can evolve it as AI tech moves forward. Custom governance
  • Great when you need maximum freedom to build bespoke AI solutions, or tasks beyond RAG (code gen, creative writing, etc.).
  • Regular model upgrades and bigger context windows keep the tech cutting-edge.
  • Best suited to teams comfortable writing code—near-infinite customization comes with setup complexity.
  • Token pricing is cost-effective at small scale but can climb quickly; maintaining RAG adds ongoing dev effort.
  • Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
  • Gets you to value quickly: launch a functional AI assistant in minutes.
  • Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
  • Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No-Code Interface & Usability
  • No out-of-the-box no-code dashboard—IT or bespoke admin panels handle config.
  • Everyday users chat with the bot; deeper tweaks live with the tech team.
  • OpenAI alone isn’t no-code for RAG—you’ll code embeddings, retrieval, and the chat UI.
  • The ChatGPT web app is user-friendly, yet you can’t embed it on your site with your data or branding by default.
  • No-code tools like Zapier or Bubble offer partial integrations, but official OpenAI no-code options are minimal.
  • Extremely capable for developers; less so for non-technical teams wanting a self-serve domain chatbot.
  • Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
  • Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing. User Experience Review
  • Uses role-based access so business users and devs can collaborate smoothly.

We hope you found this comparison of Deviniti vs OpenAI helpful.

No content available.

OpenAI is unbeatable for custom workflows if you have the dev muscle. If you’d rather not build retrieval and analytics from scratch, layering a RAG platform like CustomGPT.ai on top can save serious time.

Stay tuned for more updates!

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us
Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT. Passionate about AI and its applications. Here to help you navigate the world of AI tools.