In this comprehensive guide, we compare Fini AI and Progress Agentic RAG across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between Fini AI and Progress Agentic RAG, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose Fini AI if: you value industry-leading 97-98% accuracy claim backed by customer testimonials
Choose Progress Agentic RAG if: you value proprietary remi v2 model (30x faster inference) addresses hallucination problem with continuous quality monitoring - differentiated capability absent from most competitors
About Fini AI
Fini AI is ragless ai agent for customer support automation. Fini AI is a next-generation customer support platform built on proprietary RAGless architecture, claiming 97-98% accuracy. Founded by ex-Uber engineers and backed by Y Combinator, Fini specializes in action-taking AI agents that execute refunds, update accounts, and verify identities—going beyond traditional RAG document retrieval. Founded in 2022, headquartered in Amsterdam, Netherlands, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
91/100
Starting Price
Custom
About Progress Agentic RAG
Progress Agentic RAG is enterprise application development and deployment platform. Enterprise RAG-as-a-Service platform launched Sept 2025 following Progress Software's acquisition of Barcelona-based Nuclia. Combines SOC2/ISO 27001 security with proprietary REMi evaluation model for continuous answer quality monitoring. Built on open-source NucliaDB (710+ GitHub stars) with Python/JavaScript SDKs. Starting at $700/month. Founded in 2019 (Nuclia), acquired 2025, headquartered in Barcelona, Spain (Nuclia) / Bedford, MA, USA (Progress), the platform has established itself as a reliable solution in the RAG space.
Overall Rating
82/100
Starting Price
$700/mo
Key Differences at a Glance
In terms of user ratings, Fini AI in overall satisfaction. From a cost perspective, Fini AI starts at a lower price point. The platforms also differ in their primary focus: AI Agent versus Enterprise Software. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
Fini AI
Progress Agentic RAG
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
Supports PDF, Word/Docs, plain text, JSON, YAML, and CSV files
Full website crawling for web links
Note: YouTube transcript ingestion NOT supported - LLMs "not great at interpreting images or videos directly"
Cloud integrations: Native connections to Google Drive, Notion, Confluence, and Guru
Zendesk and Intercom serve as both knowledge sources (historical tickets) and deployment channels
Note: Dropbox integration not available
Chat2KB feature (Growth/Enterprise): Auto-extracts Q&A pairs from conversations, emails, tickets
Real-time knowledge refresh - updated content used immediately
Intelligent conflict resolution automatically removes contradictory information
60+ Document Formats: PDF, Word (.docx), Excel, PowerPoint, plain text, email formats with automatic parsing
Multimedia Processing: Automatic speech-to-text (MP3, WAV, AIFF), video transcript extraction (MP4, etc.), OCR for scanned documents/images
Cloud Connectors: SharePoint, Confluence, OneDrive, Google Drive, Amazon S3 with direct integration
Sync Agent Desktop App: 60-minute automatic sync with content hashing to prevent redundant reindexing
Manual Upload Interface: Files, folders, web links, sitemaps, Q&A pairs via dashboard
Fast Deployment: 2-hour initial ingestion, 48-hour full deployment timeline
CRITICAL GAPS: NO Dropbox integration, NO Notion integration, NO explicit YouTube transcript extraction documented
Architecture Focus: Comprehensive knowledge retrieval vs lead conversion focus (unlike Drift)
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
20+ native helpdesk integrations (no Zapier dependency)
Zendesk: Native marketplace app with full ticket management, auto-tagging, email/chat/social
Intercom: Native with Fin compatibility, works within ticketing backend
Salesforce Service Cloud: CRM sync, case management
Front: AI auto-replies, trains on conversation history
RAG Cookbook: Comprehensive downloadable guide for developers
SDK Ecosystem: Python (~21K weekly downloads) + JavaScript/TypeScript with active developer usage
14-Day Free Trial: Hands-on evaluation without credit card requirement
Progress Enterprise Support: Backed by 2,000+ employee parent company infrastructure
AWS Marketplace: Available November 2025 for streamlined enterprise procurement
Open-Source Community: NucliaDB 710+ GitHub stars with AGPLv3 license transparency
API-First Support: Comprehensive REST API documentation with regional endpoints
Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast.
Developer Docs
Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs.
Enterprise Solutions
Benefits from an active user community plus integrations through Zapier and GitHub resources.
Additional Considerations
RAGless positioning: Fini criticizes RAG as "just smarter search engines"
Claims RAG "fails in mission-critical customer support" and "will become obsolete"
Action-taking vs. information-only: Key differentiator from traditional chatbots
"It's the difference between 'You can find details here' and 'Done! I've processed that refund'"
Target customer: Enterprise B2C with high support volume (fintech, e-commerce, healthcare)
Less suitable for general-purpose document Q&A or content generation
Competitive target: Positions against Intercom Fin with "agentic" narrative
Claims 95%+ accuracy vs. Intercom's ~80%
Platform agnostic: Works with any helpdesk vs. vendor lock-in
Recent Acquisition (June 2025): Progress Software acquired Nuclia for $50M - platform transitioning under new ownership with potential strategic direction changes
Genuine No-Code + Developer Appeal: Dual-track value proposition - non-technical teams use dashboard, developers leverage API/SDKs for custom builds
REMi Quality Differentiator: Proprietary continuous evaluation model (30x faster in v2) addresses hallucination problem absent from most RAG competitors
Open-Source Trust Factor: NucliaDB (710+ GitHub stars, AGPLv3) provides code transparency vs black-box platforms - security audits possible
Multimodal Strength: OCR for images, speech-to-text for audio/video creates comprehensive searchable corpus beyond text-only competitors
Enterprise RAG Focus: Platform optimized for knowledge retrieval and semantic search - not conversational marketing/sales engagement like Drift/Yellow.ai
Progress Ecosystem Integration: OpenEdge database connector, Sitefinity CMS integration provides distribution channels unavailable to standalone platforms
Documentation Fragmentation: Dual portals (docs.rag.progress.cloud + legacy docs.nuclia.dev) during transition may cause developer confusion
Competitive Pricing Entry: $700/month Fly tier undercuts enterprise RAG alternatives while providing genuine capabilities vs limited free tiers
Best For: Organizations wanting model flexibility (7 providers), multimodal indexing, open-source transparency, and developer API access without managing infrastructure
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No- Code Interface & Usability
Time to go live:
- "2 minutes" initial setup (provide links to knowledge base)
- "Day 1 Ready-to-Use" confirmed
- Less than 1 week full integration (G2 review verified)
- Enterprise: 1-2 weeks with no-code dashboard
No-code deployment options:
1. Fini Widget (chat bubble - JavaScript snippet)
2. Fini Search Bar (embeddable knowledge search)
3. Fini Standalone (full-page interface)
4. Native helpdesk installations (one-click for Zendesk, Intercom)
5. Chrome Extension for agent productivity
Admin dashboard structure:
- Home Screen: Central hub for AI agent creation and deployment tracking
Rapid Deployment: Progress explicitly markets minutes-to-production capability for business users
Shadow DOM Architecture: Advanced users can apply CSS styling via cssPath attribute for customization
Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing.
User Experience Review
Uses role-based access so business users and devs can collaborate smoothly.
Competitive Positioning
Market position: Agentic AI platform specifically designed for customer support automation with Sophie's 5-layer supervised execution framework and RAGless architecture claiming 97-98% accuracy
Target customers: Enterprise B2C companies with high support volumes (fintech, e-commerce, healthcare), helpdesk teams using Zendesk/Intercom/Salesforce Service Cloud, and organizations needing action-taking AI beyond simple Q&A
Key competitors: Intercom Fin, Zendesk Answer Bot, Ada, Ultimate.ai, and traditional RAG chatbots (positions against Intercom with "agentic" differentiation)
Competitive advantages: 97-98% accuracy vs. ~80% competitors, 20+ native helpdesk integrations without Zapier dependency, RAGless architecture eliminating "black box retrieval," Sophie's 5-layer supervised execution with PII masking, 100+ language support, AI Actions for autonomous CRM/Stripe/Shopify updates, Zero-Pay Guarantee (only pay if >80% accuracy), and Y Combinator backing with ex-Uber engineers
Pricing advantage: Pricing not publicly disclosed (estimated ~$999/month Growth tier); cost-per-resolution model vs. per-seat pricing may benefit high-volume teams; 80% ticket resolution claim reduces support costs significantly; best value for enterprises prioritizing accuracy over affordability
Use case fit: Ideal for enterprise B2C support teams needing action-taking AI (refunds, account updates, CRM sync) beyond information retrieval, organizations using Zendesk/Intercom/Salesforce requiring 20+ native integrations, and companies prioritizing 97-98% accuracy with ISO 42001 certification for regulated industries (fintech, healthcare)
Market Position: Enterprise RAG-as-a-Service with genuine no-code accessibility + developer-first API design (dual-track appeal)
vs. CustomGPT: Similar RAG-as-a-Service category, Progress emphasizes REMi quality monitoring + open-source foundation differentiation
vs. Drift/Yellow.ai: TRUE RAG platform vs conversational marketing/sales engagement platforms (fundamentally different categories)
vs. Lindy.ai: Full API/SDK access vs NO public API (Progress developer-friendly, Lindy no-code only)
Integration Gaps: NO native messaging channels (Slack/WhatsApp/Teams) vs omnichannel competitors - requires custom development
HIPAA Gap: No documented certification creates healthcare trust gap vs compliant competitors (Drift has HIPAA)
Recent Acquisition Risk: June 2025 Progress purchase means platform still maturing under new ownership with potential direction changes
Progress Ecosystem Advantage: Integration with OpenEdge, Sitefinity CMS provides distribution channels unavailable to standalone competitors
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
Starter (Free): GPT-4o mini only for ~50 questions/month
Growth: GPT-4o mini + Claude (version unspecified) with 1K docs and unlimited users
Enterprise: GPT-4o + Multi-layer model architecture with unlimited documents
Multi-layer model architecture (Enterprise): Automatic routing to best-suited LLM per query part - complex queries decomposed into sub-queries with specialized agents
Cost optimization: Maximizes accuracy while controlling costs through intelligent model routing
No user-controlled runtime switching: Plan-based model selection only, no manual model switching interface
Target accuracy: 97-98% accuracy claim across marketing materials and customer testimonials
Human-in-the-loop: Suggested reply customization before sending when confidence is low
Anthropic Models: Claude 3.7, Claude 3.5 Sonnet v2 for safety-focused, high-quality generation
OpenAI Models: ChatGPT 4o, 4o mini for industry-leading language capabilities
Google Models: Gemini Flash 2.5, PaLM2 for multimodal and search-optimized tasks
Meta Models: Llama 3.2 for open-source flexibility and customization
Microsoft/Azure: Mistral Large 2 for enterprise deployments with Azure integration
Cohere Models: Command-R suite for retrieval-optimized generation
Nuclia Private GenAI: 100% data isolation mode for maximum security without third-party LLM exposure
Model Switching: Change providers without architectural changes via Prompt Lab for side-by-side testing
Dynamic Knowledge Management: Continuous updates, gap identification, and automatic documentation generation
Developer RAG Backend: API-first infrastructure for building custom AI applications with Prompt Lab experimentation
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
Scaling Consideration: Token-based consumption pricing requires careful usage forecasting for budget predictability beyond included tier
Best Value For: Organizations wanting to control costs through usage optimization vs fixed seat-based or per-project pricing models
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
Founding team: Ex-Uber engineers with CEO leading 4M+ interactions/month at Uber
Backed by: Y Combinator Summer 2022 ($125K seed), Matrix Partners, angel investors from Uber, Intercom, Softbank, McKinsey, Twitter
Company metrics: ~$2.5M annual revenue, 14 employees, 500K+ tickets/month processed
Less suitable for: General-purpose document Q&A, content generation, startups without established helpdesk infrastructure, organizations prioritizing transparent pricing
Best for: Enterprise B2C support teams with high volumes prioritizing 97-98% accuracy over pricing transparency, willing to commit to 60-day implementation
NO HIPAA Certification Documented: Healthcare organizations processing PHI must contact sales - major compliance gap vs competitors with documented HIPAA
NO Native Messaging Channels: No Slack, WhatsApp, Telegram, or Microsoft Teams integrations - requires custom API-based development
Documentation Fragmentation: Dual portals (docs.rag.progress.cloud + docs.nuclia.dev) during Progress acquisition transition may cause confusion
Recent Acquisition Risk: June 2025 Progress purchase means platform still maturing under new ownership with potential direction changes
Scalability Concerns: Multiple problems limit scalability - hard to scale nodes up/down, write operations affect concurrent search performance
NO Dropbox Integration: Missing Dropbox connector vs competitors - limits cloud storage sync options
NO Notion Integration: Missing Notion connector - gap for knowledge management workflows
NO YouTube Transcript Extraction: Not explicitly documented vs competitors with video indexing features
Missing Features: NO lead capture, NO human handoff/escalation workflows, NO proactive alerting (monitoring exists, alerting undocumented)
Learning Curve: 30+ RAG parameters and Prompt Lab may feel technical for non-developer teams despite no-code dashboard
Best For: Development teams and technical users - powerful for experts but may overwhelm business users wanting simple deployment
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
Sophie AI Agent: Fully autonomous customer service agent designed to act like a company's best support representative, resolving up to 80% of tickets end-to-end without human intervention
Layer 3 - Skill Modules: Deterministic modules for Search, Write, Follow Process, Take Action capabilities
Layer 4 - Live Feedback: Auto-validates outputs, detects errors, learns from corrections in real-time
Layer 5 - Traceability: Full audit trail of decisions and reasoning for transparency and compliance
Multi-Layer Model Architecture (Enterprise): Automatic routing to best-suited LLM per query part - complex queries decomposed into sub-queries with specialized agents handling each component for maximum accuracy while controlling costs
Action-Taking Capabilities: Goes beyond information retrieval - autonomous refund processing, account updates, CRM sync (Salesforce), Stripe payment handling, Shopify order management without human involvement
AI Actions (Growth/Enterprise): Autonomous CRM/Stripe/Shopify updates triggered by conversation context - "It's the difference between 'You can find details here' and 'Done! I've processed that refund'"
Continuous Learning: Sophie learns from every interaction through Chat2KB auto-learning (Growth/Enterprise), getting smarter, faster, and more accurate over time with MECE classification eliminating duplicate responses
100+ Language Support: Automatic translation with locale-based routing and real-time language detection - serve global customer bases without multilingual content management
Intelligent Escalation: Human handoff preserves full conversation context with configurable triggers (keywords, sentiment analysis, topic-based rules, confidence thresholds) - seamless transition to human agents when needed
Retrieval Agents: Autonomously select optimal retrieval strategies based on query characteristics
CSS Customization: Shadow DOM architecture with cssPath attribute for advanced styling
White-Labeling: Full OEM deployment support via API-first design
MISSING FEATURES: NO lead capture, NO human handoff/escalation workflows, NO proactive alerting (monitoring exists, alerting undocumented)
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
R A G-as-a- Service Assessment
Platform Type: AGENTIC AI CUSTOMER SUPPORT PLATFORM with RAGless architecture - NOT traditional RAG-as-a-Service but query-writing AI specifically designed for customer support automation
Architectural Approach: RAGless architecture using query-writing AI instead of traditional vector search - "no embeddings, no hallucinations" with precise source attribution and deterministic results
Platform Overview
Controversial Positioning: Criticizes RAG as "just smarter search engines" claiming "will become obsolete" - emphasizes action-taking over information-only responses, positioning against traditional RAG platforms
Agent Capabilities: Sophie's 5-layer supervised execution framework with Safety Guardrails, LLM Supervisor, Skill Modules (Search, Write, Follow Process, Take Action), Live Feedback, and Traceability - 97-98% accuracy claim
Developer Experience: Basic REST API (v2) with Bearer Token authentication but LIMITED - NO official SDKs (Python, JavaScript, or any language), only basic Python/Node.js examples, documentation quality concerns (3/5 completeness, 2/5 error handling, 1/5 rate limits)
Target Market: Enterprise B2C companies with high support volumes (fintech, e-commerce, healthcare), helpdesk teams using Zendesk/Intercom/Salesforce Service Cloud requiring action-taking AI beyond simple Q&A
Deployment Model: Cloud-hosted SaaS tightly integrated with helpdesk platforms - NOT standalone deployment, requires Zendesk/Intercom/Salesforce as foundation
Enterprise Features: SOC 2 Type II, ISO 27001, ISO 42001 (AI governance), GDPR compliant, HIPAA status conflicting (verify before healthcare use), PII Shield Layer auto-masking, EU/US data residency, dedicated AI instance (Enterprise)
Pricing Model: NOT publicly disclosed (estimated ~$999/month Growth tier), cost-per-resolution model vs per-seat pricing, Zero-Pay Guarantee, 60-day implementation program with weekly alignment calls
Use Case Fit: Enterprise B2C support teams needing action-taking AI (refunds, account updates, CRM sync) beyond information retrieval, organizations using Zendesk/Intercom/Salesforce requiring 20+ native integrations, companies prioritizing 97-98% accuracy with ISO 42001 certification
NOT A RAG PLATFORM: Explicitly positions AGAINST traditional RAG - uses query-writing AI bypassing retrieval at inference for deterministic results, fundamentally different approach than RAG-as-a-Service competitors
NOT Suitable For: General-purpose document Q&A, content generation, organizations without existing helpdesk platforms, developers needing programmatic RAG API access, teams wanting traditional RAG architecture
Competitive Positioning: Positions against Intercom Fin with "agentic" differentiation claiming 95%+ accuracy vs ~80%, competes with Zendesk Answer Bot, Ada, Ultimate.ai - unique RAGless approach vs traditional RAG chatbots
Platform Type: TRUE RAG-AS-A-SERVICE PLATFORM - Core mission is retrieval-augmented generation backend with developer-first API access
Core Focus: Semantic search and generative Q&A across knowledge bases with transparent NucliaDB architecture
RAG Backend Design: Fully managed RAG infrastructure with embeddable widgets (NOT closed conversational marketing like Drift/Yellow.ai)
Programmatic Access: Complete REST API + dual SDKs (Python/JavaScript) for full knowledge base management
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
R E Mi Evaluation Model ( Core Differentiator)
N/A
Proprietary Investment: Significant R&D differentiator addressing hallucination problem - absent from most competitors
REMi v2 (Current): Llama-REMi v1 based on Llama 3.2-3B with 30x faster inference vs original Mistral implementation
Continuous Quality Monitoring: Evaluates EVERY interaction across four dimensions (0-5 scale)
Answer Relevance: Measures how directly response addresses the query
Context Relevance: Assesses quality of retrieved passages relative to question
Groundedness: Evaluates degree to which answers derive from source context (hallucination detection)
Answer Correctness: Alignment with ground truth when available (optional dimension)
Benchmark Validation: Nuclia with OpenAI embeddings achieved highest scores vs Vectara on Docmatix 1.4k dataset across answer relevance, context relevance, correctness
Real-Time Visibility: Dashboard health displays with 7-day rolling averages and performance graphs (24h to 30d)
Competitive Advantage: Most RAG platforms lack continuous quality evaluation - Progress makes this core differentiator
N/A
Open- Source Nuclia D B Foundation
N/A
GitHub Presence: 710+ stars, AGPLv3 license provides full transparency into core retrieval mechanisms
Technology Stack: Python and Rust implementation for performance and reliability
Managed Infrastructure: Progress removes operational burden while maintaining technical transparency
Four Index Types: Document Index (property filtering), Full Text (keyword/fuzzy search), Chunk/Vector (semantic similarity), Knowledge Graph (entity relationships)
Dynamic Sharding: Automatic shard creation as vectors grow with index node replication for fault tolerance
Dynamic Scaling: Automatic shard creation as vector counts grow with index node replication
Web Component Embedding: <nuclia-search-bar> and <nuclia-chat> for website integration
Multi-Region Support: Regional data residency options (EU/US) for compliance requirements
N/A
Customer Base & Case Studies
N/A
SRS Distribution (Wholesale Building Materials): "Progress Agentic RAG has fundamentally changed how we access and act on information across our organisation. Its ability to deliver fast, accurate, and verifiable insights from our unstructured data has been a game-changer for productivity and decision-making."
BrokerChooser (Financial Services): Replaced keyword search with generative AI, reporting significant conversion increases and better user experience
NAFEMS (Engineering Simulation Association): Knowledge discovery across thousands of technical publications for international membership community
Althaia Hospitals (Spain's Largest Central Catalonia Hospital): Medical protocol search supporting 5,000+ healthcare professionals
Columbia Business School: Academic knowledge discovery and research support
Barry University: Education sector deployment for institutional knowledge management
CCOO (Spain's Largest Trade Union): 1M+ members served with knowledge retrieval platform
Buff Sportswear: Commercial deployment for product and customer knowledge management
Pre-Acquisition Scale: ~20 customers across healthcare, pharmaceutical, education, public administration sectors
After analyzing features, pricing, performance, and user feedback, both Fini AI and Progress Agentic RAG are capable platforms that serve different market segments and use cases effectively.
When to Choose Fini AI
You value industry-leading 97-98% accuracy claim backed by customer testimonials
RAGless architecture eliminates hallucinations with precise source attribution
Best For: Industry-leading 97-98% accuracy claim backed by customer testimonials
When to Choose Progress Agentic RAG
You value proprietary remi v2 model (30x faster inference) addresses hallucination problem with continuous quality monitoring - differentiated capability absent from most competitors
Open-source NucliaDB transparency (710+ GitHub stars) with managed infrastructure removes operational burden while maintaining technical visibility
Genuine no-code accessibility: business users (marketing, HR, legal, support) can deploy functional RAG pipelines in minutes via visual dashboard
Best For: Proprietary REMi v2 model (30x faster inference) addresses hallucination problem with continuous quality monitoring - differentiated capability absent from most competitors
Migration & Switching Considerations
Switching between Fini AI and Progress Agentic RAG requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
Fini AI starts at custom pricing, while Progress Agentic RAG begins at $700/month. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between Fini AI and Progress Agentic RAG comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 12, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...