In this comprehensive guide, we compare Progress Agentic RAG and Vertex AI across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between Progress Agentic RAG and Vertex AI, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose Progress Agentic RAG if: you value proprietary remi v2 model (30x faster inference) addresses hallucination problem with continuous quality monitoring - differentiated capability absent from most competitors
Choose Vertex AI if: you value industry-leading 2m token context window with gemini models
About Progress Agentic RAG
Progress Agentic RAG is enterprise application development and deployment platform. Enterprise RAG-as-a-Service platform launched Sept 2025 following Progress Software's acquisition of Barcelona-based Nuclia. Combines SOC2/ISO 27001 security with proprietary REMi evaluation model for continuous answer quality monitoring. Built on open-source NucliaDB (710+ GitHub stars) with Python/JavaScript SDKs. Starting at $700/month. Founded in 2019 (Nuclia), acquired 2025, headquartered in Barcelona, Spain (Nuclia) / Bedford, MA, USA (Progress), the platform has established itself as a reliable solution in the RAG space.
Overall Rating
82/100
Starting Price
$700/mo
About Vertex AI
Vertex AI is google's unified ml platform with gemini models and automl. Vertex AI is Google Cloud's comprehensive machine learning platform that unifies data engineering, data science, and ML engineering workflows. It offers state-of-the-art Gemini models with industry-leading context windows up to 2 million tokens, AutoML capabilities, and enterprise-grade infrastructure for building, deploying, and scaling AI applications. Founded in 2008, headquartered in Mountain View, CA, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
88/100
Starting Price
Custom
Key Differences at a Glance
In terms of user ratings, Vertex AI in overall satisfaction. From a cost perspective, Vertex AI offers more competitive entry pricing. The platforms also differ in their primary focus: Enterprise Software versus AI Chatbot. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
Progress Agentic RAG
Vertex AI
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
60+ Document Formats: PDF, Word (.docx), Excel, PowerPoint, plain text, email formats with automatic parsing
Multimedia Processing: Automatic speech-to-text (MP3, WAV, AIFF), video transcript extraction (MP4, etc.), OCR for scanned documents/images
Cloud Connectors: SharePoint, Confluence, OneDrive, Google Drive, Amazon S3 with direct integration
Sync Agent Desktop App: 60-minute automatic sync with content hashing to prevent redundant reindexing
Manual Upload Interface: Files, folders, web links, sitemaps, Q&A pairs via dashboard
Fast Deployment: 2-hour initial ingestion, 48-hour full deployment timeline
CRITICAL GAPS: NO Dropbox integration, NO Notion integration, NO explicit YouTube transcript extraction documented
Architecture Focus: Comprehensive knowledge retrieval vs lead conversion focus (unlike Drift)
Pulls in both structured and unstructured data straight from Google Cloud Storage, handling files like PDF, HTML, and CSV (Vertex AI Search Overview).
Taps into Google’s own web-crawling muscle to fold relevant public website content into your index with minimal fuss (Towards AI Vertex AI Search).
Keeps everything current with continuous ingestion and auto-indexing, so your knowledge base never falls out of date.
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
CRITICAL LIMITATION: NO native Slack, WhatsApp, Telegram, or Microsoft Teams integrations
Platform Design: RAG backend + embeddable widget, NOT omnichannel conversational AI platform
Custom Development Required: Messaging platform integrations need API-based custom builds
Ships solid REST APIs and client libraries for weaving Vertex AI into web apps, mobile apps, or enterprise portals (Google Cloud Vertex AI API Docs).
Plays nicely with other Google Cloud staples—BigQuery, Dataflow, and more—and even supports low-code connectors via Logic Apps and PowerApps (Google Cloud Connectors).
Lets you deploy conversational agents wherever you need them, whether that’s a bespoke front-end or an embedded widget.
Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more.
Explore API Integrations
Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc.
Read more here.
CSS Customization: Shadow DOM architecture with cssPath attribute for advanced styling
White-Labeling: Full OEM deployment support via API-first design
MISSING FEATURES: NO lead capture, NO human handoff/escalation workflows, NO proactive alerting (monitoring exists, alerting undocumented)
Vertex AI Agent Engine: Build autonomous agents with short-term and long-term memory for managing sessions and recalling past conversations and preferences
Agent Builder (April 2024): Visual drag-and-drop interface to create AI agents without code, with advanced integrations to LlamaIndex, LangChain, and RAG capabilities combining LLM-generated responses with real-time data retrieval
Multi-turn conversation context: Agent Engine Sessions store individual user-agent interactions as definitive sources for conversation context, enabling coherent multi-turn interactions
Memory Bank: Stores and retrieves information from sessions to personalize agent interactions and maintain context across conversations
Agent orchestration: Agents can maintain context across systems, discover each other's capabilities dynamically, and negotiate interaction formats
Human handoff capabilities: Generate interaction summaries, citations, and other data to facilitate handoffs between AI apps and human agents with full conversation history
Observability tools: Google Cloud Trace, Cloud Monitoring, and Cloud Logging provide comprehensive understanding of agent behavior and performance
Action-based agents: Take actions based on conversations and interact with back-end transactional systems in an automated manner
Data source tuning: Tune chats with various data sources including conversation histories to enable smooth transitions and continuous improvement
LIMITATION: Technical expertise required: Agent Builder introduced visual interface in 2024, but deeper customization and orchestration still require GCP/developer skills
LIMITATION: No native lead capture: Unlike specialized chatbot platforms, Vertex AI focuses on enterprise conversational AI rather than marketing automation features
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
Additional Considerations
Recent Acquisition (June 2025): Progress Software acquired Nuclia for $50M - platform transitioning under new ownership with potential strategic direction changes
Genuine No-Code + Developer Appeal: Dual-track value proposition - non-technical teams use dashboard, developers leverage API/SDKs for custom builds
REMi Quality Differentiator: Proprietary continuous evaluation model (30x faster in v2) addresses hallucination problem absent from most RAG competitors
Open-Source Trust Factor: NucliaDB (710+ GitHub stars, AGPLv3) provides code transparency vs black-box platforms - security audits possible
Multimodal Strength: OCR for images, speech-to-text for audio/video creates comprehensive searchable corpus beyond text-only competitors
Enterprise RAG Focus: Platform optimized for knowledge retrieval and semantic search - not conversational marketing/sales engagement like Drift/Yellow.ai
Progress Ecosystem Integration: OpenEdge database connector, Sitefinity CMS integration provides distribution channels unavailable to standalone platforms
Documentation Fragmentation: Dual portals (docs.rag.progress.cloud + legacy docs.nuclia.dev) during transition may cause developer confusion
Competitive Pricing Entry: $700/month Fly tier undercuts enterprise RAG alternatives while providing genuine capabilities vs limited free tiers
Best For: Organizations wanting model flexibility (7 providers), multimodal indexing, open-source transparency, and developer API access without managing infrastructure
Packs hybrid search and reranking that return a factual-consistency score with every answer.
Supports public cloud, VPC, or on-prem deployments if you have strict data-residency rules.
Gets regular updates as Google pours R&D into RAG and generative AI capabilities.
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
Customization & Branding
Prompt Lab: Test LLMs side-by-side using actual customer data with real-time comparison
Four Index Types: Document Index (property filtering), Full Text (keyword/fuzzy search), Chunk/Vector (semantic similarity), Knowledge Graph (entity relationships)
Dynamic Sharding: Automatic shard creation as vectors grow with index node replication for fault tolerance
Open-Source Transparency: NucliaDB foundation (710+ GitHub stars) provides visibility into retrieval mechanisms vs black-box platforms (Lindy.ai)
Comparison Alignment: Direct architectural comparison to CustomGPT.ai is valid - both are RAG-as-a-Service platforms with API-first design
Use Case Fit: Organizations prioritizing knowledge retrieval, semantic search, and generative Q&A over conversational marketing/sales engagement
Platform Type: TRUE ENTERPRISE RAG-AS-A-SERVICE PLATFORM - fully managed orchestration service for production-ready RAG implementations with developer-first APIs
Core Architecture: Vertex AI RAG Engine (GA 2024) streamlines complex process of retrieving relevant information and feeding it to LLMs, with managed infrastructure handling data retrieval and LLM integration
API-First Design: Comprehensive easy-to-use API enabling rapid prototyping with VPC-SC security controls and CMEK support (data residency and AXT not supported)
Managed Orchestration: Developers focus on building applications rather than managing infrastructure - handles complexities of vector search, chunking, embedding, and retrieval automatically
Customization Depth: Various parsing, chunking, annotation, embedding, vector storage options with open-source model integration for specialized domain requirements
Developer Experience: "Sweet spot" for developers using Vertex AI to implement RAG-based LLMs - balances ease of use of Vertex AI Search with power of custom RAG pipeline
Target Market: Enterprise developers already using GCP infrastructure wanting managed RAG without building from scratch, organizations needing PaLM 2/Gemini models with Google's search capabilities
RAG Technology Leadership: Hybrid search with advanced reranking, factual-consistency scoring, Google web-crawling infrastructure for public content ingestion, sub-millisecond responses globally
Deployment Flexibility: Public cloud, VPC, or on-premise deployments with multi-region scalability, seamless GCP integration (BigQuery, Dataflow, Cloud Functions), and unified billing
Enterprise Readiness: SOC 2/ISO/HIPAA/GDPR compliance, customer-managed encryption keys, Private Link, detailed audit logs, Google Cloud Operations Suite monitoring
Use Case Fit: Ideal for personalized investment advice and risk assessment, accelerated drug discovery and personalized treatment plans, enhanced due diligence and contract review, GCP-native organizations wanting unified AI infrastructure
Competitive Positioning: Positioned between no-code platforms (WonderChat, Chatbase) and custom implementations (LangChain) - offers managed RAG with enterprise-grade capabilities for GCP ecosystem
LIMITATION: GCP lock-in: Strongest value for GCP customers - less compelling for AWS/Azure-native organizations vs platform-agnostic alternatives like CustomGPT or Cohere
LIMITATION: Google models only: PaLM 2/Gemini family exclusively - no native support for Claude, GPT-4, or open-source models compared to multi-model platforms
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Competitive Positioning
Market Position: Enterprise RAG-as-a-Service with genuine no-code accessibility + developer-first API design (dual-track appeal)
vs. CustomGPT: Similar RAG-as-a-Service category, Progress emphasizes REMi quality monitoring + open-source foundation differentiation
vs. Drift/Yellow.ai: TRUE RAG platform vs conversational marketing/sales engagement platforms (fundamentally different categories)
vs. Lindy.ai: Full API/SDK access vs NO public API (Progress developer-friendly, Lindy no-code only)
Integration Gaps: NO native messaging channels (Slack/WhatsApp/Teams) vs omnichannel competitors - requires custom development
HIPAA Gap: No documented certification creates healthcare trust gap vs compliant competitors (Drift has HIPAA)
Recent Acquisition Risk: June 2025 Progress purchase means platform still maturing under new ownership with potential direction changes
Progress Ecosystem Advantage: Integration with OpenEdge, Sitefinity CMS provides distribution channels unavailable to standalone competitors
Market position: Enterprise-grade Google Cloud AI platform combining Vertex AI Search with Conversation for production-ready RAG, deeply integrated with GCP ecosystem
Target customers: Organizations already invested in Google Cloud infrastructure, enterprises requiring PaLM 2/Gemini models with Google's search capabilities, and companies needing global scalability with multi-region deployment and GCP service integration
Key competitors: Azure AI Search, AWS Bedrock, OpenAI Enterprise, Coveo, and custom RAG implementations
Competitive advantages: Native Google PaLM 2/Gemini models with external LLM support, Google's web-crawling infrastructure for public content ingestion, seamless GCP integration (BigQuery, Dataflow, Cloud Functions), hybrid search with advanced reranking, SOC/ISO/HIPAA/GDPR compliance with customer-managed keys, global infrastructure for millisecond responses worldwide, and Google Cloud Operations Suite for comprehensive monitoring
Pricing advantage: Pay-as-you-go with free tier for development; competitive for GCP customers leveraging existing enterprise agreements and volume discounts; autoscaling prevents overprovisioning; best value for organizations with GCP infrastructure wanting unified billing and managed services
Use case fit: Best for organizations already using GCP infrastructure (BigQuery, Cloud Functions), enterprises needing Google's proprietary models (PaLM 2, Gemini) with web-crawling capabilities, and companies requiring global scalability with multi-region deployment and tight integration with GCP analytics and data pipelines
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
Deployment & Infrastructure
Fully Managed Cloud: EU (primary) and US data centers with regional API routing (https://{region}.rag.progress.cloud/api/v1/)
Hybrid Deployment: Cloud processing with on-premise NucliaDB storage for data sovereignty requirements
Complete On-Premise: Enterprise tier supports 100% on-premise deployment for maximum data governance
AWS Marketplace: Available November 2025 for streamlined enterprise procurement with existing cloud spend
Dynamic Scaling: Automatic shard creation as vector counts grow with index node replication
Web Component Embedding: <nuclia-search-bar> and <nuclia-chat> for website integration
Multi-Region Support: Regional data residency options (EU/US) for compliance requirements
N/A
N/A
Customer Base & Case Studies
SRS Distribution (Wholesale Building Materials): "Progress Agentic RAG has fundamentally changed how we access and act on information across our organisation. Its ability to deliver fast, accurate, and verifiable insights from our unstructured data has been a game-changer for productivity and decision-making."
BrokerChooser (Financial Services): Replaced keyword search with generative AI, reporting significant conversion increases and better user experience
NAFEMS (Engineering Simulation Association): Knowledge discovery across thousands of technical publications for international membership community
Althaia Hospitals (Spain's Largest Central Catalonia Hospital): Medical protocol search supporting 5,000+ healthcare professionals
Columbia Business School: Academic knowledge discovery and research support
Barry University: Education sector deployment for institutional knowledge management
CCOO (Spain's Largest Trade Union): 1M+ members served with knowledge retrieval platform
Buff Sportswear: Commercial deployment for product and customer knowledge management
Pre-Acquisition Scale: ~20 customers across healthcare, pharmaceutical, education, public administration sectors
N/A
N/A
A I Models
Anthropic Models: Claude 3.7, Claude 3.5 Sonnet v2 for safety-focused, high-quality generation
OpenAI Models: ChatGPT 4o, 4o mini for industry-leading language capabilities
Google Models: Gemini Flash 2.5, PaLM2 for multimodal and search-optimized tasks
Meta Models: Llama 3.2 for open-source flexibility and customization
Microsoft/Azure: Mistral Large 2 for enterprise deployments with Azure integration
Cohere Models: Command-R suite for retrieval-optimized generation
Nuclia Private GenAI: 100% data isolation mode for maximum security without third-party LLM exposure
Model Switching: Change providers without architectural changes via Prompt Lab for side-by-side testing
Dynamic Knowledge Management: Continuous updates, gap identification, and automatic documentation generation
Developer RAG Backend: API-first infrastructure for building custom AI applications with Prompt Lab experimentation
GCP-native organizations: Perfect for companies already using BigQuery, Cloud Functions, Dataflow wanting unified AI infrastructure
Global enterprise deployments: Multi-region deployment with Google's global infrastructure for millisecond responses worldwide
Public content ingestion: Leverage Google's web-crawling muscle to automatically fold relevant public web content into knowledge bases
Multimodal understanding: Gemini models process and reason over text, images, videos, and code for rich content analysis
Google Workspace integration: Seamless integration with Gmail, Docs, Sheets for content-heavy workflows within Workspace ecosystem
BigQuery analytics integration: Tight coupling with BigQuery for analytics on conversation data, user behavior, and system performance
Enterprise conversational AI: Build customer service bots, internal knowledge assistants, and autonomous agents grounded in company data
Regulated industries: Healthcare, finance, government with SOC/ISO/HIPAA/GDPR compliance and customer-managed encryption keys
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
Gemini 2.0 Flash: $0.15/M input tokens, $0.60/M output tokens for ultra-low-cost deployment at scale
Imagen pricing: $0.0001 per image for specific endpoints enabling visual content generation
Autoscaling: Scales effortlessly on Google's global backbone with automatic resource adjustment preventing overprovisioning
Enterprise agreements: Volume discounts and committed use discounts for GCP customers with existing enterprise agreements
Unified billing: Single GCP bill for Vertex AI, BigQuery, Cloud Functions, and all Google Cloud services
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Active community: User community plus 5,000+ app integrations through Zapier ecosystem
Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
NO HIPAA Certification Documented: Healthcare organizations processing PHI must contact sales - major compliance gap vs competitors with documented HIPAA
NO Native Messaging Channels: No Slack, WhatsApp, Telegram, or Microsoft Teams integrations - requires custom API-based development
Documentation Fragmentation: Dual portals (docs.rag.progress.cloud + docs.nuclia.dev) during Progress acquisition transition may cause confusion
Recent Acquisition Risk: June 2025 Progress purchase means platform still maturing under new ownership with potential direction changes
Scalability Concerns: Multiple problems limit scalability - hard to scale nodes up/down, write operations affect concurrent search performance
NO Dropbox Integration: Missing Dropbox connector vs competitors - limits cloud storage sync options
NO Notion Integration: Missing Notion connector - gap for knowledge management workflows
NO YouTube Transcript Extraction: Not explicitly documented vs competitors with video indexing features
Missing Features: NO lead capture, NO human handoff/escalation workflows, NO proactive alerting (monitoring exists, alerting undocumented)
Learning Curve: 30+ RAG parameters and Prompt Lab may feel technical for non-developer teams despite no-code dashboard
Best For: Development teams and technical users - powerful for experts but may overwhelm business users wanting simple deployment
GCP ecosystem dependency: Strongest value for organizations already using Google Cloud - less compelling for AWS/Azure-native companies
No full drag-and-drop chatbot builder: Cloud console manages indexes and search settings, but not a complete no-code GUI like Tidio or WonderChat
Learning curve for non-GCP users: Teams unfamiliar with Google Cloud face steeper learning curve vs platform-agnostic alternatives
Model selection limited to Google: PaLM 2 and Gemini family only - no native Claude, GPT-4, or Llama support compared to multi-model platforms
Requires technical expertise: Deeper customization calls for developer skills - not suitable for non-technical teams without GCP experience
Pricing complexity: Pay-as-you-go model requires careful monitoring to prevent unexpected costs at scale
Overkill for simple use cases: Enterprise RAG capabilities and GCP integration unnecessary for basic FAQ bots or simple customer service
Vendor lock-in considerations: Deep GCP integration creates switching costs if migrating to alternative cloud providers in future
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
After analyzing features, pricing, performance, and user feedback, both Progress Agentic RAG and Vertex AI are capable platforms that serve different market segments and use cases effectively.
When to Choose Progress Agentic RAG
You value proprietary remi v2 model (30x faster inference) addresses hallucination problem with continuous quality monitoring - differentiated capability absent from most competitors
Open-source NucliaDB transparency (710+ GitHub stars) with managed infrastructure removes operational burden while maintaining technical visibility
Genuine no-code accessibility: business users (marketing, HR, legal, support) can deploy functional RAG pipelines in minutes via visual dashboard
Best For: Proprietary REMi v2 model (30x faster inference) addresses hallucination problem with continuous quality monitoring - differentiated capability absent from most competitors
When to Choose Vertex AI
You value industry-leading 2m token context window with gemini models
Comprehensive ML platform covering entire AI lifecycle
Deep integration with Google Cloud ecosystem
Best For: Industry-leading 2M token context window with Gemini models
Migration & Switching Considerations
Switching between Progress Agentic RAG and Vertex AI requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
Progress Agentic RAG starts at $700/month, while Vertex AI begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between Progress Agentic RAG and Vertex AI comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 11, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...