Nuclia vs SimplyRetrieve

Make an informed decision with our comprehensive comparison. Discover which RAG solution perfectly fits your needs.

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT.ai

Fact checked and reviewed by Bill Cava

Published: 01.04.2025Updated: 25.04.2025

In this comprehensive guide, we compare Nuclia and SimplyRetrieve across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.

Overview

When choosing between Nuclia and SimplyRetrieve, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.

Quick Decision Guide

  • Choose Nuclia if: you value specialized for unstructured data
  • Choose SimplyRetrieve if: you value completely free and open source

About Nuclia

Nuclia Landing Page Screenshot

Nuclia is ai search and rag-as-a-service for unstructured data. Nuclia is a RAG-as-a-Service platform that automatically indexes unstructured data from any source to deliver AI search, generative answers, and knowledge extraction with enterprise-grade security and multilingual support. Founded in 2019, headquartered in Barcelona, Spain, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
81/100
Starting Price
$300/mo

About SimplyRetrieve

SimplyRetrieve Landing Page Screenshot

SimplyRetrieve is lightweight retrieval-centric generative ai platform. SimplyRetrieve is an open-source tool providing a fully localized, lightweight, and user-friendly GUI and API platform for Retrieval-Centric Generation (RCG). It emphasizes privacy and can run on a single GPU while maintaining clear separation between LLM context interpretation and knowledge memorization. Founded in 2019, headquartered in Tokyo, Japan, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
82/100
Starting Price
Custom

Key Differences at a Glance

In terms of user ratings, both platforms score similarly in overall satisfaction. From a cost perspective, SimplyRetrieve offers more competitive entry pricing. The platforms also differ in their primary focus: RAG Platform versus RAG Platform. These differences make each platform better suited for specific use cases and organizational requirements.

⚠️ What This Comparison Covers

We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.

Detailed Feature Comparison

logo of nuclia
Nuclia
logo of simplyretrieve
SimplyRetrieve
logo of customGPT logo
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
  • Indexes just about any unstructured data, in any language—PDF, Word, Excel, PowerPoint, web pages, you name it. [Nuclia Documentation]
  • Runs OCR on images and converts speech in audio / video to text, so everything becomes searchable. [Nuclia Website]
  • Lets you ingest data programmatically via REST API, Python / JS SDKs, a CLI, or a Sync Agent for nonstop updates. [Nuclia Docs]
  • The Sync Agent watches connected repos (cloud drives, sitemaps, etc.) and auto-indexes any changes.
  • Uses a hands-on, file-based flow: drop PDFs, text, DOCX, PPTX, HTML, etc. into a folder and run a script to embed them.
  • A new GUI Knowledge-Base editor lets you add docs on the fly, but there’s no web crawler or auto-refresh yet.
  • Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
  • Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
  • Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text. View Transcription Guide
  • Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier. See Zapier Connectors
  • Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
  • No-code widget generator lets you drop a search or Q&A panel onto your site in minutes. [Nuclia No-Code]
  • No one-click Slack or Teams bots out of the box, but the REST API / SDKs make custom bots easy.
  • Works with n8n and Zapier, so you can hook Nuclia into thousands of other services. [n8n Integration]
  • API-first philosophy means you can embed Nuclia search or Q&A into any channel you like.
  • Ships with a local Gradio GUI and Python scripts for queries—no out-of-the-box Slack or site widget.
  • Want other channels? Write a small wrapper that forwards messages to your local chatbot.
  • Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
  • Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more. Explore API Integrations
  • Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
  • Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
  • Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc. Read more here.
  • Supports OpenAI API Endpoint compatibility. Read more here.
Core Chatbot Features
  • Powers AI Search and generative Q&A on your data, returning “trusted answers” drawn straight from your content. [Nuclia Homepage]
  • Shows source citations so users can see exactly where each answer came from.
  • Auto-summarizes long docs and can run entity recognition or AI classification.
  • Handles both one-shot Q→A and multi-turn chat in the same flexible interface.
  • Runs a retrieval-augmented chatbot on open-source LLMs, streaming tokens live in the Gradio UI.
  • Primarily single-turn Q&A; long-term memory is limited in this release.
  • Includes a “Retrieval Tuning Module” so you can see—and tweak—how answers are built from the data.
  • Reduces hallucinations by grounding replies in your data and adding source citations for transparency. Benchmark Details
  • Handles multi-turn, context-aware chats with persistent history and solid conversation management.
  • Speaks 90+ languages, making global rollouts straightforward.
  • Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Customization & Branding
  • No-code widget offers basic styling; deeper branding means building your own front-end on the API.
  • You can set a custom system prompt to tweak tone and style. [Nuclia Docs]
  • Develop your own UI for a fully branded experience—API flexibility makes it doable.
  • Default Gradio interface is pretty plain, with minimal theming.
  • For a branded UI you’ll tweak source code or build your own front end.
  • Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand. White-label Options
  • Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
  • Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
  • Uses domain allowlisting to ensure the chatbot appears only on approved sites.
L L M Model Options
  • Model-agnostic: use OpenAI, Azure OpenAI, Google PaLM 2, Cohere, Anthropic, and more.
  • “100 % private generative AI” mode keeps everything on Nuclia-hosted infrastructure if you prefer. [Privacy & Security]
  • Hooks into Hugging Face so you can drop in open-source or domain models. [HF Integration]
  • Swap or blend models to hit the right cost-vs-quality balance; local models take extra setup.
  • Defaults to WizardVicuna-13B, but you can swap in any Hugging Face model if you have the GPUs.
  • Full control over model choice, though smaller open models won’t match GPT-4 for depth.
  • Taps into top models—OpenAI’s GPT-4, GPT-3.5 Turbo, and even Anthropic’s Claude for enterprise needs.
  • Automatically balances cost and performance by picking the right model for each request. Model Selection Details
  • Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
  • Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Developer Experience ( A P I & S D Ks)
  • Rich REST APIs, Python / JS SDKs, and a CLI cover everything from ingestion to querying. [Ingestion Docs]
  • Index first, query later—modular design fits nicely into dev workflows.
  • Step-by-step ingestion and custom retrieval logic are fully supported.
  • Self-host NucliaDB if you need on-prem; open-source repos and samples help you get started fast.
  • Interaction happens via Python scripts—there’s no formal REST API or SDK.
  • Integrations usually call those scripts as subprocesses or add your own wrapper.
  • Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat. API Documentation
  • Offers open-source SDKs—like the Python customgpt-client—plus Postman collections to speed integration. Open-Source SDK
  • Backs you up with cookbooks, code samples, and step-by-step guides for every skill level.
Performance & Accuracy
  • Markets itself as “quality-based” RAG—focused on trusted, source-linked answers. [Nuclia Overview]
  • Tune semantic vs. keyword weighting and thresholds for domain precision.
  • Summaries and entity extraction enrich your corpus for better Q&A.
  • Scales to large datasets; speed and cost depend on your chosen LLM and hosting.
  • Open-source models run slower than managed clouds—expect a few to 10 + seconds per reply on a single GPU.
  • Accuracy is fine when the right doc is found, but smaller models can struggle on complex, multi-hop queries.
  • Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
  • Independent tests rate median answer accuracy at 5/5—outpacing many alternatives. Benchmark Results
  • Always cites sources so users can verify facts on the spot.
  • Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
Customization & Flexibility ( Behavior & Knowledge)
  • Adjust chunk sizes, weighting, metadata filters—fine-tune retrieval to your needs.
  • Pass a custom prompt per query to set persona or style on the fly. [Nuclia Docs]
  • Use multiple Knowledge Boxes for isolated data, with tags for granular scopes.
  • Return structured output (JSON, etc.) or fine-tune private models when you need something very specific.
  • Lets you tweak everything—KnowledgeBase weight, retrieval params, system prompts—for deep control.
  • Encourages devs to swap embedding models or hack the pipeline code as needed.
  • Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
  • Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus. Learn How to Update Sources
  • Supports multiple agents per account, so different teams can have their own bots.
  • Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Pricing & Scalability
  • License + consumption model: pay the base, then add costs for indexing, queries, LLM calls. [Consumption Docs]
  • Granular controls mean light usage stays cheap, heavy usage scales automatically.
  • Free trial available; platform scales from tiny projects to huge multi-tenant setups.
  • On-prem or hybrid hosting gives large orgs total resource control.
  • Free, MIT-licensed open source—no fees, but you supply the GPUs or cloud servers.
  • Scaling means spinning up more hardware and managing it yourself.
  • Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
  • Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates. View Pricing
  • Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
  • Data lives in isolated Knowledge Boxes with disk encryption—never cross-trained between customers. [Privacy & Security]
  • Supports on-prem or private-cloud NucliaDB and local LLMs for strict residency. [On-Prem Option]
  • GDPR-compliant; no data is used to train global models unless you opt in.
  • Enterprise SSO and role-based access, with region pick (EU, etc.) for data zones.
  • Entirely local: all docs and chat data stay on your own machine—great for sensitive use cases.
  • No built-in auth or enterprise security—lock things down in your own deployment setup.
  • Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
  • Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private. Security Certifications
  • Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Observability & Monitoring
  • Dashboard shows usage and token spend for indexing and queries.
  • Activity logs track who ingested or queried what—great for audits. [Management Docs]
  • Open APIs / CLI make it easy to send logs to Splunk, Elastic, or your favorite tool.
  • You control how Q&A events are logged when you build your own front end.
  • An “Analysis” tab shows which docs were pulled and how the query was built; logs print to the console.
  • No fancy dashboard—add your own logging or monitoring if you need broader stats.
  • Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
  • Lets you export logs and metrics via API to plug into third-party monitoring or BI tools. Analytics API
  • Provides detailed insights for troubleshooting and ongoing optimization.
Support & Ecosystem
  • Docs, Slack community, and Stack Overflow keep devs productive. [Community]
  • Open-source pieces like NucliaDB and nuclia-eval ensure transparency.
  • LangChain integration, HF presence, and many samples foster a healthy dev scene.
  • Enterprise customers get personalized support—especially for on-prem or hybrid installs.
  • Open-source on GitHub; support is community-driven via issues and lightweight docs.
  • Smaller ecosystem: you’re free to fork or extend, but there’s no paid SLA or enterprise help desk.
  • Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast. Developer Docs
  • Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs. Enterprise Solutions
  • Benefits from an active user community plus integrations through Zapier and GitHub resources.
Additional Considerations
  • More than just search—Nuclia covers AI search, Q&A, classification, and multi-language out of the box.
  • Great for replacing or boosting enterprise search across text, audio, and video with RAG.
  • Open-source core reduces lock-in and lets you extend or self-host if desired.
  • Very flexible platform—powerful, but may need extra ML / DevOps effort for advanced setups.
  • Great for offline / on-prem labs where data never leaves the server—perfect for tinkering.
  • Takes more hands-on upkeep and won’t match proprietary giants in sheer capability out of the box.
  • Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
  • Gets you to value quickly: launch a functional AI assistant in minutes.
  • Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
  • Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No- Code Interface & Usability
  • No-code dashboard walks you through: create Knowledge Box → upload data → tune search → embed widget. [No-Code Intro]
  • Advanced sliders (retrieval strategy, prompt tweaks) may feel technical for absolute beginners.
  • Defaults work fine out of the gate, but power users can dive into embeddings, chunking, and more.
  • For full custom UI / branding, build on the API and craft the front end yourself.
  • Basic Gradio UI is developer-focused; non-tech users might find the settings overwhelming.
  • No slick, no-code admin—if you need polish or branding, you'll build your own front end.
  • Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
  • Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing. User Experience Review
  • Uses role-based access so business users and devs can collaborate smoothly.
Competitive Positioning
  • Market position: API-first RAG platform with comprehensive multimodal indexing (text, audio, video, OCR) and model-agnostic architecture, balancing developer flexibility with no-code dashboard usability
  • Target customers: Development teams needing multimodal search across text/audio/video, organizations wanting model flexibility (OpenAI, Azure, PaLM, Cohere, Anthropic, Hugging Face), and companies requiring on-prem/hybrid deployment with open-source NucliaDB foundation
  • Key competitors: Deepset/Haystack, Vectara.ai, Azure AI Search, and custom RAG implementations using Pinecone/Weaviate
  • Competitive advantages: Comprehensive multimodal indexing (OCR for images, speech-to-text for audio/video), model-agnostic with "100% private generative AI" option, open-source NucliaDB for self-hosting and portability, Sync Agent for automated continuous indexing, n8n/Zapier integration for workflow automation, and GDPR compliance with isolated Knowledge Boxes never cross-training between customers
  • Pricing advantage: License + consumption model with granular control (base + indexing + queries + LLM calls); light usage stays cheap while scaling automatically; free trial available; best value for organizations wanting to control costs through usage optimization and on-prem deployment options
  • Use case fit: Ideal for enterprises with diverse content types requiring multimodal search (documents, audio, video), organizations prioritizing model flexibility without vendor lock-in, and companies needing hybrid/on-prem deployment with strict data residency requirements using open-source NucliaDB foundation
  • Market position: MIT-licensed open-source local RAG solution running entirely on-premises with open-source LLMs (no cloud dependency), designed for developers and tinkerers
  • Target customers: Developers experimenting with RAG locally, organizations with strict data isolation requirements (healthcare, government, defense), and teams wanting complete control without cloud costs or vendor dependencies
  • Key competitors: LangChain/LlamaIndex (frameworks), PrivateGPT, LocalGPT, and cloud RAG platforms for teams needing simplicity
  • Competitive advantages: Completely free and open-source (MIT license) with no fees or subscriptions, 100% local execution keeping all data on-premises, full control over model choice (any Hugging Face model), Python-based with full source code access for customization, "Retrieval Tuning Module" for transparency into answer generation, and zero external dependencies beyond local compute
  • Pricing advantage: Completely free with MIT license; only cost is GPU hardware or cloud compute; best value for teams with existing GPU infrastructure wanting to avoid subscription costs; requires technical expertise and hands-on maintenance
  • Use case fit: Ideal for offline/air-gapped environments requiring complete data isolation (defense, healthcare with strict PHI requirements), developers learning RAG internals and experimenting locally, and organizations with GPU infrastructure wanting zero cloud costs and complete control over LLM stack without vendor dependencies
  • Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
  • Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
  • Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
  • Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
  • Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
  • Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
  • Model-Agnostic Architecture: Supports OpenAI, Azure OpenAI, Google PaLM 2, Cohere, Anthropic Claude, and Hugging Face models - complete flexibility without vendor lock-in
  • Private GenAI Option: "100% private generative AI" mode keeps everything on Nuclia-hosted infrastructure for maximum data isolation
  • Hugging Face Integration: Drop in open-source or domain-specific models from Hugging Face for specialized use cases
  • Flexible Model Switching: Swap or blend models to optimize cost-vs-quality balance based on query complexity
  • Local Model Support: Self-hosted models require extra setup but provide complete control for sensitive deployments
  • Multi-Language Support: All models benefit from Nuclia's multilingual indexing covering virtually any non-pictogram language
  • Developer Freedom: Choose optimal LLM per query or Knowledge Box without architectural changes - true flexibility for AI applications
  • Default Model: WizardVicuna-13B-Uncensored (instruction-fine-tuned open-source model)
  • Hugging Face Compatibility: Swap in any Hugging Face model with sufficient GPU resources (Llama 2, Falcon, Mistral, etc.)
  • Full Local Control: Models run entirely on-premises with no external API calls or cloud dependencies
  • Embedding Model: Default multilingual-e5-base for retrieval with option to swap for other embedding models
  • Model Customization: Fine-tune or quantize models for specific use cases and hardware constraints
  • No Vendor Lock-In: Complete flexibility to use any open-source LLM without subscription fees or API limits
  • GPU Requirements: Smaller models may not match GPT-4 depth but enable complete data isolation and zero operational costs
  • Primary models: GPT-4, GPT-3.5 Turbo from OpenAI, and Anthropic's Claude for enterprise needs
  • Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request Model Selection Details
  • Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
  • Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
  • Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
  • Quality-Based RAG: Focused on trusted, source-linked answers with comprehensive citation attribution for every response
  • Hybrid Search Engine: Combine semantic vector search with keyword matching for domain-precision retrieval
  • Customizable Chunking: Adjust chunk sizes, weighting, and segmentation strategies for optimal context windows
  • Configurable Retrieval: Fine-tune similarity thresholds, metadata filters, and ranking parameters for use case optimization
  • Knowledge Graph Extraction: Automatic entity and relationship extraction enriches corpus for better Q&A
  • Multimodal Indexing: OCR for images, speech-to-text for audio/video creates comprehensive searchable knowledge base
  • Anti-Hallucination: Source citations, confidence scoring, and quality validation reduce false responses
  • Open Architecture: NucliaDB open-source foundation provides transparency into retrieval mechanisms vs black-box competitors
  • Developer Control: Full API access for embeddings, chunking, retrieval strategies - not opaque proprietary systems
  • Retrieval-Centric Generation (RCG): Research-backed approach explicitly separating LLM roles from knowledge memorization for more efficient implementation
  • Retrieval Tuning Module: Transparency into answer generation showing which documents were retrieved and how queries were built
  • Mixtures-of-Knowledge-Bases (MoKB): Multiple selectable knowledge bases with intelligent routing between knowledge sources
  • Explicit Prompt-Weighting (EPW): Control over retrieved knowledge base weighting in final answer generation
  • FAISS Vector Search: Fast approximate nearest neighbor search using Facebook's FAISS library for efficient retrieval
  • On-the-Fly Knowledge Base Creation: Drag-and-drop documents in GUI to create knowledge bases without manual preprocessing
  • Analysis Tab: Visual debugging showing document retrieval process and query construction for transparency
  • Multiple Document Support: Handles PDFs, text files, DOCX, PPTX, HTML, and other common formats
  • Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks RAG Performance
  • Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content Benchmark Details
  • Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
  • Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
  • Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
  • Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
  • Source verification: Always cites sources so users can verify facts on the spot
Use Cases
  • Enterprise Search Replacement: Modernize legacy search with AI-powered semantic search across text, audio, video with RAG accuracy
  • Customer Support Knowledge: Internal Q&A systems for support teams needing fast, accurate answers from product documentation
  • Multimodal Content Discovery: Search across diverse content types - PDFs, videos, audio recordings, presentations with unified interface
  • Regulatory Compliance: GDPR-compliant knowledge retrieval for regulated industries requiring data residency and isolation guarantees
  • Developer RAG Backend: API-first RAG infrastructure for building custom AI applications without managing vector databases
  • Multilingual Organizations: Global companies needing search across multiple languages with consistent quality
  • Research & Analysis: Extract insights from large document collections with entity recognition and AI classification
  • On-Prem Deployments: Organizations requiring hybrid/on-prem with NucliaDB for strict data sovereignty requirements
  • Air-Gapped Environments: Defense, classified research, and secure facilities requiring complete offline operation without external connectivity
  • Healthcare PHI Compliance: HIPAA-regulated organizations needing 100% data isolation for protected health information
  • RAG Research & Education: Developers learning RAG internals with full visibility into retrieval and generation processes
  • Local Experimentation: Prototype RAG applications locally before committing to cloud infrastructure and subscription costs
  • Data Sovereignty: Organizations with strict data residency requirements preventing cloud storage or processing
  • Zero-Cost RAG: Teams with existing GPU infrastructure wanting to avoid subscription fees for RAG capabilities
  • Custom Model Development: Research teams fine-tuning and testing custom LLMs and embedding models for specific domains
  • Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
  • Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
  • Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
  • Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
  • Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
  • Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
  • Financial services: Product guides, compliance documentation, customer education with GDPR compliance
  • E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
  • SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
  • GDPR Compliant: EU-based with strict data protection - customer data never used to train global models unless opt-in
  • Data Isolation: Knowledge Boxes provide tenant separation with disk encryption - data never cross-trained between customers
  • On-Prem Deployment: Self-host NucliaDB and local LLMs for complete data residency and control
  • Private Cloud Options: Hybrid deployment with processing in Nuclia cloud but storage on-premise for data sovereignty
  • Enterprise SSO: Identity provider integration with role-based access control for organizational security
  • Regional Data Centers: EU and other region selection for compliance with local data residency laws
  • Zero Cross-Training: Explicit commitment that customer data never used to improve models for other customers
  • Encryption Standards: Data encrypted in transit and at rest with enterprise-grade security
  • Open-Source Transparency: NucliaDB source code available for security audits and verification
  • 100% Local Execution: All data and processing stays on-premises with zero external transmission or cloud dependencies
  • No Third-Party APIs: No external API calls to OpenAI, Anthropic, or other cloud LLM providers
  • Complete Data Isolation: Ideal for classified, PHI, PII, or confidential data requiring air-gapped processing
  • No Built-In Authentication: Security implementation is user responsibility in deployment environment
  • Open-Source Auditing: MIT license with full source code transparency for security reviews and compliance validation
  • Self-Managed Security: Organization controls all security layers (network, authentication, encryption, access control)
  • Compliance Flexibility: Can be configured to meet HIPAA, FedRAMP, GDPR, or other regulatory requirements through deployment architecture
  • Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
  • SOC 2 Type II certification: Industry-leading security standards with regular third-party audits Security Certifications
  • GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
  • Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
  • Data isolation: Customer data stays isolated and private - platform never trains on user data
  • Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
  • Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
  • Pricing Model: License + consumption (base subscription + usage-based costs for indexing, queries, and LLM calls)
  • Free Trial: Available for hands-on evaluation before committing to paid plans
  • Granular Cost Control: Pay for what you use - light usage stays cheap, heavy usage scales automatically with predictable costs
  • Token-Based Billing: Consumption measured in tokens for indexing and query operations with transparent pricing
  • On-Prem Economics: Self-hosting NucliaDB provides cost control for organizations with existing infrastructure
  • Multi-Tenant Scalability: Platform scales from small projects to massive multi-tenant deployments without architectural changes
  • No Hidden Costs: Transparent billing for all components - storage, indexing, queries, LLM usage clearly itemized
  • Enterprise Flexibility: Custom pricing available for large deployments with volume discounts and dedicated resources
  • Best Value For: Organizations wanting to control costs through usage optimization rather than fixed seat-based pricing
  • Completely Free: MIT open-source license with no subscription fees, API charges, or usage limits
  • Infrastructure Costs Only: GPU hardware or cloud compute (AWS/GCP/Azure GPU instances) are the only expenses
  • No Per-Query Charges: Unlimited queries without per-request pricing or rate limits
  • No Vendor Fees: Zero payments to SaaS providers or LLM API vendors (OpenAI, Anthropic, etc.)
  • GPU Requirements: Single GPU sufficient for development; scale hardware based on throughput needs
  • Open-Source Ecosystem: Leverage free Hugging Face models, FAISS library, and PyTorch without licensing costs
  • Best Value For: Teams with existing GPU infrastructure or ability to provision cloud GPU instances economically
  • Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security View Pricing
  • Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
  • Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs Enterprise Solutions
  • 7-Day Free Trial: Full access to Standard features without charges - available to all users
  • Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
  • Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
  • Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
  • Comprehensive Documentation: docs.nuclia.dev and docs.rag.progress.cloud with detailed guides, API references, and code examples
  • Active Community: Slack community, Stack Overflow support, and developer forums for peer assistance
  • Open-Source Resources: NucliaDB GitHub (710+ stars, AGPLv3) with transparent code and community contributions
  • LangChain Integration: Official integration with popular AI frameworks for developer ecosystem compatibility
  • Code Samples: Python and JavaScript SDK examples for common RAG workflows and use cases
  • Enterprise Support: Dedicated support for paid customers, especially for on-prem/hybrid installations
  • nuclia-eval Library: Open-source evaluation tools for RAG quality assessment and continuous improvement
  • API Documentation: Complete REST API reference with authentication, rate limits, and error handling guides
  • Quick Start Guides: Step-by-step tutorials for common scenarios from basic setup to advanced configurations
  • GitHub Repository: Open-source at github.com/RCGAI/SimplyRetrieve with code, documentation, and examples
  • Research Paper: Academic publication on arXiv (2308.03983) explaining RCG approach and architecture
  • Community Support: GitHub Issues for bug reports, feature requests, and community troubleshooting
  • Lightweight Documentation: README and docs directory with setup instructions and usage examples
  • No Paid Support: Community-driven support only; no SLAs or enterprise help desk available
  • Code Examples: Example scripts and Jupyter notebooks demonstrating core functionality
  • Academic Background: Built on established libraries (Hugging Face, Gradio, PyTorch, FAISS) with extensive external documentation
  • Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding Developer Docs
  • Email and in-app support: Quick support via email and in-app chat for all users
  • Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
  • Code samples: Cookbooks, step-by-step guides, and examples for every skill level API Documentation
  • Open-source resources: Python SDK (customgpt-client), Postman collections, GitHub integrations Open-Source SDK
  • Active community: User community plus 5,000+ app integrations through Zapier ecosystem
  • Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
  • API-First Complexity: Developer-focused platform requires technical skills - not plug-and-play for non-technical teams
  • No Turnkey UI: No-code dashboard covers basics, but advanced branding/customization requires building custom front-end
  • No Native Messaging Channels: No one-click Slack or Teams bots - requires custom development via API
  • Language Limitations: Cannot index pictogram-based languages (Japanese, Chinese characters) - text-based languages only
  • Local Model Setup: Self-hosted LLMs require extra ML/DevOps effort for deployment and maintenance
  • Learning Curve: Advanced RAG parameters (chunking, embeddings, retrieval strategies) may feel technical for beginners
  • No Built-In Analytics: Platform focuses on RAG quality - conversation analytics, lead capture require custom implementation
  • Resource Requirements: On-prem NucliaDB deployment needs infrastructure planning and ongoing operational management
  • Integration Effort: While flexible, connecting to business systems (CRM, helpdesk) requires developer work vs turnkey connectors
  • Best For Developers: Powerful platform for teams with technical resources, less suitable for non-coders wanting self-serve deployment
  • Developer-Only Tool: Requires Python expertise, GPU knowledge, and technical setup—not suitable for non-technical users
  • GPU Infrastructure Required: Needs dedicated GPU hardware or cloud GPU instances with associated costs and management overhead
  • Basic UI: Gradio interface is functional but not polished—requires custom front-end development for production use
  • Limited Scalability: Scaling requires manual infrastructure management and load balancing vs auto-scaling cloud platforms
  • No Enterprise Features: Missing multi-tenancy, user management, advanced analytics, and production-grade monitoring
  • Slower Inference: Open-source models on single GPU (few to 10+ seconds per reply) vs sub-second cloud API responses
  • Manual Knowledge Base Updates: No automatic web crawling, syncing, or scheduled reindexing capabilities
  • No Pre-Built Integrations: Requires custom development to integrate with Slack, websites, or support platforms
  • Limited Context Memory: Primarily single-turn Q&A with minimal conversation history retention
  • Maintenance Burden: User responsible for updates, model management, troubleshooting, and infrastructure maintenance
  • Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
  • Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
  • Model selection: Limited to OpenAI (GPT-4, GPT-3.5) and Anthropic (Claude) - no support for other LLM providers (Cohere, AI21, open-source models)
  • Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
  • Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
  • Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
  • Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
  • Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
  • Agentic RAG Architecture: Progress Agentic RAG (formerly Nuclia) incorporates autonomous decision-making capabilities unlike traditional RAG requiring explicit prompting
  • Autonomous Retrieval Strategies: System automatically determines optimal retrieval strategies based on query complexity without manual configuration
  • Intelligent Query Routing: Routes queries to appropriate knowledge sources based on content type, metadata, and semantic understanding
  • Dynamic Response Generation: Adjusts response generation parameters based on context - answer length, detail level, citation density adapted per query
  • CrewAI Integration: Only RAG platform specifically designed to deliver reliable, scalable retrieval to AI agents - integrates with CrewAI for orchestrating autonomous AI agent teams
  • Multi-Agent Support: Enables creating AI teams where each agent has specific roles, tools, and goals with Nuclia providing knowledge retrieval backend
  • Python SDK Agent Workflows: Easy integration of AI agents into workflows through Nuclia's Python SDK unlocking intelligent automation possibilities
  • AI Search Copilot: Customizable LLM agents (AI copilots) interact through human-like conversation, behaving according to given goals - employee support, customer service, troubleshooting
  • Learning Capability: Agentic approach learns from user interactions to improve future performance through feedback loops
  • Automatic Context Adjustment: Dynamically manages context window utilization based on query complexity and available knowledge
  • Pre-Built Ingestion Agents (Beta): Labeler (auto-classification), Generator (summaries/JSON extraction), Graph Extraction (entities/relationships), Q&A Generator, Content Safety flagging
  • MISSING FEATURES: NO lead capture, NO human handoff/escalation workflows, NO proactive alerting documented (monitoring exists, alerting unclear)
  • Retrieval-Centric Generation (RCG): Research-backed approach separating LLM reasoning capabilities from knowledge memorization—more efficient than traditional RAG architectures
  • Retrieval Tuning Module: Developer-focused transparency layer showing which documents were retrieved, how queries were constructed, and how answers were generated
  • Knowledge Base Mixing (MoKB): Route queries across multiple selectable knowledge bases with intelligent source selection and weighting
  • Explicit Prompt Weighting (EPW): Fine-grained control over retrieved knowledge base influence in final answer generation
  • Single-Turn Q&A Focus: Primarily designed for single-turn question answering—limited multi-turn conversation and context memory
  • Analysis Tab Transparency: Visual debugging interface showing document retrieval process and query construction for answer inspection
  • Local Agent Execution: All agent processing happens on-premises with zero external API calls—complete control over agent behavior and data
  • LIMITATION - No Chatbot UI: Gradio interface for developers only—no polished conversational interface for end users or production deployment
  • LIMITATION - No Lead Capture: No built-in lead generation, email collection, or CRM integration capabilities—manual implementation required
  • LIMITATION - No Human Handoff: No escalation workflows, live agent transfer, or fallback mechanisms for complex queries—developer must build these features
  • LIMITATION - No Multi-Channel Support: No native integrations with Slack, Teams, WhatsApp, or website widgets—requires custom wrapper development
  • LIMITATION - No Session Management: Stateless interactions without conversation history tracking or multi-turn context retention
  • Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
  • Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
  • Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
  • Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions View Agent Documentation
  • Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
  • Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
  • Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
R A G-as-a- Service Assessment
  • Platform Type: TRUE RAG-AS-A-SERVICE PLATFORM - Core mission is retrieval-augmented generation backend with managed infrastructure and API-first design
  • Agentic RAG Focus: Progress Agentic RAG (acquired June 2025) - specialized RAG platform with autonomous decision-making vs traditional manual RAG systems
  • Fully Managed Infrastructure: Hosted NucliaDB with automatic scaling, chunking, embedding, storage - no infrastructure management required
  • API-First Backend: Complete REST API + dual SDKs (Python/JavaScript) for programmatic knowledge base management and retrieval
  • Model-Agnostic Service: Supports OpenAI, Azure OpenAI, Google PaLM 2, Cohere, Anthropic, Hugging Face - switch providers without architectural changes
  • Open-Source Transparency: NucliaDB foundation (710+ GitHub stars, AGPLv3) provides visibility into retrieval mechanisms vs black-box platforms
  • Embeddable Widgets: No-code dashboard generates widgets for website deployment - not closed conversational marketing platform
  • Agent-Ready Infrastructure: Only RAG platform specifically designed for AI agent integration - CrewAI official integration, LangChain compatible
  • Comparison Alignment: Direct comparison to CustomGPT valid - both are RAG-as-a-Service with API access and managed infrastructure
  • Use Case Fit: Organizations prioritizing multimodal search (text/audio/video), semantic retrieval, generative Q&A, and AI agent knowledge backends
  • Hybrid Deployment: Cloud-managed service with on-prem NucliaDB option for strict data sovereignty - true RaaS flexibility
  • 100% Private GenAI: Option to keep all processing on Nuclia infrastructure without third-party LLM exposure - unique RaaS feature
  • Platform Type: NOT A RAG-AS-A-SERVICE PLATFORM - Open-source academic research project for local Retrieval-Centric Generation experimentation and learning
  • Core Mission: Provide localized, lightweight, user-friendly interface to Retrieval-Centric Generation (RCG) approach for machine learning community exploration and research
  • Academic Foundation: Published research tool from RCGAI with arXiv paper (2308.03983) explaining RCG methodology and architectural design decisions
  • Target Market: Researchers, developers, and organizations experimenting with RAG locally without cloud dependencies—NOT commercial service users
  • Self-Hosted Infrastructure: MIT-licensed tool requiring user-managed GPU hardware or cloud compute—no managed infrastructure, APIs, or service-level agreements
  • Developer-First Design: Python-based with Gradio GUI and script execution—intended for technical users comfortable with GPU infrastructure and model management
  • RAG Implementation: Retrieval-Centric Generation (RCG) philosophy emphasizing retrieval over memorization—FAISS vector search with open-source LLMs (WizardVicuna-13B default, any Hugging Face model supported)
  • API Availability: NO formal REST API or SDKs—interaction via Python scripts and local Gradio interface requiring subprocess calls or custom wrappers
  • Data Privacy Advantage: 100% local execution with zero external transmission—ideal for classified, PHI, PII, or confidential data requiring air-gapped processing
  • Pricing Model: Completely free (MIT license) with no subscription fees—only cost is GPU hardware or cloud compute infrastructure
  • Support Model: Community-driven GitHub Issues and lightweight documentation—no paid support, SLAs, or customer success teams
  • LIMITATION vs Managed Services: NO managed infrastructure, automatic scaling, production-grade monitoring, enterprise security controls, or commercial support—users responsible for all operational aspects
  • LIMITATION - No Service Features: NO authentication systems, multi-tenancy, user management, analytics dashboards, or SaaS conveniences—pure research/development tool
  • Comparison Validity: Architectural comparison to commercial RAG-as-a-Service platforms like CustomGPT.ai is MISLEADING—SimplyRetrieve is open-source research tool for on-premises experimentation, not production service
  • Use Case Fit: Perfect for offline/air-gapped RAG research, developers learning RAG internals with full transparency, organizations with strict data isolation requirements (defense, healthcare PHI compliance), and teams wanting zero cloud costs with existing GPU infrastructure
  • Platform Type: TRUE RAG-AS-A-SERVICE PLATFORM - all-in-one managed solution combining developer APIs with no-code deployment capabilities
  • Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
  • API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat API Documentation
  • Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
  • No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
  • Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
  • RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses Benchmark Details
  • Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
  • Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
  • Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
  • Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds

Ready to experience the CustomGPT difference?

Start Free Trial →

Final Thoughts

Final Verdict: Nuclia vs SimplyRetrieve

After analyzing features, pricing, performance, and user feedback, both Nuclia and SimplyRetrieve are capable platforms that serve different market segments and use cases effectively.

When to Choose Nuclia

  • You value specialized for unstructured data
  • Strong multilingual support (100+ languages)
  • SOC2 Type 2 and ISO 27001 compliant

Best For: Specialized for unstructured data

When to Choose SimplyRetrieve

  • You value completely free and open source
  • Strong privacy focus - fully localized
  • Lightweight - runs on single GPU

Best For: Completely free and open source

Migration & Switching Considerations

Switching between Nuclia and SimplyRetrieve requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.

Pricing Comparison Summary

Nuclia starts at $300/month, while SimplyRetrieve begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.

Our Recommendation Process

  1. Start with a free trial - Both platforms offer trial periods to test with your actual data
  2. Define success metrics - Response accuracy, latency, user satisfaction, cost per query
  3. Test with real use cases - Don't rely on generic demos; use your production data
  4. Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
  5. Check vendor stability - Review roadmap transparency, update frequency, and support quality

For most organizations, the decision between Nuclia and SimplyRetrieve comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.

📚 Next Steps

Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.

  • Review: Check the detailed feature comparison table above
  • Test: Sign up for free trials and test with real queries
  • Calculate: Estimate your monthly costs based on expected usage
  • Decide: Choose the platform that best aligns with your requirements

Last updated: December 4, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.

Ready to Get Started with CustomGPT?

Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.

Why Choose CustomGPT?

97% Accuracy

Industry-leading benchmarks

5-Min Setup

Get started instantly

24/7 Support

Expert help when you need it

Enterprise Ready

Scale with confidence

Trusted by leading companies worldwide

Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us

Join the Discussion

Loading comments...

Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.

Watch: Understanding AI Tool Comparisons