Langchain vs Stonly

Make an informed decision with our comprehensive comparison. Discover which RAG solution perfectly fits your needs.

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT.ai

Fact checked and reviewed by Bill Cava

Published: 01.04.2025Updated: 25.04.2025

In this comprehensive guide, we compare Langchain and Stonly across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.

Overview

When choosing between Langchain and Stonly, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.

Quick Decision Guide

  • Choose Langchain if: you value most popular llm framework (72m+ downloads/month)
  • Choose Stonly if: you value exceptional ease of use - 4.8/5 g2 rating with intuitive visual editor praised in 32 reviews

About Langchain

Langchain Landing Page Screenshot

Langchain is the most popular open-source framework for building llm applications. LangChain is a comprehensive AI development framework that simplifies building applications with LLMs through modular components, chains, and agent orchestration, offering both open-source tools and commercial platforms. Founded in 2022, headquartered in San Francisco, CA, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
87/100
Starting Price
Custom

About Stonly

Stonly Landing Page Screenshot

Stonly is interactive knowledge base platform with enterprise ai-powered answers. Stonly is a customer support knowledge management platform with embedded AI capabilities focused on interactive step-by-step guides and help desk agent assistance. Its AI Answers feature (Enterprise-only add-on) achieves 71% self-serve success rates, but it's fundamentally a knowledge base platform with AI features—not a pure RAG-as-a-Service solution. Founded in 2017, headquartered in San Francisco, CA, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
96/100
Starting Price
$249/mo

Key Differences at a Glance

In terms of user ratings, Stonly in overall satisfaction. From a cost perspective, Langchain starts at a lower price point. The platforms also differ in their primary focus: AI Framework versus Knowledge Management. These differences make each platform better suited for specific use cases and organizational requirements.

⚠️ What This Comparison Covers

We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.

Detailed Feature Comparison

logo of langchain
Langchain
logo of stonly
Stonly
logo of customGPT logo
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
  • Takes a code-first approach: plug in document-loader modules for just about any file type—from PDFs with PyPDF to CSV, JSON, or HTML via Unstructured.
  • Lets developers craft custom ingestion and indexing pipelines, so niche or proprietary data sources are no problem.
  • PDF uploads confirmed
  • Public website crawling: Pages not requiring authentication
  • Zendesk help center content indexing
  • Proprietary interactive guide format as primary content model
  • Note: No Google Drive, Dropbox, Notion, or SharePoint integrations for data ingestion
  • Note: No YouTube transcript extraction (videos can be embedded but not processed)
  • Note: No direct Word document (.docx) or HTML file imports confirmed
  • Note: No automatic content syncing from external sources - updates are manual through Stonly's visual editor
  • Content limits by tier: Basic (5 guides, 400 views/mo), Small Business (unlimited guides, 4K views/mo), Enterprise (custom)
  • Content versioning: Side-by-side comparison and instant restore on Business and Enterprise plans
  • Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
  • Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
  • Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text. View Transcription Guide
  • Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier. See Zapier Connectors
  • Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
  • Ships without a built-in web UI, so you’ll build your own front-end or pair it with something like Streamlit or React.
  • Includes libraries and examples for Slack (and other platforms), but you’ll handle the coding and config yourself.
  • Deep help desk integrations: Zendesk, Salesforce Service Cloud, Freshdesk, ServiceNow
  • Zendesk features: Update tickets from guides, preserve guide progress in tickets, launch Zendesk Chat from widget
  • Zapier integration: Webhook triggers for form submissions and guide completions
  • Analytics integrations: Segment, Google Analytics
  • Embedding options: JavaScript widget, iframe, API deployment
  • Note: No native Slack, WhatsApp, Telegram, or Microsoft Teams integrations (confirmed by multiple user reviews)
  • Note: No omnichannel messaging support
  • Website embedding: All plans support JS widget and iframe embedding
  • Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
  • Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more. Explore API Integrations
  • Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
  • Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
  • Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc. Read more here.
  • Supports OpenAI API Endpoint compatibility. Read more here.
Core Chatbot Features
  • Provides retrieval-augmented QA chains that blend LLM answers with data fetched from vector stores.
  • Supports multi-turn dialogue through configurable memory modules; you’ll add source citations manually if you need them.
  • Lets you build agents that call external APIs or tools for more advanced reasoning.
  • Interactive step-by-step guides: Visual flow builder for creating structured content paths
  • Decision trees and branching logic: Guide users through complex troubleshooting with intelligent path selection
  • Checklists and task management: Help users complete multi-step processes with progress tracking
  • Contact forms and lead capture: Integrated forms for collecting customer information during interactions
  • Content versioning: Side-by-side comparison and instant restore on Business and Enterprise plans for content management
  • Multi-language support: Auto-translation on Enterprise plan for global deployments
  • Knowledge bases: 3 on Small Business plan, unlimited on Enterprise for organizing content
  • Guide views tracking: 400 (Free), 4,000 (Small Business), custom (Enterprise) for monitoring usage
  • NPS surveys: Available on all plans for measuring customer satisfaction
  • CSAT and CES surveys: Enterprise only for comprehensive satisfaction and effort measurement
  • Reduces hallucinations by grounding replies in your data and adding source citations for transparency. Benchmark Details
  • Handles multi-turn, context-aware chats with persistent history and solid conversation management.
  • Speaks 90+ languages, making global rollouts straightforward.
  • Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Customization & Branding
  • Gives you the framework to design any UI you want, but offers no out-of-the-box white-label or branding features.
  • Total freedom to match corporate branding—just expect extra lift to build or integrate your own interface.
  • Visual editor: Intuitive no-code interface for creating guides, decision trees, checklists, forms
  • CSS customization: Available on all paid plans
  • White-labeling: Enterprise plan only - complete branding removal
  • Pre-built templates: Common support scenarios covered
  • Role-based access control: Advanced permissions on Enterprise plan
  • Learning curve: Described as "small" - users can create guides in under 30 minutes
  • Note: No formal content approval workflows documented
  • Note: Cannot edit guides on mobile devices
  • Note: Angular framework compatibility issues reported - "Stonly onboarding will work randomly" with dynamic code
  • Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand. White-label Options
  • Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
  • Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
  • Uses domain allowlisting to ensure the chatbot appears only on approved sites.
L L M Model Options
  • Is completely model-agnostic—swap between OpenAI, Anthropic, Cohere, Hugging Face, and more through the same interface.
  • Easily adjust parameters and pick your embeddings or vector DB (FAISS, Pinecone, Weaviate) in just a few lines of code.
  • Note: Undisclosed proprietary LLM - Stonly does not disclose the specific model powering AI Answers
  • Note: No model selection - users cannot choose between GPT-3.5, GPT-4, Claude, or other models
  • Note: No temperature controls, fine-tuning, or model routing
  • AI Profiles: Up to 20 per team for tone and behavior customization
  • Custom Instructions: Up to 100 per team defining boundaries and style
  • Guided AI Answers: Define specific questions that trigger predetermined answers, bypassing AI generation for sensitive scenarios
  • Automatic fallback: When AI confidence is low, system falls back to ML-powered search rather than forcing an answer
  • Knowledge-grounded approach: AI responses anchored in Stonly guides, external websites, and selected PDFs to reduce hallucinations
  • Taps into top models—OpenAI’s GPT-4, GPT-3.5 Turbo, and even Anthropic’s Claude for enterprise needs.
  • Automatically balances cost and performance by picking the right model for each request. Model Selection Details
  • Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
  • Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Developer Experience ( A P I & S D Ks)
  • Comes as a Python or JavaScript library you import directly—there’s no hosted REST API by default.
  • Extensive docs, tutorials, and a huge community smooth the learning curve—but you do need programming skills. Reference
  • REST API: Supports user provisioning, content management, widget control
  • Mobile SDKs (Enterprise only): iOS, Android, React Native, Flutter
  • Note: No Python SDK or server-side Node.js SDK
  • Note: No GraphQL API or OpenAPI/Swagger specification
  • Note: Rate limits not publicly documented
  • Note: No API Explorer, sandbox environment, or Postman collections
  • Note: REST API versioning strategy unclear
  • Widget API: Programmatic control including opening specific content, listening for events, user identification
  • CSP whitelisting: Instructions documented for Content Security Policy compliance
  • Widget versioning documented
  • Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat. API Documentation
  • Offers open-source SDKs—like the Python customgpt-client—plus Postman collections to speed integration. Open-Source SDK
  • Backs you up with cookbooks, code samples, and step-by-step guides for every skill level.
Performance & Accuracy
  • Accuracy hinges on your chosen LLM and prompt engineering—tune them well for top performance.
  • Response speed depends on the model and infra you choose; any extra optimization is up to your deployment.
  • 71% self-serve success rate with AI Answers feature (company data)
  • 70-76% support ticket reduction documented in case studies
  • 99.9% uptime claimed but no published SLA details or response time data
  • Note: No published latency metrics or performance benchmarks
  • Note: No real-time analytics - Flow reports update every 15 minutes
  • Hallucination controls: Strong grounding in structured content reduces off-topic responses
  • Widget lazy loading: Minimizes impact on host website performance
  • Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
  • Independent tests rate median answer accuracy at 5/5—outpacing many alternatives. Benchmark Results
  • Always cites sources so users can verify facts on the spot.
  • Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
Customization & Flexibility ( Behavior & Knowledge)
  • Gives you full control over prompts, retrieval settings, and integration logic—mix and match data sources on the fly.
  • Makes it possible to add custom behavioral rules and decision logic for highly tailored agents.
  • CSS and HTML customization: Change layout and look of knowledge base with custom code capabilities
  • Intuitive customization tools: Easy-to-use tools that don't require code for basic customization
  • Layout customization: Decide how content is structured and presented with flexible options
  • Design controls: Manage visual components like colors, logo, or cover image for brand alignment
  • Personalized content: Use customer data to show personalized content from knowledge base for targeted experiences
  • Data-driven personalization: Customers see what they need right away when first accessing knowledge base
  • Analytics insights: Guide usage analytics provide insight into customer behavior for continuous improvement
  • Highly flexible platform: Users appreciate ability to use Stonly for knowledge bases and guided tours with target properties based on specific user needs
  • Rich media support: Add images, GIFs, videos, and annotations to bring knowledge base content to life
  • Third-party scripts: Install scripts from other tools like Google Analytics for extended functionality
  • Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
  • Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus. Learn How to Update Sources
  • Supports multiple agents per account, so different teams can have their own bots.
  • Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Pricing & Scalability
  • LangChain itself is open-source and free; costs come from the LLM APIs and infrastructure you run underneath.
  • Scaling is DIY: you manage hosting, vector-DB growth, and cost optimization—potentially very efficient once tuned.
  • Basic (Free): 5 guides, 400 views/month, 1 seat, single language
  • Small Business ($249/mo, $199/mo annual): Unlimited guides, 4,000 views/month, 5 seats, 3 knowledge bases, CSS customization, Zapier, NPS surveys
  • Enterprise (Custom, ~$39K/year avg): Custom views, unlimited seats, AI Answers add-on, Mobile SDKs, SAML SSO, white-label, auto-translation, CSAT/CES surveys
  • Overage pricing escalates quickly: +15K views = $200/month, +30K views = $400/month
  • Automatic tier upgrades: Exceeding limits for 2 consecutive months triggers upgrade
  • Note: AI Answers, Mobile SDK, SAML SSO, white-labeling all Enterprise-gated
  • Average enterprise contract: ~$39,000 annually according to Vendr procurement data
  • Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
  • Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates. View Pricing
  • Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
  • Security is fully in your hands—deploy on-prem or in your own cloud to meet whatever compliance rules you have.
  • No built-in security stack; you’ll add encryption, authentication, and compliance tooling yourself.
  • Yes SOC 2 Type 2
  • Yes GDPR compliant
  • Yes HIPAA compliant
  • Yes ISO 27001
  • Yes PCI compliant
  • Yes CSA Star Level 1
  • Trust Center: trust.stonly.com with security documentation, subprocessor lists, controls information
  • SAML 2.0 SSO: Enterprise plan
  • IP allowlisting: Enterprise plan
  • Advanced RBAC: Enterprise plan
  • Two-factor authentication: SMS, email, hardware tokens, TOTP, U2F
  • Note: Data residency options not documented
  • Note: No explicit documentation on customer data usage for AI model training
  • International data transfers: Standard Contractual Clauses for EU compliance
  • Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
  • Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private. Security Certifications
  • Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Observability & Monitoring
  • You’ll wire up observability in your app—LangChain doesn’t include a native analytics dashboard.
  • Tools like LangSmith give deep debugging and monitoring for tracing agent steps and LLM outputs. Reference
  • Insights Dashboard: Guide views, unique visitors, bounce rates, step-by-step progression, drop-off analysis
  • NPS surveys: All plans
  • CSAT and CES surveys: Enterprise only
  • Flow reports: Update every 15 minutes (not real-time)
  • Data export: Integration with Segment, Zapier, Google Analytics
  • Note: No real-time visitor tracking
  • Note: No predictive analytics
  • Note: Basic compared to dedicated product analytics tools
  • Note: No heatmaps or A/B testing capabilities
  • Agent performance tracking: Relies on external help desk platform integration rather than native dashboards
  • Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
  • Lets you export logs and metrics via API to plug into third-party monitoring or BI tools. Analytics API
  • Provides detailed insights for troubleshooting and ongoing optimization.
Support & Ecosystem
  • Backed by an active open-source community—docs, GitHub discussions, Discord, and Stack Overflow are all busy.
  • A wealth of community projects, plugins, and tutorials helps you find solutions fast. Reference
  • 4.8/5 G2 rating (132 reviews)
  • Ease of use praised in 32 G2 reviews
  • Help Center documentation
  • Email and chat support
  • Dedicated support: Enterprise plan
  • Learning resources: Pre-built templates, tutorials
  • Quick onboarding: Users report creating guides in under 30 minutes
  • Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast. Developer Docs
  • Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs. Enterprise Solutions
  • Benefits from an active user community plus integrations through Zapier and GitHub resources.
Additional Considerations
  • Total freedom to pick and swap models, embeddings, and vector stores—great for fast-evolving solutions.
  • Can power innovative, multi-step, tool-using agents, but reaching enterprise-grade polish takes serious engineering time.
  • Limited UI customization: Limited ability to customize user interface and workflows to match specific brand requirements is primary user concern
  • Basic collaboration tools: Without real-time editing or advanced team management features can hinder team productivity when multiple people need to work together
  • No offline access: Guides unavailable without internet connectivity reducing usability in areas with unreliable internet
  • Performance degradation: Can degrade with very large or complex guides causing slower responsiveness indicating scalability concerns
  • Restricted language options: Limit efficient creation of multilingual content which may be barrier for global organizations
  • Mixed media support missing: Users find missing features wishing for mixed media support and enhanced reporting tools
  • Step ordering difficulties: Users report limitations in feature usability and difficulties with step ordering though support offers helpful workarounds
  • Requires coding knowledge: Unlike most competitors, doesn't advertise as no-code platform - need coding knowledge to track events, target users, stream data, and style content
  • Image workflow limitations: Inability to use images in base offering limits utility in some workflows with some advanced features requiring extra costs
  • View-based pricing: Charges additional fees based on guide views - customers exceeding 4,000 guide views/month pay extra $250-500 monthly depending on volume
  • Integration reliability: Users find lack of integrations limits ability to fully connect Stonly with other tools - Stonly/Zendesk integration isn't as reliable as desired (stops working every few weeks)
  • Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
  • Gets you to value quickly: launch a functional AI assistant in minutes.
  • Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
  • Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No- Code Interface & Usability
  • Offers no native no-code interface—the framework is aimed squarely at developers.
  • Low-code wrappers (Streamlit, Gradio) exist in the community, but a full end-to-end UX still means custom development.
  • 4.8/5 ease of use rating on G2
  • "Ease of use" mentioned 32 times in G2 reviews
  • Visual drag-and-drop editor requires no coding
  • Small learning curve - non-technical teams productive quickly
  • Guide creation in under 30 minutes reported by users
  • Pre-built templates for common scenarios
  • Intuitive interface for support teams
  • Note: Some navigation confusion reported in admin interface
  • Note: Cannot edit on mobile devices
  • Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
  • Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing. User Experience Review
  • Uses role-based access so business users and devs can collaborate smoothly.
Competitive Positioning
  • Market position: Leading open-source framework for building LLM applications with the largest community building the future of LLM apps, plus enterprise offering (LangSmith) for observability and production deployment
  • Target customers: Developers and ML engineers building custom LLM applications, startups wanting maximum flexibility without vendor lock-in, and enterprises needing full control over LLM orchestration logic with model-agnostic architecture
  • Key competitors: Haystack/Deepset, LlamaIndex, OpenAI Assistants API, and custom-built solutions using direct LLM APIs
  • Competitive advantages: Open-source and free with no vendor lock-in, completely model-agnostic (OpenAI, Anthropic, Cohere, Hugging Face, etc.), largest LLM developer community with extensive tutorials and plugins, future portability enabling easy migration between providers, LangSmith for turnkey observability and debugging, and modular architecture enabling custom workflows with chains and agents
  • Pricing advantage: Framework is open-source and free; costs come only from chosen LLM APIs and infrastructure; LangSmith has separate pricing for observability/monitoring; best value for teams with development resources who want to minimize SaaS subscription costs and retain full control
  • Use case fit: Perfect for developers building highly customized LLM applications requiring specific workflows, teams wanting to avoid vendor lock-in with model-agnostic architecture, and organizations needing multi-step reasoning agents with tool use and external API calls that can't be achieved with turnkey platforms
  • Unique strength: Interactive guide format for structured support content
  • vs CustomGPT: Not comparable - different product categories (knowledge base vs RAG-as-a-Service)
  • vs Zendesk: Lighter-weight alternative focused on self-service guides vs full customer service platform
  • vs traditional chatbots: Interactive guides provide structured paths vs free-form conversation
  • Target audience: Support teams using Zendesk/Salesforce, not developers building RAG applications
  • 70-76% ticket reduction documented in case studies
  • 71% self-serve success rate with AI Answers
  • Enterprise compliance suitable for regulated industries
  • Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
  • Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
  • Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
  • Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
  • Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
  • Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
  • Completely Model-Agnostic: Swap between any LLM provider through unified interface - no vendor lock-in or migration friction
  • OpenAI Integration: GPT-4, GPT-4 Turbo, GPT-3.5 Turbo, o1, o3 with full parameter control (temperature, max tokens, top-p)
  • Anthropic Claude: Claude 3 Opus, Claude 3.5 Sonnet, Claude 3 Haiku with extended context window support (200K tokens)
  • Google Gemini: Gemini Pro, Gemini Ultra, PaLM 2 for multimodal capabilities and cost-effective processing
  • Cohere: Command, Command-Light, Command-R for specialized enterprise use cases and retrieval-focused applications
  • Hugging Face Models: 100,000+ open-source models including Llama 2, Mistral, Falcon, BLOOM, T5 with local deployment options
  • Azure OpenAI: Enterprise-grade OpenAI models with Microsoft compliance, data residency, and dedicated capacity
  • AWS Bedrock: Claude, Llama, Jurassic, Titan models via AWS infrastructure with regional deployment
  • Self-Hosted Models: Run Llama.cpp, GPT4All, Ollama locally for complete data privacy and cost control
  • Custom Fine-Tuned Models: Integrate organization-specific fine-tuned models through adapter interfaces
  • Embedding Model Flexibility: OpenAI embeddings, Cohere embeddings, Hugging Face sentence transformers, custom embeddings
  • Model Switching: Change providers with minimal code changes - swap LLM configuration in single parameter
  • Multi-Model Pipelines: Use different models for different tasks (GPT-4 for reasoning, GPT-3.5 for simple queries) in same application
  • Future-Proof Architecture: New models integrate immediately through community contributions - no waiting for platform support
  • Undisclosed Proprietary LLM: Stonly does not publicly disclose the specific model powering AI Answers feature
  • No Model Selection: Users cannot choose between GPT-3.5, GPT-4, Claude, Gemini, or other LLM providers
  • No Temperature Controls: No user-facing controls for adjusting response creativity, randomness, or formatting
  • No Fine-Tuning or Model Routing: Cannot customize model behavior beyond predefined AI Profiles and Custom Instructions
  • AI Profiles (Up to 20): Define tone, boundaries, and behavior for different use cases or audiences
  • Custom Instructions (Up to 100): Set specific rules and style guidelines for AI response generation
  • Guided AI Answers: Predefined responses for specific questions bypassing AI generation for sensitive scenarios
  • Automatic Fallback: Low-confidence scenarios trigger fallback to ML-powered search rather than forcing unreliable AI answer
  • Knowledge-Grounded Approach: AI responses anchored in Stonly guides, external websites, and PDFs to reduce hallucinations
  • Primary models: GPT-4, GPT-3.5 Turbo from OpenAI, and Anthropic's Claude for enterprise needs
  • Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request Model Selection Details
  • Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
  • Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
  • Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
  • RAG Framework Foundation: Purpose-built for retrieval-augmented generation with modular document loaders, text splitters, vector stores, retrievers, and chains
  • Document Loaders: 100+ loaders for PDF (PyPDF, PDFPlumber, Unstructured), CSV, JSON, HTML, Markdown, Word, PowerPoint, Excel, Notion, Confluence, GitHub, arXiv, Wikipedia
  • Text Splitters: Character-based, recursive character, token-based, semantic splitters with configurable chunk size (default 1000 chars) and overlap (default 200 chars)
  • Vector Database Support: Pinecone, Chroma, Weaviate, Qdrant, FAISS, Milvus, PGVector, Elasticsearch, OpenSearch with unified retriever interface
  • Embedding Models: OpenAI embeddings (text-embedding-3-small/large), Cohere, Hugging Face sentence transformers, custom embeddings with full parameter control
  • Retrieval Strategies: Similarity search (vector), MMR (Maximum Marginal Relevance) for diversity, similarity score threshold, ensemble retrieval combining multiple sources
  • Reranking: Cohere Rerank API, cross-encoder models, LLM-based reranking for improved relevance after initial retrieval
  • Context Window Management: Automatic chunking, context compression, stuff documents chain, map-reduce chain, refine chain for long document processing
  • Advanced RAG Patterns: Self-querying retrieval (metadata filtering), parent document retrieval (full context), multi-query retrieval (question variations), contextual compression
  • Hybrid Search: Combine vector similarity with keyword search (BM25) through Elasticsearch or custom retrievers
  • RAG Evaluation: Integration with LangSmith for retrieval precision/recall, answer relevance, faithfulness metrics, human-in-the-loop evaluation
  • Custom Retrieval Pipelines: Build specialized retrievers for niche data formats or proprietary systems - complete flexibility
  • Multi-Vector Stores: Query multiple knowledge bases simultaneously with ensemble retrieval and weighted ranking
  • Developer Control: Full transparency and configurability of RAG pipeline vs black-box implementations - tune every parameter
  • AI Answers (Enterprise Add-On): Generative AI responses grounded in Stonly guides, external websites, and selected PDFs
  • Knowledge-Grounding: Responses anchored to structured content (interactive guides, decision trees, checklists) reducing hallucinations vs generic chatbots
  • Confidence-Based Fallback: Automatic switch to ML-powered search when AI confidence is low preventing unreliable answers
  • Multi-Source Ingestion: PDF uploads, public website crawling, Zendesk help center content indexing
  • Interactive Guide Format: Proprietary content model combining structured workflows with AI-generated answers
  • Limited Data Sources: No Google Drive, Dropbox, Notion, SharePoint, or YouTube transcript extraction
  • Manual Content Updates: Updates through Stonly's visual editor—no automatic syncing from external sources
  • 71% Self-Serve Success Rate: Documented effectiveness of AI Answers in reducing support escalations
  • Hallucination Controls: Strong grounding in structured content vs open-ended conversational AI
  • Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks RAG Performance
  • Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content Benchmark Details
  • Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
  • Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
  • Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
  • Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
  • Source verification: Always cites sources so users can verify facts on the spot
Use Cases
  • Primary Use Case: Developers and ML engineers building production-grade LLM applications requiring custom workflows and complete control
  • Custom RAG Applications: Enterprise knowledge bases, semantic search engines, document Q&A systems, research assistants with proprietary data integration
  • Multi-Step Reasoning Agents: Customer support automation with tool use, data analysis agents with code execution, research agents with web search and synthesis
  • Chatbots & Conversational AI: Context-aware dialogue systems, multi-turn conversations with memory, personalized assistants with user history
  • Content Generation: Blog writing, marketing copy, product descriptions, documentation generation with brand voice customization
  • Data Processing: Structured data extraction from unstructured text, document classification, entity recognition, sentiment analysis at scale
  • Code Assistance: Code generation, debugging, documentation generation, code review automation with repository context
  • Financial Services: Regulatory document analysis, earnings call summarization, risk assessment, compliance monitoring with secure on-premise deployment
  • Healthcare: Medical literature search, clinical decision support, patient record summarization with HIPAA-compliant infrastructure
  • Legal Tech: Contract analysis, legal research, case law search, document discovery with privileged data protection
  • E-commerce: Product recommendations, customer support automation, review analysis, inventory management with custom business logic
  • Education: Personalized tutoring, course content generation, assignment grading, learning path recommendations
  • Team Sizes: Individual developers to enterprise teams (1-500+ engineers) - scales with organizational complexity
  • Industries: Technology, finance, healthcare, legal, retail, education, media - any industry requiring custom LLM integration
  • Implementation Timeline: Basic prototype: hours to days, production application: weeks to months depending on complexity and team experience
  • NOT Ideal For: Non-technical users needing no-code interfaces, teams wanting fully managed solutions without development, organizations without in-house engineering resources, rapid prototyping without coding
  • Customer Support Ticket Deflection: 70-76% ticket reduction through interactive self-service guides and AI Answers
  • Help Desk Integration: Deep Zendesk, Salesforce Service Cloud, Freshdesk, ServiceNow integration for unified support workflows
  • Interactive Onboarding: Step-by-step guides, decision trees, and checklists for product onboarding and user education
  • Knowledge Base Enhancement: Augment traditional help centers with interactive guides and AI-powered search
  • Agent Assistance: Provide support agents with guided workflows and AI answers during live interactions
  • Multi-Language Support: Auto-translation on Enterprise plan for global support teams and multilingual customers
  • Complex Troubleshooting: Decision tree logic guides users through multi-step troubleshooting processes
  • Compliance & Training: Structured guides ensuring consistent information delivery for regulated industries
  • Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
  • Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
  • Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
  • Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
  • Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
  • Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
  • Financial services: Product guides, compliance documentation, customer education with GDPR compliance
  • E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
  • SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
  • Security Model: Framework is open-source library - security responsibility lies with deployment infrastructure and LLM provider selection
  • On-Premise Deployment: Deploy entirely within your own infrastructure (VPC, on-prem data centers) for maximum data sovereignty and air-gapped environments
  • Self-Hosted Models: Run Llama 2, Mistral, Falcon locally via Ollama/GPT4All - data never leaves your network for ultimate privacy
  • Data Privacy: No data sent to LangChain company unless using LangSmith - framework processes locally with chosen LLM provider
  • Encryption: Implement custom encryption at rest (AES-256 for databases) and in transit (TLS for API calls) based on deployment requirements
  • Authentication & Authorization: Build custom RBAC (Role-Based Access Control), integrate with existing IAM systems, SSO via SAML/OAuth
  • Audit Logging: Implement comprehensive logging of LLM calls, user queries, data access with custom retention policies
  • Secrets Management: Integration with AWS Secrets Manager, Azure Key Vault, HashiCorp Vault instead of hardcoded API keys
  • Compliance Framework Agnostic: Achieve SOC 2, ISO 27001, HIPAA, GDPR, CCPA compliance through proper deployment architecture - not platform-enforced
  • GDPR Compliance: Data minimization through ephemeral processing, right to deletion via custom data handling, consent management in application layer
  • HIPAA Compliance: Use Azure OpenAI or AWS Bedrock with BAAs, implement PHI anonymization, audit trails, encryption for healthcare applications
  • PII Management: Anonymize/pseudonymize PII before LLM processing - avoid storing sensitive data in vector databases or memory
  • Input Validation: Sanitize user inputs to prevent injection attacks, validate LLM outputs before execution, implement rate limiting
  • Security Best Practices: Principle of least privilege for API access, sandboxing for code execution agents, prompt filtering for manipulation detection
  • Vendor Risk Management: Choose LLM providers based on security posture - Azure OpenAI (enterprise SLAs), AWS Bedrock (AWS security), self-hosted (no vendor risk)
  • CRITICAL - DIY Security: No built-in security stack - teams must implement encryption, authentication, compliance tooling themselves vs managed platforms
  • SOC 2 Type 2: Service Organization Control certification for security, availability, and confidentiality
  • GDPR Compliant: European data protection regulation compliance with data processing agreements
  • HIPAA Compliant: Healthcare data protection requirements for medical organizations and patient information
  • ISO 27001: International information security management system standard
  • PCI Compliant: Payment Card Industry Data Security Standard for handling payment information
  • CSA Star Level 1: Cloud Security Alliance STAR self-assessment certification
  • Trust Center: Public trust.stonly.com with security documentation, subprocessor lists, and controls information
  • SAML 2.0 SSO (Enterprise): Single sign-on integration with enterprise identity providers
  • IP Allowlisting (Enterprise): Restrict access to specific IP ranges for enhanced security
  • Advanced RBAC (Enterprise): Role-based access control with granular permissions and activity tracking
  • Two-Factor Authentication: SMS, email, hardware tokens, TOTP, U2F for account security
  • International Data Transfers: Standard Contractual Clauses for EU compliance and data protection
  • Data Residency: Options not publicly documented—may limit deployment in certain jurisdictions
  • Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
  • SOC 2 Type II certification: Industry-leading security standards with regular third-party audits Security Certifications
  • GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
  • Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
  • Data isolation: Customer data stays isolated and private - platform never trains on user data
  • Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
  • Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
  • Framework - FREE (Open Source): LangChain library is completely free under MIT license - no usage limits, no subscription fees, unlimited commercial use
  • LangSmith Developer - FREE: 1 seat, 5,000 traces/month included, 14-day trace retention, community Discord support for development and testing
  • LangSmith Plus - $39/seat/month: Up to 10 seats, 10,000 traces/month included, email support, security controls, annotation queues for team collaboration
  • LangSmith Enterprise - Custom Pricing: Unlimited seats, custom trace volumes, flexible deployment (cloud/hybrid/self-hosted), white-glove support, Slack channel, dedicated CSM, monthly check-ins, architecture guidance
  • Trace Pricing: Base traces: $0.50/1K traces (14-day retention), Extended traces: $5.00/1K traces (400-day retention) for long-term analysis
  • LLM API Costs: OpenAI GPT-4: ~$0.03/1K tokens, GPT-3.5: ~$0.002/1K tokens, Claude: $0.015/1K tokens, Gemini: varies - costs from chosen provider
  • Infrastructure Costs: Vector database (Pinecone: $70/month starter, Chroma: self-hosted free, Weaviate: usage-based), hosting (AWS/GCP/Azure: variable by scale)
  • Total Cost of Ownership: Framework free + LLM API costs + infrastructure + developer time - highly variable based on usage and architecture
  • Cost Optimization Strategies: Use smaller models (GPT-3.5 vs GPT-4), implement caching, prompt compression, batch processing, self-hosted models for privacy-insensitive tasks
  • No Vendor Lock-In Savings: Switch between LLM providers freely - negotiate better API pricing, avoid sudden price increases from single vendor
  • Developer Time Investment: Initial setup: 1-4 weeks, ongoing maintenance: 10-20% of dev time for complex applications
  • ROI Calculation: Best value for teams with in-house developers wanting to minimize SaaS subscriptions and retain full control vs managed platforms ($500-5,000/month)
  • Hidden Costs: Developer salaries, learning curve, infrastructure management, monitoring/debugging tools, ongoing maintenance - factor into total budget
  • Pricing Transparency: Framework is free forever (MIT license), LangSmith pricing publicly documented, LLM costs from providers, infrastructure costs predictable
  • Basic (Free): 5 guides, 400 views/month, 1 seat, single language, Stonly branding
  • Small Business ($249/mo or $199/mo annual): Unlimited guides, 4,000 views/month, 5 seats, 3 knowledge bases, CSS customization, Zapier, NPS surveys
  • Enterprise (Custom, ~$39K/year avg): Custom views, unlimited seats, white-label, SAML SSO, auto-translation, CSAT/CES surveys, Mobile SDKs
  • AI Answers (Enterprise Add-On): Available only as paid add-on to Enterprise plan—not included in Small Business tier
  • Overage Pricing: +15K views = $200/month, +30K views = $400/month (escalates quickly)
  • Automatic Tier Upgrades: Exceeding limits for 2 consecutive months triggers automatic upgrade and billing adjustment
  • Enterprise-Gated Features: AI Answers, Mobile SDKs, SAML SSO, white-labeling all require Enterprise plan
  • Average Enterprise Contract: ~$39,000 annually according to Vendr procurement data
  • Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security View Pricing
  • Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
  • Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs Enterprise Solutions
  • 7-Day Free Trial: Full access to Standard features without charges - available to all users
  • Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
  • Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
  • Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
  • Documentation Quality: Extensive official docs at python.langchain.com and js.langchain.com with tutorials, API reference, conceptual guides, integration examples
  • Getting Started Tutorials: Step-by-step guides for RAG, agents, chatbots, summarization, extraction covering 80% of common use cases
  • API Reference: Complete API documentation for every class, method, parameter with type signatures and usage examples
  • Conceptual Guides: Deep dives into chains, agents, memory, retrievers, callbacks explaining architectural patterns and best practices
  • Community Support: Active Discord server (50,000+ members), GitHub Discussions (7,000+ threads), Stack Overflow (3,000+ questions) for peer support
  • GitHub Repository: 100,000+ stars, 500+ contributors, weekly releases, public roadmap, transparent issue tracking for open development
  • Community Plugins: 700+ integrations contributed by community - vast ecosystem of tools, vector stores, LLMs, utilities
  • Video Tutorials: Official YouTube channel, community content creators, conference talks, webinars for visual learning
  • LangSmith Support: Developer (community Discord), Plus (email support), Enterprise (white-glove: Slack channel, dedicated CSM, architecture guidance)
  • Response Times: Community: variable (hours to days), Plus: 24-48 hours email, Enterprise: <4 hours critical, <24 hours non-critical
  • Professional Services: Architecture consultation, implementation guidance, custom integrations available through Enterprise plan
  • Blog & Changelog: Regular feature updates, use case examples, best practices published on blog.langchain.dev with transparent changelog
  • Documentation Criticism: Critics note documentation "confusing and lacking key details", "too simplistic examples", "missing real-world use cases" - mixed quality reviews
  • Rapid Changes: Frequent breaking changes in 2023-2024 as framework matured - documentation sometimes lagged behind code updates
  • Community Strengths: Largest LLM developer community means extensive peer support, Stack Overflow answers, third-party tutorials compensate for doc gaps
  • 4.8/5 G2 Rating: 132 reviews with consistently high satisfaction scores
  • Ease of Use Praised: "Ease of use" mentioned 32 times in G2 reviews indicating intuitive platform
  • Help Center Documentation: Comprehensive guides and tutorials for platform features
  • Email and Chat Support: Standard support channels for all paid plans
  • Dedicated Support (Enterprise): Priority support with dedicated account team and faster response times
  • Pre-Built Templates: Common support scenario templates accelerating guide creation
  • Quick Onboarding: Users report creating guides in under 30 minutes with small learning curve
  • REST API Documentation: API reference for user provisioning, content management, and widget control
  • Mobile SDKs (Enterprise): iOS, Android, React Native, Flutter for native app integration
  • Limited Developer Resources: No Python/Node.js SDKs, GraphQL, OpenAPI specs, or API Explorer/sandbox
  • Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding Developer Docs
  • Email and in-app support: Quick support via email and in-app chat for all users
  • Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
  • Code samples: Cookbooks, step-by-step guides, and examples for every skill level API Documentation
  • Open-source resources: Python SDK (customgpt-client), Postman collections, GitHub integrations Open-Source SDK
  • Active community: User community plus 5,000+ app integrations through Zapier ecosystem
  • Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
  • Requires Programming Skills: Python or JavaScript/TypeScript knowledge mandatory - no no-code interface or visual builders available
  • Excessive Abstraction: Critics cite "too many layers", "difficult to understand underlying code", "hard to modify low-level behavior" when customization needed
  • Dependency Bloat: Framework pulls in many extra libraries (100+ dependencies) - even basic features require excessive packages vs lightweight alternatives
  • Poor Documentation Quality: "Confusing and lacking key details", "omits default parameters", "too simplistic examples" according to developer reviews
  • API Instability: Frequent breaking changes throughout 2023-2024 as framework evolved - migration friction for production applications
  • Inflexibility for Complex Architectures: Abstractions "too inflexible" for advanced agent architectures like agents spawning sub-agents - forces design downgrades
  • Memory and Scalability Issues: Heavy reliance on in-memory operations creates bottlenecks for large volumes - not optimized for enterprise scale
  • Sequential Processing Latency: Chaining multiple operations introduces latency - no built-in parallelization for independent steps
  • Limited Big Data Integration: No native Apache Hadoop, Apache Spark support - requires custom loaders for big data environments
  • No Standard Data Types: Lacks common data format for LLM inputs/outputs - hinders integration with other libraries and frameworks
  • Learning Curve: Despite being "developer-friendly", extensive features and integrations overwhelming for beginners - weeks to months to master
  • No Observability by Default: Requires LangSmith integration ($39+/month) for debugging, monitoring, tracing - not included in free framework
  • Reliability Concerns: Users found framework "unreliable and difficult to fix" due to complex structure - production issues and maintainability risks
  • Framework Fragility: Unexpected production issues as applications become more complex - stability concerns for mission-critical systems
  • DIY Everything: Security, compliance, UI, monitoring, deployment all require custom development - high engineering overhead vs managed platforms
  • NOT Ideal For: Non-technical users, teams without Python/JS expertise, rapid prototyping without coding, organizations preferring managed services, projects needing stable APIs without breaking changes
  • When to Avoid: "When projects move beyond trivial prototypes" per critics who argue it becomes "a liability" due to complexity and productivity drag
  • NOT a RAG-as-a-Service Platform: Fundamentally a knowledge base tool with embedded AI—not a flexible RAG backend
  • AI Answers Enterprise-Gated: Core AI capabilities require expensive Enterprise plan (~$39K/year)—not available on $249/month Small Business tier
  • Undisclosed AI Model: No transparency on LLM provider—users cannot select or customize models
  • Limited Data Source Flexibility: PDF, public web, Zendesk only—missing Google Drive, Dropbox, Notion, SharePoint, YouTube
  • No Automatic Content Syncing: Manual updates through visual editor—no real-time integration with external knowledge sources
  • Missing Consumer Messaging: No Slack, WhatsApp, Telegram, Microsoft Teams native integrations (confirmed by user reviews)
  • No Omnichannel Messaging: Primarily website embedding and help desk integration—limited multi-channel support
  • Cannot Edit on Mobile: Guide creation and editing restricted to desktop—mobile limitation for on-the-go teams
  • Angular Compatibility Issues: Reported "random" behavior with Angular framework dynamic code
  • No Real-Time Analytics: Flow reports update every 15 minutes—not true real-time monitoring
  • Limited Developer API: No Python/Node.js SDKs, GraphQL, Swagger specs, or API sandbox for testing
  • Overage Pricing Escalation: View limits can trigger expensive automatic upgrades after 2 consecutive months
  • Not Ideal For: Developers seeking pure RAG API, multi-tenant SaaS RAG backends, use cases needing model selection/fine-tuning, or flexible data source integration
  • Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
  • Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
  • Model selection: Limited to OpenAI (GPT-4, GPT-3.5) and Anthropic (Claude) - no support for other LLM providers (Cohere, AI21, open-source models)
  • Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
  • Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
  • Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
  • Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
  • Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
  • LangGraph Agentic Framework: Launched early 2024 as low-level, controllable agentic framework - 43% of LangSmith organizations now sending LangGraph traces since March 2024 release
  • Autonomous Decision-Making: Agents use LLMs to decide control flow of applications with spectrum of agentic capabilities - not wide-ranging AutoGPT-style but vertical, narrowly scoped agents
  • Tool Calling: 21.9% of traces now involve tool calls (up from 0.5% in 2023) - models autonomously invoke functions and external resources signaling agentic behavior
  • Multi-Step Workflows: Average steps per trace doubled from 2.8 (2023) to 7.7 (2024) - increasingly complex multi-step workflows becoming standard
  • Parallel Tool Execution: create_tool_calling_agent() works with any tool-calling model providing flexibility across different providers
  • Custom Cognitive Architectures: Highly controllable agents with custom architectures for production use - lessons learned from LangChain incorporated into LangGraph
  • Agent Types: ReAct agents (reasoning + acting), conversational agents with memory, plan-and-execute agents, multi-agent systems with specialized roles
  • External Resource Integration: Agents interact with databases, files, APIs, web search, and other external tools through function calling
  • Production-Ready (2024): Year agents started working in production at scale - narrowly scoped, highly controllable vs purely autonomous experimental agents
  • Top Use Cases: Research and summarization (58%), personal productivity/assistance (53.5%), task automation, data analysis with code execution
  • State Management: Comprehensive conversation memory, context preservation across multi-turn interactions, stateful agent workflows
  • Agent Monitoring: LangSmith provides debugging, monitoring, and tracing for agent decision-making and tool execution flows
  • Conversational AI Bot: Delivers confident answers backed by verified structured knowledge unlike generic LLMs that can hallucinate or invent answers
  • Knowledge-grounded responses: Provides answers backed by verified structured knowledge from guides you create preventing fabricated information
  • AI Agent Assist: Automatically summarizes tickets, suggests right path to resolution, and generates responses for support agents
  • Three core automation functions: Automatically analyzes and summarizes support ticket content, recommends most relevant Stonly guide/knowledge path to resolve issues, drafts complete responses for agents to review/edit/send
  • Process automation: Define processes to be followed and link them to different back-office tools to resolve customer requests before they reach support
  • Personalized knowledge: AI-powered solutions and process automation allow creation of guides, walkthroughs, checklists, knowledge bases adapting to each customer's needs
  • 71% self-serve success rate: With AI Answers feature documented in company data
  • Hallucination reduction: Knowledge-grounding approach vs generic chatbots reduces off-topic responses
  • Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
  • Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
  • Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
  • Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions View Agent Documentation
  • Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
  • Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
  • Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
R A G-as-a- Service Assessment
  • Platform Type: NOT RAG-AS-A-SERVICE - LangChain is an open-source framework/library for building RAG applications, not a managed service
  • Core Focus: Developer framework providing building blocks (chains, agents, retrievers) for custom RAG implementation - complete flexibility and control
  • DIY RAG Architecture: Developers build entire RAG pipeline from scratch - document loading, chunking, embedding, vector storage, retrieval, generation all require coding
  • No Managed Infrastructure: Unlike true RaaS platforms (CustomGPT, Vectara, Nuclia), LangChain provides code libraries not hosted infrastructure
  • Self-Deployment Required: Organizations must deploy, host, and manage all components - vector databases, LLM APIs, application servers all separate
  • Framework vs Platform: Comparison to RAG-as-a-Service platforms invalid - fundamentally different category (SDK/library vs managed platform)
  • LangSmith Exception: Only LangSmith (separate paid product $39+/month) provides managed observability/monitoring - not full RAG service
  • Best Comparison Category: Developer frameworks (LlamaIndex, Haystack) or direct LLM APIs (OpenAI, Anthropic) NOT managed RAG platforms
  • Use Case Fit: Development teams building custom RAG from ground up wanting maximum control vs organizations wanting turnkey RAG deployment
  • Infrastructure Responsibility: Users responsible for vector DB hosting (Pinecone, Weaviate), LLM API costs, scaling, monitoring, security - no managed service abstraction
  • Hosted Alternatives: For managed RAG-as-a-Service, consider CustomGPT, Vectara, Nuclia, or cloud vendor offerings (Azure AI Search, AWS Kendra)
  • Note: NOT a RAG-as-a-Service platform - fundamentally a knowledge base tool with embedded AI
  • Data source flexibility: Limited (PDF, public web, Zendesk only) vs comprehensive RAG platforms
  • LLM model options: None (undisclosed proprietary model, no user selection)
  • API-first architecture: Weak (widget-focused, limited SDKs, no server-side SDKs)
  • Performance benchmarks: Not published
  • Self-service AI pricing: Not available (Enterprise-gated, ~$39K/year)
  • Help desk integration depth: Excellent (best-in-class Zendesk, Salesforce, Freshdesk)
  • Hallucination controls: Strong (grounded in structured content)
  • Best for: Customer support ticket deflection, not flexible RAG backends
  • Not ideal for: Developers seeking pure RAG API, multi-tenant SaaS RAG backends, use cases needing model selection/fine-tuning
  • Platform Type: TRUE RAG-AS-A-SERVICE PLATFORM - all-in-one managed solution combining developer APIs with no-code deployment capabilities
  • Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
  • API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat API Documentation
  • Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
  • No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
  • Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
  • RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses Benchmark Details
  • Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
  • Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
  • Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
  • Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Core Knowledge Base Features
N/A
  • Interactive step-by-step guides with visual flow builder
  • Decision trees and branching logic
  • Checklists and task management
  • Contact forms and lead capture
  • Content versioning: Side-by-side comparison, instant restore
  • Multi-language support: Auto-translation on Enterprise plan
  • Knowledge bases: 3 on Small Business, unlimited on Enterprise
  • Guide views tracking: 400 (Free), 4,000 (Small Business), custom (Enterprise)
  • NPS surveys: All plans
  • CSAT and CES surveys: Enterprise only
N/A
A I Answers Feature ( Enterprise Only)
N/A
  • Note: Available only as paid Enterprise add-on - not included in Small Business plan
  • Generative AI responses grounded in Stonly guides, external websites, and selected PDFs
  • 20 AI Profiles per team: Define tone, boundaries, and behavior
  • 100 Custom Instructions per team: Detailed response rules
  • Guided AI Answers: Predefined responses for specific questions
  • Confidence-based fallback: Automatically switches to ML-powered search when AI confidence is low
  • 71% self-serve success rate achieved with AI Answers
  • Hallucination reduction: Knowledge-grounding approach vs generic chatbots
N/A

Ready to experience the CustomGPT difference?

Start Free Trial →

Final Thoughts

Final Verdict: Langchain vs Stonly

After analyzing features, pricing, performance, and user feedback, both Langchain and Stonly are capable platforms that serve different market segments and use cases effectively.

When to Choose Langchain

  • You value most popular llm framework (72m+ downloads/month)
  • Extensive integration ecosystem (600+)
  • Strong developer community

Best For: Most popular LLM framework (72M+ downloads/month)

When to Choose Stonly

  • You value exceptional ease of use - 4.8/5 g2 rating with intuitive visual editor praised in 32 reviews
  • Deep help desk integrations - bidirectional Zendesk, Salesforce, Freshdesk, ServiceNow connections
  • Strong compliance - SOC 2 Type 2, GDPR, HIPAA, ISO 27001, PCI, CSA Star Level 1

Best For: Exceptional ease of use - 4.8/5 G2 rating with intuitive visual editor praised in 32 reviews

Migration & Switching Considerations

Switching between Langchain and Stonly requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.

Pricing Comparison Summary

Langchain starts at custom pricing, while Stonly begins at $249/month. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.

Our Recommendation Process

  1. Start with a free trial - Both platforms offer trial periods to test with your actual data
  2. Define success metrics - Response accuracy, latency, user satisfaction, cost per query
  3. Test with real use cases - Don't rely on generic demos; use your production data
  4. Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
  5. Check vendor stability - Review roadmap transparency, update frequency, and support quality

For most organizations, the decision between Langchain and Stonly comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.

📚 Next Steps

Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.

  • Review: Check the detailed feature comparison table above
  • Test: Sign up for free trials and test with real queries
  • Calculate: Estimate your monthly costs based on expected usage
  • Decide: Choose the platform that best aligns with your requirements

Last updated: December 4, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.

Ready to Get Started with CustomGPT?

Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.

Why Choose CustomGPT?

97% Accuracy

Industry-leading benchmarks

5-Min Setup

Get started instantly

24/7 Support

Expert help when you need it

Enterprise Ready

Scale with confidence

Trusted by leading companies worldwide

Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us

Join the Discussion

Loading comments...

Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.

Watch: Understanding AI Tool Comparisons