In this comprehensive guide, we compare Guru and Yellow.ai across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between Guru and Yellow.ai, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose Guru if: you value permission-aware ai is unique differentiator - answers respect real-time access control
Choose Yellow.ai if: you value genuinely comprehensive 35+ channel coverage: whatsapp bsp, messenger, instagram, telegram, slack, teams, voice, sms
About Guru
Guru is ai-powered knowledge management and search platform. Enterprise AI knowledge platform with permission-aware Knowledge Agents that deliver trusted, cited answers from your company's verified knowledge base across all workflows. Founded in 2015, headquartered in Philadelphia, PA, USA, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
86/100
Starting Price
$25/mo
About Yellow.ai
Yellow.ai is enterprise conversational ai platform with multi-llm orchestration. Enterprise conversational AI platform with embedded RAG capabilities processing 16 billion+ conversations annually. Multi-LLM orchestration across 35+ channels and 135+ languages with proprietary YellowG LLM claiming <1% hallucination rates. Founded in 2016, headquartered in San Mateo, CA, USA / Bengaluru, India, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
85/100
Starting Price
Custom
Key Differences at a Glance
In terms of user ratings, both platforms score similarly in overall satisfaction. From a cost perspective, Yellow.ai offers more competitive entry pricing. The platforms also differ in their primary focus: Knowledge Management versus Conversational AI. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
Guru
Yellow.ai
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
Native Knowledge Base: Guru Cards - verified knowledge articles with expert ownership and verification workflows
Automatic Synchronization: Configurable intervals - hourly, daily, weekly for external knowledge base updates
Website Crawling: URL ingestion and sitemap.xml parsing for structured site content extraction
Missing Integrations: No Google Drive, Dropbox, or Notion support - significant gap vs competitors
YouTube Limitation: Transcript ingestion not natively supported
API Gap: No programmatic document upload or knowledge base management via API
Q&A Extraction: T5 model-based question-answer pair generation from ingested documents
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
Native Workplace Apps: Slack workspace bot, Microsoft Teams bot, browser extension for any web app
AI Tool Integration: ChatGPT, Claude, GitHub Copilot via MCP (Model Context Protocol) Server
Business Apps: Salesforce knowledge integration, Zendesk support integration, intranet portals
Automation Platforms: Zapier (1,000+ apps), Workato, Prismatic for custom workflows
Developer Access: REST API, Python SDK, webhooks for event-driven integrations
Mobile Apps: iOS and Android native apps for on-the-go knowledge access
Embedded Knowledge: Widgets for internal portals, API-driven custom chat interfaces
MCP Server: Universal connector for any AI tool to access Guru's permission-aware knowledge layer
Focus: Strong internal channel support (Slack/Teams), less emphasis on public consumer channels (WhatsApp, Telegram)
Conversational AI: Multi-turn dialogue with context retention - feels like talking to a knowledgeable co-worker
Multi-Lingual: Content in all languages supported, instant translation to 50+ languages (UI English-only)
Grounded Answers: All responses backed by verified company knowledge with automatic citations
Customizable Knowledge Agents: Create and deploy specialized AI agents for any team or project tailoring knowledge sources, tone, and focus to provide highly relevant role-specific insights that improve over time
Research Mode: Complex queries generate structured multi-source reports with detailed analysis
Permission-Aware: Answers automatically tailored to user's role and access permissions
Content Assist Features: Actions include "Fix grammar," "Summarize," "Make more concise," or custom prompts to match team tone or formatting needs
Admin Customization Controls: Admins can toggle specific actions on or off and create custom assist actions for different user groups ensuring alignment across teams
Conversation Logging: Complete audit trail via AI Agent Center - every question, answer, and source tracked
Analytics Dashboard: Usage stats, deflection rates, time saved, trending questions, knowledge gap identification
Human Escalation: Seamless handoff to subject-matter experts when AI cannot answer, convert queries to Card requests
Internal Focus: Optimized for employee knowledge access vs. external customer engagement features (lead capture not core)
Multi-Turn Conversations: Super Agent maintains conversation context across turns with intent detection, entity extraction, slot filling, and dialogue state management
150+ Language Support: Automatic language detection with native multilingual processing across all 150+ supported languages reducing accuracy loss vs translation-based systems
Human Handoff: Configurable escalation triggers with full conversation history transfer, agent workload balancing, queue management, and SLA tracking
Analytics & Insights: Comprehensive dashboards with containment rates, CSAT scores, conversation flows, drop-off points, user journey analytics, and business KPI tracking
Agent Performance Monitoring: Bot accuracy scoring, user satisfaction metrics, conversation success rates, A/B testing capabilities for continuous improvement
Voice AI Capabilities: Real-time voice agents in 50+ languages with sentiment analysis during calls, IVR integration, call deflection, automated transcription
Lead Capture & Qualification: Real-time lead scoring, CRM integration (Salesforce, HubSpot, Zoho), automatic contact creation, lead routing based on firmographics
Safety & Conduct Controls: Configurable filters ensuring ethical communication, avoiding harmful topics, handling sensitive data responsibly with compliance guardrails
Conversational Behavior Rules: Define conversation rules guiding agent responses in different situations ensuring consistent interactions across channels and use cases
Reduces hallucinations by grounding replies in your data and adding source citations for transparency.
Benchmark Details
Handles multi-turn, context-aware chats with persistent history and solid conversation management.
Speaks 90+ languages, making global rollouts straightforward.
Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Customization & Branding
Custom Agents: Each Knowledge Agent has unique name, avatar, scope, and purpose (IT, HR, Sales, Marketing, Product)
Prompt Configuration: Custom instructions and system messages per agent to shape behavior and response style
Permission Scoping: Agents automatically respect user roles - managers see more detail than general employees
Department Specialization: Create specialized agents for different teams using relevant knowledge Collections
Portal Branding: Guru Pages/Portal can include company logos, colors, custom styling for internal knowledge sites
Limited White-Labeling: Guru branding typically present in web app and extension (internal tool focus, not external)
Developer Community: Active Guru Developer Network, community forum, example projects shared
Platform-First Architecture: Designed for UI-based development with APIs serving supplementary functions (not primary access)
Available via API: User management (create/update/delete/list), event pushing for custom triggers, outbound notifications, webhook integrations
NOT Available via API: Bot/agent creation or management, document upload, knowledge base management, direct RAG query endpoints, embedding/vector store access, analytics data export
Mobile SDKs: Well-documented Android (Java), iOS (Swift), React Native, Flutter, Cordova with complete code examples, Postman collections, demo applications
Python SDK: Does not exist - major limitation for backend developers and data science teams
Web SDK: Script tag injection only (no npm package) - documentation criticized as incomplete by G2 reviewers
Rate Limits: Not publicly documented - no transparency for production capacity planning
OpenAPI Spec: Not published - no Swagger documentation for API exploration
Critical Limitation: Cannot use Yellow.ai as RAG backend - queries must flow through platform conversation flows vs direct API calls
Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat.
API Documentation
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Competitive Positioning
Primary Advantage: Permission-aware AI with real-time access control - unique in market
Knowledge Foundation: 10+ years enterprise KM expertise ensures verified, trustworthy knowledge base
Enterprise Focus: Built for large organizations with complex permission structures and compliance needs
Integration Breadth: MCP Server enables universal AI tool connectivity without custom RAG
Primary Challenge: Per-user pricing can be expensive for very large deployments vs. query-based models
Internal Focus: Optimized for internal knowledge vs. external customer-facing chatbots
Market Position: Premium enterprise knowledge platform with AI vs. pure-play RAG chatbot services
Use Case Fit: Ideal for enterprises prioritizing trust, governance, and internal knowledge access
Proven Scale: Handles thousands of users and millions of knowledge items in production deployments
Primary Advantage: Complete enterprise conversational AI platform with unmatched 35+ channel coverage and 135+ language support
Compliance Leadership: SOC 2, ISO 27001/27018/27701, HIPAA, GDPR, PCI DSS, FedRAMP exceeds most AI platform competitors
Proprietary Innovation: YellowG LLM claims <1% hallucination rate, Komodo-7B for Indonesia, 0.6s response times (vendor benchmarks)
Proven Scale: 16 billion+ conversations annually, customers include Sony, Domino's, Hyundai, Volkswagen across 85+ countries
Regional Strength: Multi-region data centers (US, EU, Singapore, India, Indonesia, UAE) with Komodo-7B for Southeast Asia
Primary Challenge: NOT a RAG-as-a-Service platform - embedded RAG within closed conversational system blocks API-first use cases
Developer Friction: No Python SDK, no knowledge base API, no dedicated RAG endpoints, web SDK documentation gaps
Pricing Barrier: ~$10K-$25K annual minimum with 4-month implementation vs competitors with sub-$100/month self-service tiers
Learning Curve: G2 reviews cite steep complexity - "setup felt akin to solving a Rubik's cube blindfolded"
Market Position: Competes with enterprise CX platforms (Genesys, Twilio, LivePerson) vs RAG API services (CustomGPT.ai, Pinecone Assistant)
Use Case Fit: Exceptional for enterprises needing omnichannel CX automation at scale; poor fit for developers seeking programmable RAG capabilities
Architectural Mismatch: Platform-first vs API-first design makes direct RAG platform comparison fundamentally misleading
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
Abstracted Model Architecture: LLM selection handled internally - likely OpenAI GPT (GPT-3.5/GPT-4) by default for standard operations
No User-Facing Selection: No UI toggle for model choice - platform optimized for trust and simplicity over technical control
LLM-Agnostic Design: Architecture designed to work with different models providing enterprise flexibility for future model changes
Private Model Options: Enterprise can opt for dedicated private AI model instance (e.g., Azure OpenAI in customer tenant) for data sovereignty
Zero Data Retention: Third-party LLM endpoints configured to never store or train on customer data - critical privacy guarantee
Automatic Optimization: System may use different models for simple FAQ responses vs. complex Research Mode queries for cost/quality balance
Security-First Selection: Model choice prioritizes compliance, data sovereignty, and zero leakage guarantees over raw performance metrics
Quality Assurance Layer: All answers cited and permission-aware regardless of underlying model - trust layer above LLM capabilities
Proprietary YellowG LLM: Custom-trained model with vendor-claimed <1% hallucination rate vs GPT-3's 22.7%, 0.6-second average response time
Komodo-7B: Specialized Indonesia-focused model supporting 11+ regional language variants for Southeast Asian market dominance
Orchestrator LLM: Context switching and multi-intent detection engine with zero-training deployment capability
T5 Fine-Tuned: SQuAD/TriviaQA trained model for Document Cognition with 75-85% accuracy depending on complexity
GPT-3 & GPT-3.5: Integration documented for supplemental processing and model routing
15+ LLM Models: Multi-model architecture combining proprietary and third-party models for optimal task routing
Dynamic Model Routing: Automatic selection based on query complexity, language requirements, and performance optimization
Note: GPT-4/Claude support not explicitly confirmed - availability unclear in documentation
Enterprise Training: Models trained on 16 billion+ anonymized customer conversations with PII masking at data layer
Limited Flexibility: Users cannot manually select models - system handles routing automatically without direct control
Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request
Model Selection Details
Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
RAG Foundation: Retrieval-Augmented Generation grounds all answers in verified company knowledge with automatic citations
Multiple Retrieval Techniques: Several search algorithms ensure best information found for each query type and context
Synthesis Capability: Combines insights from multiple documents for comprehensive answers to complex questions
Automatic Citations: Every answer includes exact source references (specific slide, Card, document section) for verification
Permission Filtering: Retrieval only uses content user is authorized to see - prevents context contamination and information leakage
Verified Knowledge Base: Expert verification workflows ensure underlying data is reliable, current, and trustworthy
Real-Time Accuracy: Knowledge updates immediately reflected in AI responses - no stale data lag or cache delays
Hallucination Reduction: RAG architecture significantly reduces AI hallucinations vs. LLM-only approaches through knowledge grounding
Confidence Handling: When unsure, agent indicates lack of knowledge rather than guessing wrong answer - transparency over completeness
Agentic RAG Architecture: Multi-checkpoint validation combining intelligent retrieval with reasoning and action - Yellow.ai's AI Agents don't just retrieve, they think, act, and learn
Document Cognition (DocCog): T5 model-based Q&A extraction with 75-85% accuracy depending on document complexity
Hallucination Prevention: Proprietary YellowG LLM approach with vendor-claimed <1% rate vs industry averages through training optimization
Automatic Guardrails: Policy compliance and response filtering from deployment without manual configuration requirements
Knowledge Synchronization: Configurable intervals (hourly, daily, weekly) for external sources including Salesforce, ServiceNow, Confluence, SharePoint
Website Crawling: URL ingestion and sitemap.xml parsing for structured site content extraction and Q&A generation
Enterprise Integrations: Bi-directional sync with AWS S3, Prismic, and major enterprise knowledge bases
Note: Closed Architecture: RAG embedded within platform - no direct endpoints, embedding customization, or vector store API access for developers
Note: No API Upload: Document upload requires manual platform UI interaction - cannot programmatically manage knowledge base
Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks
RAG Performance
Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content
Benchmark Details
Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
Source verification: Always cites sources so users can verify facts on the spot
Use Cases
Enterprise Internal Support: IT, HR, Sales, Support, Marketing, Product teams accessing verified company knowledge through AI agents
Knowledge Base Unification: Single source of truth aggregating content from SharePoint, Confluence, Notion, Salesforce, Google Drive
Employee Onboarding: New hires access role-appropriate information automatically filtered by permission level and department
Sales Enablement: Real-time access to product information, competitive intelligence, pricing, and deal strategies during customer conversations
Regulatory Compliance: Financial services, healthcare, legal industries requiring strict information controls and audit trails
Research Mode Queries: Complex multi-source research generating structured reports with detailed analysis and citations
Cross-System Integration: MCP Server enables ChatGPT, Claude, GitHub Copilot to access Guru knowledge with preserved permissions
Knowledge Gap Identification: Analytics identify missing content based on unanswered questions to drive content creation priorities
Large Organization Scale: Supports organizations with thousands of employees and millions of knowledge items in production
Customer Service Automation: 90% query automation across 35+ channels with 60% operational cost reduction - handles 16 billion+ conversations annually
Employee Experience (EX): IT support automation (password resets, hardware requests), HR policy FAQs, leave applications, pay slip access, conference room bookings with rapid response delivery even in low bandwidth environments
24/7 Support Operations: Minimal human involvement for routine queries, autonomous account issue resolution, transaction execution, multi-department coordination with full context preservation
E-commerce & Retail: Personal shopping assistance (inventory browsing, price comparison, order placement, returns handling), real-time transaction monitoring with suspicious activity blocking
Travel & Hospitality: Booking management for travel, hotels, restaurants with automatic rebooking during disruptions and 24/7 availability
Financial Services: Fraud detection workflows with automated investigation initiation and PCI DSS compliance for payment transactions
Healthcare: HIPAA-compliant patient engagement and support with protected health information handling capabilities
Government & Federal: FedRAMP authorized platform for US federal deployments with complete compliance and security requirements
Real-World Results: Lulu Hypermarket 3M+ unique users in 4 weeks, Sony 21,000+ voice calls in 2 months, Lion Parcel 85% automation rate, AirAsia employee experience transformation
Enterprise Scale: Customers include Sony, Domino's, Hyundai, Volkswagen, Ferrellgas across 85+ countries with billion+ conversation processing
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
SOC 2 Type II Certified: Independently audited security controls and compliance validated through third-party assessment
GDPR Compliant: Data protection, privacy rights, EU data residency options for European customers
Zero LLM Data Retention: Third-party AI models never store or train on customer data - contractual guarantee with providers
Private AI Models: Enterprise option for dedicated model instance (Azure OpenAI in customer tenant) for maximum data sovereignty
Encryption Standards: Data encrypted at rest and in transit (TLS/SSL) protecting information throughout lifecycle
SAML SSO: Single sign-on integration with enterprise identity providers (Okta, Azure AD, Google Workspace, OneLogin)
SCIM Provisioning: Automated user lifecycle management and group synchronization for enterprise IT workflows
IP Whitelisting: Enterprise plan allows restricting access to approved networks for enhanced security control
Permission-Aware Security: AI respects real-time access controls - users only see authorized content preventing leakage
Audit Logs: Complete activity tracking via AI Agent Center for compliance and oversight requirements
Role-Based Access Control: Granular permissions for admins, authors, viewers, knowledge managers with separation of duties
SOC 2 Type II: Independently audited security controls and compliance certification with annual penetration testing validation
ISO Certifications: ISO 27001 (Information Security Management), ISO 27018 (Cloud Privacy Controls), ISO 27701 (Privacy Information Management)
HIPAA Compliant: Healthcare industry ready for protected health information (PHI) handling with Business Associate Agreement support
GDPR Compliant: European data protection and privacy rights with regional data centers in EU for data residency requirements
PCI DSS Certified: Payment Card Industry Data Security Standard Level 1 compliance for financial transaction security
FedRAMP Authorized: Federal Risk and Authorization Management Program certification for US government cloud deployments
Encryption Standards: AES-256 encryption at rest, TLS 1.3 for data in transit exceeding industry baseline requirements
Regional Data Centers: 6 global regions (US, EU, Singapore, India, Indonesia, UAE) with customer-selected data residency for compliance and latency optimization
Enterprise Identity Management: SSO/SAML integration with Google, Microsoft, Azure AD, LDAP for unified access control
RBAC Controls: Six permission levels for granular team access control with IP whitelisting for network-level security
Audit Logs: 15-day API activity retention for compliance reporting and security monitoring
On-Premise Options: Private cloud and complete on-premise deployment available for air-gapped environments and complete data sovereignty
AI Training Privacy: Models trained on anonymized customer interactions with PII masking at data layer before processing
Basic Plan (AWS Marketplace): ~$10,000/year minimum for single use case implementation with limited channel access
Standard Plan: ~$25,000/year for up to 4 use cases with expanded capabilities and additional channels
Enterprise Plan: Custom pricing requiring sales engagement - unlimited bots, channels, integrations with dedicated support and SLA guarantees
Implementation Timeline: Typically 4 months from contract to full deployment with professional services included (G2 user data)
Additional Costs: Voice AI features and advanced generative AI capabilities incur separate charges beyond base platform subscription
Sales-Led Process: All paid plans beyond free tier require sales contact - no self-service purchasing or transparent public pricing
Payment Terms: Annual contracts standard for commercial plans with monthly billing unavailable for most tiers
Entry Barrier: $10K minimum annual spend creates significant barrier for small businesses, startups, and individual developers
On-Premise Pricing: Custom enterprise pricing for private cloud and on-premise deployments with additional implementation costs
Regional Variations: Pricing may vary by selected data center region and compliance requirements
Scale Justification: 16 billion+ conversations annually and enterprise customer base (Sony, Domino's, Hyundai) validates high-end positioning
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
Multi-Channel Support: Help Center with comprehensive guides, Community forum for peer learning, live chat for paying customers
Enterprise Support: Dedicated Customer Success Manager, priority support queues, SLA guarantees for response times
Guru University: Training programs, workshops, office hours, certification courses for user skill development
Active Community: User forum for peer learning, knowledge sharing, best practice discussions across industries
Developer Resources: Extensive API docs at developer.getguru.com, Python SDK, integration examples, developer blog
Real-Time Knowledge Updates: Always available manual retraining across all plans through browser extension and integration sync triggers
Automatic Syncing: Continuous synchronization with integrated systems (Confluence, SharePoint, Notion, Google Drive, Salesforce, Zendesk) for real-time knowledge base updates
Custom Knowledge Agents: Each agent has unique name, avatar, scope, and purpose (IT, HR, Sales, Marketing, Product) with prompt configuration to shape behavior and response style
Department Specialization: Create specialized agents for different teams using relevant knowledge Collections with permission scoping automatically respecting user roles
Permission-Aware Responses: Answers automatically tailored to user's role and access permissions - managers see more detail than general employees
Content Assist Customization: Create custom assist actions for different user groups with admin controls to toggle specific actions on or off ensuring alignment across teams
Verification Workflows: Collaborative knowledge management where Card Owners receive verification reminders, experts can trigger out-of-cycle reviews, and verification intervals are configurable
Knowledge Attribution: Every Card has designated Owner (subject-matter expert), last verified timestamp, trusted status indicator, audit trail of changes
LIMITATION: No programmatic personality management - agent configuration dashboard-only, cannot modify per-user or via API (no /agents endpoint for creating/updating agents)
LIMITATION: Model Abstraction - no user control over LLM selection optimized for simplicity but reduces flexibility for technical users
Agent Profile & Persona: Configure name, role, scope, tone (formal/friendly/witty), communication style, expertise areas defining core agent identity
Conversation Rules: Define custom rules guiding agent behavior in specific situations ensuring consistent interactions and brand voice compliance
Welcome Messages & Greetings: Personalized welcome messages for different channels, user segments, and conversation contexts with dynamic variable substitution
Fallback Behaviors: Configurable responses for knowledge gaps, API failures, validation errors, low-confidence scenarios with escalation path options
Multi-KB Support: Multiple knowledge bases per organization with role-based access, departmental segregation, and cross-KB search capabilities
Auto-Reindexing: Automatic knowledge base refresh when source content changes in connected systems ensuring always-current information
Dynamic Prompt Engineering: Custom system prompts, temperature controls, response length limits, creativity settings configurable per use case
Channel-Specific Customization: Different agent behaviors, response formats, media handling per channel (WhatsApp, voice, web, email)
CRITICAL LIMITATION - Opaque RAG Implementation: Retrieval mechanisms, embedding models, chunking strategies, similarity thresholds not exposed for developer configuration
CRITICAL LIMITATION - NO Programmatic Knowledge API: Knowledge base management requires UI interaction - no API for document upload, embedding updates, or retrieval tuning
Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus.
Learn How to Update Sources
Supports multiple agents per account, so different teams can have their own bots.
Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Additional Considerations
Content Maintenance Requirements: Platform value depends on organizational discipline in refreshing knowledge base regularly - requires disciplined maintenance where teams must actively verify cards and keep ownership clear
Search Limitations: Guru's search struggles when knowledge isn't perfectly documented and tagged within its system of Cards - if answer exists only in Slack thread or past conversation, Guru's search won't find it leading to "no results found" dead ends
Enterprise-Specific Limitations: Version history for published cards but not for drafts making collaborative edits hard to track or revert; editor cannot create step-by-step guides or decision trees requiring employees to scan long text
UI Performance Concerns: UI becomes laggy when Knowledge base and team grows - performance degradation at scale
Initial Setup Complexity: New users may find UI slightly complex particularly when managing large collections or reorganizing knowledge across departments - initial setup defining collections, permissions, and verification rules can take time especially for companies with many departments
Pricing Consideration: Per-user seat-based model can be expensive for very large deployments (1,000+ users) vs query-based alternatives - pricing structure requires consideration especially for smaller businesses
Limited Customization: User interface while generally user-friendly may lack flexibility in terms of customization potentially limiting company's ability to fully brand experience or tailor to specific visual preferences
Integration Gaps: While Guru integrates with popular tools like Slack users desire more native integrations with other platforms to further streamline workflows and data synchronization
No Built-In Customer Portal: Guru offers no built-in portal for customers - publishing content online needs extra API work
Internal Focus Trade-off: Platform designed for internal teams - NOT optimized for external customer support chatbots, public-facing agents, or lead capture capabilities
Best For: Companies prioritizing internal knowledge management with verified content workflows and distributed expertise capture
NOT Ideal For: External customer support chatbots, public-facing conversational AI, organizations without verification workflow culture, teams needing deep LLM customization
Platform Classification: ENTERPRISE CONVERSATIONAL AI PLATFORM with RAG capabilities, NOT a pure RAG-as-a-Service API platform - emphasis on multi-channel automation and workflow orchestration
Target Audience: Mid-market to enterprise organizations (1,000+ employees) with complex conversational workflows vs individual developers or SMBs requiring simple knowledge retrieval
Primary Strength: Exceptional for enterprise-grade conversational AI across 35+ channels (WhatsApp, voice, web, social) with 150+ language support and 60%+ automation rates in regulated industries
Vertical Expertise: 50% customer concentration in financial services with deep BFSI (Banking, Financial Services, Insurance) domain knowledge and compliance capabilities (PCI DSS, SOC 2, ISO 27001, GDPR, HIPAA)
Voice AI Excellence: Real-time voice agents in 50+ languages with sentiment analysis, IVR integration, call center deflection capabilities differentiate from text-only RAG platforms
CRITICAL LIMITATION - Enterprise Sales Motion: Custom pricing requires sales engagement (2-6 week cycle) with no self-serve option - unsuitable for quick testing or developer experimentation
CRITICAL LIMITATION - Pricing Opacity: No published pricing, user reviews report costs 'much higher than competitors', estimated $1,500-$3,500/month minimum vs $99-$299 in RAG platforms
CRITICAL LIMITATION - Implementation Complexity: 8-12 week implementation timelines common with mandatory professional services vs instant deployment in self-serve platforms
Developer API Limitations: APIs oriented toward conversation orchestration vs programmatic RAG operations (semantic search, embedding controls, retrieval configuration)
Lock-In Concerns: Heavy professional services dependency and complex multi-system integrations create significant switching costs vs API-first RAG platforms
Use Case Mismatch: Exceptional for large-scale enterprise conversational AI deployments across multiple channels; inappropriate for simple document Q&A or developer-centric RAG use cases
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
Limitations & Considerations
Per-User Pricing Challenges: Seat-based model can be expensive for very large deployments (1,000+ users) vs query-based alternatives
Internal Focus Trade-off: Optimized for internal knowledge access vs external customer-facing chatbot capabilities (lead capture not core)
Limited White-Labeling: Guru branding typically present in web app and extension - internal tool focus vs external customer experiences
English-Only UI: Content supports all languages with translation to 50+, but user interface remains English-only for administrators
Model Abstraction: No user control over LLM selection - optimized for simplicity but reduces flexibility for technical users
AI Credit Management: Usage limits require monitoring and management - organizations may need to purchase additional credits
Enterprise Requirements: Advanced features (IP whitelisting, SSO, SCIM, private models) require Enterprise plan with custom pricing
Setup Complexity: Initial configuration of integrations, permissions, and verification workflows requires thoughtful planning
Change Management: Successful deployment requires organizational adoption of verification workflows and knowledge ownership culture
External Use Limitations: Platform designed for internal teams - not optimized for external customer support chatbots or public-facing agents
NOT a RAG-as-a-Service Platform: Full-stack enterprise conversational AI with embedded RAG - cannot use Yellow.ai purely as knowledge/RAG backend for custom applications
No API-First Development: Cannot programmatically create bots/agents, upload documents, manage knowledge bases, or directly query RAG endpoints - platform-centric architecture
Missing Developer Tools: No Python SDK (major gap for backend developers), no npm package for web SDK (script tag injection only), no OpenAPI specification published
Knowledge Ingestion Gaps: No Google Drive, Dropbox, Notion integration support - significant gap vs competitors like CustomGPT and YourGPT
YouTube & Audio Limitations: No YouTube transcript ingestion, no native audio/video file processing support
High Entry Barrier: $10K-$25K annual minimum with 4-month implementation timeline vs competitors offering $19-99/month self-service tiers
Use Case Mismatch: Excellent for enterprises needing omnichannel CX automation; poor fit for developers seeking programmable RAG APIs or simple chatbot embedding
Vendor Lock-In Risk: Proprietary platform with limited portability - difficult to migrate conversation flows, knowledge bases, and integrations to alternative solutions
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
N/A
Massive Scale: 16 billion+ conversations processed annually across enterprise deployments
Multi-Lingual: 135+ languages supported with regional variants (Komodo-7B for 11+ Indonesian languages)
Hallucination Prevention: YellowG LLM claims <1% hallucination rate vs GPT-3's 22.7% in vendor benchmarks
Dynamic AI Agent: Zero-training deployment with automatic model routing and next-action determination
Multi-Intent Detection: Handles complex user queries with context-aware orchestration across conversation turns
Response Speed: 0.6-second average response time (YellowG LLM performance claim)
Automatic Guardrails: Policy compliance and response relevance filtering from deployment without manual configuration
Case Study Performance: Lulu Hypermarket 3M+ unique users in 4 weeks, Sony 21,000+ voice calls in 2 months
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
Proprietary L L M Architecture
N/A
YellowG LLM: Vendor claims <1% hallucination rate vs GPT-3's 22.7% (Yellow.ai internal benchmarks, no independent validation)
Response Speed: 0.6-second average response time optimized for conversational AI at enterprise scale
Orchestrator LLM: Context switching and multi-intent detection with zero-training deployment capability
Komodo-7B: Indonesia-focused model with 11+ regional language variants for Southeast Asian market dominance
T5 Fine-Tuning: SQuAD/TriviaQA training for Document Cognition Q&A extraction (75-85% accuracy claims)
Training Data: Anonymized historical customer interaction records with PII masking at data layer
Security Advantage: In-house LLM approach reduces exposure of sensitive enterprise data to external providers (OpenAI, Anthropic)
Enterprise Tuning: Models optimized for specific industries and use cases vs general-purpose capabilities
Dynamic Routing: Automatic model selection based on query complexity and context requirements
Limited Flexibility: Focus on enterprise-specific tuning vs raw model access and customization options
Benchmark Gap: No RAGAS scores, independent accuracy measurements, or third-party analyst validation published
N/A
Omnichannel Dominance
N/A
Messaging Platforms: WhatsApp (BSP provider status), Facebook Messenger, Instagram, Telegram, Slack, Microsoft Teams, Line, Viber, WeChat, Zalo, Google Chat
Voice Channels: IVR integration, Google Assistant, Amazon Alexa, telephony systems with full voice analytics
SMS & Email: Comprehensive support for text messaging and email communication workflows
Web Deployment: JavaScript widget (CDN-hosted), Progressive Web App with shareable links, iframe embedding
Mobile Native: SDKs for Android, iOS, React Native, Flutter, Cordova with complete code examples and demo apps
Unified Conversation: Cross-channel identity management and conversation continuity across all 35+ touchpoints
WhatsApp BSP Status: Official Business Solution Provider credentials for enhanced WhatsApp Business API features
Voice Analytics: IVR and telephony performance tracking with call quality metrics
After analyzing features, pricing, performance, and user feedback, both Guru and Yellow.ai are capable platforms that serve different market segments and use cases effectively.
When to Choose Guru
You value permission-aware ai is unique differentiator - answers respect real-time access control
Enterprise-grade security: SOC 2, GDPR, zero LLM data retention, private models
Verified knowledge base with expert verification workflows ensures accuracy
Best For: Permission-aware AI is unique differentiator - answers respect real-time access control
When to Choose Yellow.ai
You value genuinely comprehensive 35+ channel coverage: whatsapp bsp, messenger, instagram, telegram, slack, teams, voice, sms
Switching between Guru and Yellow.ai requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
Guru starts at $25/month, while Yellow.ai begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between Guru and Yellow.ai comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 11, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...