In this comprehensive guide, we compare Azumo and SimplyRetrieve across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between Azumo and SimplyRetrieve, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose Azumo if: you value highly skilled nearshore developers in same timezone
Choose SimplyRetrieve if: you value completely free and open source
About Azumo
Azumo is top-rated nearshore ai development services for custom solutions. Azumo is a leading nearshore software development company specializing in custom AI and machine learning solutions, offering dedicated teams and enterprise-grade development services for businesses looking to build intelligent applications. Founded in 2016, headquartered in San Francisco, CA, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
92/100
Starting Price
$100000/mo
About SimplyRetrieve
SimplyRetrieve is lightweight retrieval-centric generative ai platform. SimplyRetrieve is an open-source tool providing a fully localized, lightweight, and user-friendly GUI and API platform for Retrieval-Centric Generation (RCG). It emphasizes privacy and can run on a single GPU while maintaining clear separation between LLM context interpretation and knowledge memorization. Founded in 2019, headquartered in Tokyo, Japan, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
82/100
Starting Price
Custom
Key Differences at a Glance
In terms of user ratings, Azumo in overall satisfaction. From a cost perspective, SimplyRetrieve offers more competitive entry pricing. The platforms also differ in their primary focus: AI Development versus RAG Platform. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
Azumo
SimplyRetrieve
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
Builds custom ETL pipelines that pull data from your proprietary systems, internal wikis, SharePoint, and cloud storage—so everything ends up in one place.
Works with both unstructured sources—PDFs, HTML, even multimedia—and structured data like databases or spreadsheets, bringing it all together into a single knowledge index.
Learn more
Stores and indexes your content in vector databases such as Pinecone or Weaviate, giving you the flexibility to handle domain-specific data.
Uses a hands-on, file-based flow: drop PDFs, text, DOCX, PPTX, HTML, etc. into a folder and run a script to embed them.
A new GUI Knowledge-Base editor lets you add docs on the fly, but there’s no web crawler or auto-refresh yet.
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
Specializes in bespoke integrations: Azumo can craft custom connectors for your enterprise tools—CRM, ERP, or even internal intranets.
Puts AI agents wherever your users are—web, mobile, Slack, Microsoft Teams—through custom interfaces and API wrappers.
Integration services
Ships with a local Gradio GUI and Python scripts for queries—no out-of-the-box Slack or site widget.
Want other channels? Write a small wrapper that forwards messages to your local chatbot.
Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more.
Explore API Integrations
Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc.
Read more here.
Builds RAG agents that focus on context-rich, accurate answers by pairing advanced relevancy search with thoughtful prompt engineering.
Supports multi-turn conversations with context retention and clear source attribution to bolster trust.
See their approach
Handles complex multi-agent systems and multi-step reasoning whenever the business case calls for it.
Runs a retrieval-augmented chatbot on open-source LLMs, streaming tokens live in the Gradio UI.
Primarily single-turn Q&A; long-term memory is limited in this release.
Includes a “Retrieval Tuning Module” so you can see—and tweak—how answers are built from the data.
Reduces hallucinations by grounding replies in your data and adding source citations for transparency.
Benchmark Details
Handles multi-turn, context-aware chats with persistent history and solid conversation management.
Speaks 90+ languages, making global rollouts straightforward.
Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Customization & Branding
Gives you unlimited room to customize—from the agent’s persona and tone to a fully branded UI—through bespoke development.
Works side-by-side with your team to match brand voice, greetings, fonts, colors, and layouts.
Learn about branding
Default Gradio interface is pretty plain, with minimal theming.
For a branded UI you’ll tweak source code or build your own front end.
Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand.
White-label Options
Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
Uses domain allowlisting to ensure the chatbot appears only on approved sites.
L L M Model Options
Takes a model-agnostic stance, integrating whichever model best fits your project—OpenAI's GPT, Anthropic's Claude, Meta's LLaMA, Cohere, or open-source alternatives.
Defaults to WizardVicuna-13B, but you can swap in any Hugging Face model if you have the GPUs.
Full control over model choice, though smaller open models won’t match GPT-4 for depth.
Taps into top models—OpenAI’s GPT-5.1 series, GPT-4 series, and even Anthropic’s Claude for enterprise needs (4.5 opus and sonnet, etc ).
Automatically balances cost and performance by picking the right model for each request.
Model Selection Details
Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Developer Experience ( A P I & S D Ks)
Delivers a tailor-made API or microservice that meets your integration needs—no off-the-shelf SDKs, just code built for you.
Collaborates closely on endpoint design, using frameworks like LangChain or Haystack internally, and hands over clear docs and code reviews on delivery.
See development process
Interaction happens via Python scripts—there’s no formal REST API or SDK.
Integrations usually call those scripts as subprocesses or add your own wrapper.
Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat.
API Documentation
Lets you build multiple datastores, set role-based access, and tweak system prompts so the agent behaves exactly as you want.
Makes continuous refinement easy—add new training data, tune prompts, or plug in custom logic for tricky queries.
Customization approach
Lets you tweak everything—KnowledgeBase weight, retrieval params, system prompts—for deep control.
Encourages devs to swap embedding models or hack the pipeline code as needed.
Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus.
Learn How to Update Sources
Supports multiple agents per account, so different teams can have their own bots.
Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Pricing & Scalability
Uses a bespoke, project-based pricing model—costs scale with scope, complexity, and timeline, so expect a higher upfront investment than a typical SaaS subscription.
Pricing overview
Architected for enterprise scale: as query volume and data grow, the infrastructure scales right along with you.
Free, MIT-licensed open source—no fees, but you supply the GPUs or cloud servers.
Scaling means spinning up more hardware and managing it yourself.
Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates.
View Pricing
Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
Offers the choice of on-prem or VPC deployments for full data sovereignty.
Implements enterprise-grade encryption, granular access controls, and compliance measures (HIPAA, FINRA, and more) tailored to your industry.
Learn about security
Entirely local: all docs and chat data stay on your own machine—great for sensitive use cases.
No built-in auth or enterprise security—lock things down in your own deployment setup.
Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private.
Security Certifications
Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Observability & Monitoring
Bakes in comprehensive logging and monitoring—tracking query performance, retrieval success, and response times out of the box.
Can tie into your monitoring stack (Splunk, CloudWatch, etc.) for real-time alerts and KPI-driven analytics.
Monitoring capabilities
An “Analysis” tab shows which docs were pulled and how the query was built; logs print to the console.
No fancy dashboard—add your own logging or monitoring if you need broader stats.
Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
Lets you export logs and metrics via API to plug into third-party monitoring or BI tools.
Analytics API
Provides detailed insights for troubleshooting and ongoing optimization.
Support & Ecosystem
Provides white-glove support with a dedicated account manager and direct access to the dev team during and after deployment.
Support details
Leverages a broad technology network—including partnerships like Snowflake—and deep expertise across multiple AI platforms.
Open-source on GitHub; support is community-driven via issues and lightweight docs.
Smaller ecosystem: you’re free to fork or extend, but there’s no paid SLA or enterprise help desk.
Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast.
Developer Docs
Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs.
Enterprise Solutions
Benefits from an active user community plus integrations through Zapier and GitHub resources.
Core Agent Features
Custom RAG Agents: Builds context-rich, accurate answers by pairing advanced relevancy search with thoughtful prompt engineering tailored to specific business needs
Multi-Turn Conversations: Supports conversation context retention and clear source attribution to bolster trust across multi-step interactions
Conversation approach
Multi-Agent Systems: Handles complex multi-agent orchestration and multi-step reasoning when business case demands coordination across specialized agents
Voice & Text Capabilities: Can implement voice agents, text chatbots, or hybrid solutions depending on channel requirements and use case specifications
Custom Analytics: Performance monitoring, query tracking, response time metrics integrated with client monitoring stacks (Splunk, CloudWatch) for KPI-driven insights
Lead Capture & CRM: Custom integration with enterprise CRM systems (Salesforce, HubSpot, Microsoft Dynamics) for lead qualification and contact management
Human Handoff: Configurable escalation logic with full conversation context transfer to human agents when AI confidence drops below thresholds or complex queries detected
Workflow Automation: Connects with enterprise tools (ERP, CRM, internal intranets) for complex multi-step workflows beyond simple Q&A retrieval
Proprietary System Integration: Builds custom connectors for legacy systems, internal databases, and proprietary data sources without published APIs
Bespoke Development: All features custom-built to specifications - no off-the-shelf limitations on functionality or integration capabilities
Retrieval-Centric Generation (RCG): Research-backed approach separating LLM reasoning capabilities from knowledge memorization—more efficient than traditional RAG architectures
Retrieval Tuning Module: Developer-focused transparency layer showing which documents were retrieved, how queries were constructed, and how answers were generated
Knowledge Base Mixing (MoKB): Route queries across multiple selectable knowledge bases with intelligent source selection and weighting
Explicit Prompt Weighting (EPW): Fine-grained control over retrieved knowledge base influence in final answer generation
Single-Turn Q&A Focus: Primarily designed for single-turn question answering—limited multi-turn conversation and context memory
Analysis Tab Transparency: Visual debugging interface showing document retrieval process and query construction for answer inspection
Local Agent Execution: All agent processing happens on-premises with zero external API calls—complete control over agent behavior and data
LIMITATION - No Chatbot UI: Gradio interface for developers only—no polished conversational interface for end users or production deployment
LIMITATION - No Lead Capture: No built-in lead generation, email collection, or CRM integration capabilities—manual implementation required
LIMITATION - No Human Handoff: No escalation workflows, live agent transfer, or fallback mechanisms for complex queries—developer must build these features
LIMITATION - No Multi-Channel Support: No native integrations with Slack, Teams, WhatsApp, or website widgets—requires custom wrapper development
LIMITATION - No Session Management: Stateless interactions without conversation history tracking or multi-turn context retention
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
R A G-as-a- Service Assessment
Platform Classification: CUSTOM AI DEVELOPMENT AGENCY, NOT a self-service RAG platform - delivers bespoke RAG solutions vs providing standardized API service
Architecture Philosophy: Full custom implementation from scratch vs plug-and-play API consumption - requires development partnership not subscription
Target Audience: Enterprises with complex, mission-critical requirements and dedicated budgets ($10K+ minimum) vs developers seeking instant API access
Agentic RAG Capabilities: Implements cutting-edge agentic RAG with multi-agent reasoning, self-validation, real-time orchestration between retrievers/planners/verifiers
Agentic RAG approach
Code Ownership: Clients own delivered code and infrastructure enabling complete control, modification rights, and independent maintenance post-delivery
Deployment Flexibility: On-premise, VPC, cloud-agnostic options for complete data sovereignty vs SaaS vendor lock-in
Developer Experience: Tailor-made APIs and microservices designed for specific integration needs - no generic SDKs but custom endpoints with comprehensive documentation
Implementation Timeline: Weeks to months for delivery vs instant API access - requires discovery, design, development, testing, deployment phases
Ongoing Support: Professional services model with dedicated account manager and direct development team access vs community forums or ticketing systems
Cost Structure: Project-based pricing ($10K-$70K+ range) vs monthly subscription - higher upfront but includes customization, deployment, training
Use Case Fit: Ideal for enterprises needing custom RAG for legacy systems, specialized workflows, compliance requirements; poor fit for rapid prototyping or simple chatbot deployments
Platform Type: NOT A RAG-AS-A-SERVICE PLATFORM - Open-source academic research project for local Retrieval-Centric Generation experimentation and learning
Core Mission: Provide localized, lightweight, user-friendly interface to Retrieval-Centric Generation (RCG) approach for machine learning community exploration and research
Academic Foundation: Published research tool from RCGAI with arXiv paper (2308.03983) explaining RCG methodology and architectural design decisions
Target Market: Researchers, developers, and organizations experimenting with RAG locally without cloud dependencies—NOT commercial service users
Self-Hosted Infrastructure: MIT-licensed tool requiring user-managed GPU hardware or cloud compute—no managed infrastructure, APIs, or service-level agreements
Developer-First Design: Python-based with Gradio GUI and script execution—intended for technical users comfortable with GPU infrastructure and model management
RAG Implementation: Retrieval-Centric Generation (RCG) philosophy emphasizing retrieval over memorization—FAISS vector search with open-source LLMs (WizardVicuna-13B default, any Hugging Face model supported)
API Availability: NO formal REST API or SDKs—interaction via Python scripts and local Gradio interface requiring subprocess calls or custom wrappers
Data Privacy Advantage: 100% local execution with zero external transmission—ideal for classified, PHI, PII, or confidential data requiring air-gapped processing
Pricing Model: Completely free (MIT license) with no subscription fees—only cost is GPU hardware or cloud compute infrastructure
Support Model: Community-driven GitHub Issues and lightweight documentation—no paid support, SLAs, or customer success teams
LIMITATION vs Managed Services: NO managed infrastructure, automatic scaling, production-grade monitoring, enterprise security controls, or commercial support—users responsible for all operational aspects
LIMITATION - No Service Features: NO authentication systems, multi-tenancy, user management, analytics dashboards, or SaaS conveniences—pure research/development tool
Comparison Validity: Architectural comparison to commercial RAG-as-a-Service platforms like CustomGPT.ai is MISLEADING—SimplyRetrieve is open-source research tool for on-premises experimentation, not production service
Use Case Fit: Perfect for offline/air-gapped RAG research, developers learning RAG internals with full transparency, organizations with strict data isolation requirements (defense, healthcare PHI compliance), and teams wanting zero cloud costs with existing GPU infrastructure
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Additional Considerations
Perfect for organizations that need a custom, mission-critical AI solution that integrates with legacy systems or runs complex multi-step workflows.
You own the delivered code and system, giving you ultimate flexibility to maintain or extend it later.
Custom development approach
Expect a higher initial investment and a longer rollout compared with off-the-shelf SaaS tools.
Great for offline / on-prem labs where data never leaves the server—perfect for tinkering.
Takes more hands-on upkeep and won’t match proprietary giants in sheer capability out of the box.
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No- Code Interface & Usability
Doesn't come with a ready-made no-code interface—any admin or user UI is built as part of the custom solution.
While the final UI can be polished and user-friendly, non-developers will generally need developer help for changes.
Basic Gradio UI is developer-focused; non-tech users might find the settings overwhelming.
No slick, no-code admin—if you need polish or branding, you'll build your own front end.
Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing.
User Experience Review
Uses role-based access so business users and devs can collaborate smoothly.
Competitive Positioning
Market position: Premium custom AI development agency specializing in bespoke RAG and AI agent solutions for enterprises with complex, mission-critical requirements
Target customers: Large enterprises and regulated industries (HIPAA, FINRA) needing fully customized AI solutions that integrate with legacy systems and proprietary infrastructure
Key competitors: Deviniti, Contextual.ai (enterprise RAG), Azure AI, OpenAI (enterprise offerings), and internal AI development teams
Competitive advantages: Model-agnostic flexibility, white-glove support with dedicated dev teams, full code ownership, on-prem/VPC deployment options for data sovereignty, and deep expertise across multiple AI platforms including Snowflake partnerships
Pricing advantage: Higher upfront investment than SaaS solutions but provides long-term ownership without recurring subscription costs; best value for organizations with unique, complex requirements that can't be met by off-the-shelf tools
Use case fit: Ideal when you need custom integrations with legacy systems, specialized multi-step workflows, domain-specific fine-tuning, or compliance requirements that demand on-premises deployment and full data control
Market position: MIT-licensed open-source local RAG solution running entirely on-premises with open-source LLMs (no cloud dependency), designed for developers and tinkerers
Target customers: Developers experimenting with RAG locally, organizations with strict data isolation requirements (healthcare, government, defense), and teams wanting complete control without cloud costs or vendor dependencies
Key competitors: LangChain/LlamaIndex (frameworks), PrivateGPT, LocalGPT, and cloud RAG platforms for teams needing simplicity
Competitive advantages: Completely free and open-source (MIT license) with no fees or subscriptions, 100% local execution keeping all data on-premises, full control over model choice (any Hugging Face model), Python-based with full source code access for customization, "Retrieval Tuning Module" for transparency into answer generation, and zero external dependencies beyond local compute
Pricing advantage: Completely free with MIT license; only cost is GPU hardware or cloud compute; best value for teams with existing GPU infrastructure wanting to avoid subscription costs; requires technical expertise and hands-on maintenance
Use case fit: Ideal for offline/air-gapped environments requiring complete data isolation (defense, healthcare with strict PHI requirements), developers learning RAG internals and experimenting locally, and organizations with GPU infrastructure wanting zero cloud costs and complete control over LLM stack without vendor dependencies
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
Primary models: Model-agnostic approach supporting GPT-4, GPT-3.5, Claude 3.5, Gemini, Meta LLaMA 3.3, Qwen 2.5, Cohere, and open-source alternatives
Model selection: Custom selection determined during discovery phase with Azumo development team based on project requirements and use case
Fine-tuning capabilities: Domain-specific model fine-tuning using efficient, scalable techniques on curated and annotated datasets reflecting real business environments
Model switching: Not self-service - model configuration determined by professional services team during implementation
Provider relationships: Works with top LLM providers including OpenAI, Anthropic, Google DeepMind, Meta, DeepSeek, xAI, and Mistral
Hugging Face Compatibility: Swap in any Hugging Face model with sufficient GPU resources (Llama 2, Falcon, Mistral, etc.)
Full Local Control: Models run entirely on-premises with no external API calls or cloud dependencies
Embedding Model: Default multilingual-e5-base for retrieval with option to swap for other embedding models
Model Customization: Fine-tune or quantize models for specific use cases and hardware constraints
No Vendor Lock-In: Complete flexibility to use any open-source LLM without subscription fees or API limits
GPU Requirements: Smaller models may not match GPT-4 depth but enable complete data isolation and zero operational costs
Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request
Model Selection Details
Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
Vector databases: Integration with Pinecone, Weaviate, Qdrant, and other leading vector database solutions for domain-specific data handling
Chunking strategy: Semantic chunking breaks documents into meaningful sections by topic/intent rather than fixed-size pieces; chunk size depends on content type (paragraph-sized for FAQs, larger with overlap for narratives)
Retrieval methods: Advanced relevancy search with reranking to keep only most relevant context; optimization of retrieval components for high accuracy
Context window: Leverages 128k token context windows for large document processing and complex queries
Pipeline optimization: Complete RAG pipeline including chunking, embedding, vector search, reranking, and answer generation with citations
Retrieval-Centric Generation (RCG): Research-backed approach explicitly separating LLM roles from knowledge memorization for more efficient implementation
Retrieval Tuning Module: Transparency into answer generation showing which documents were retrieved and how queries were built
Mixtures-of-Knowledge-Bases (MoKB): Multiple selectable knowledge bases with intelligent routing between knowledge sources
Explicit Prompt-Weighting (EPW): Control over retrieved knowledge base weighting in final answer generation
FAISS Vector Search: Fast approximate nearest neighbor search using Facebook's FAISS library for efficient retrieval
On-the-Fly Knowledge Base Creation: Drag-and-drop documents in GUI to create knowledge bases without manual preprocessing
Analysis Tab: Visual debugging showing document retrieval process and query construction for transparency
Multiple Document Support: Handles PDFs, text files, DOCX, PPTX, HTML, and other common formats
Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks
RAG Performance
Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content
Benchmark Details
Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
Source verification: Always cites sources so users can verify facts on the spot
Enterprise applications: Custom ETL pipelines for proprietary systems, internal wiki integration, SharePoint connectors, multi-step reasoning agents, complex multi-agent systems
Ideal team sizes: Large enterprises with dedicated development teams; projects typically involve teams of 1-15 Azumo members working alongside client teams
Common implementations: Legacy system modernization, SQL Server to Azure migrations, health screening platforms, real-time AI agent assistance with CRM system integration and automated reporting
Deployment timeline: 12-18 month pilot phases common before company-wide rollout; implementations take longer than SaaS solutions but deliver mission-critical custom capabilities
Air-Gapped Environments: Defense, classified research, and secure facilities requiring complete offline operation without external connectivity
Healthcare PHI Compliance: HIPAA-regulated organizations needing 100% data isolation for protected health information
RAG Research & Education: Developers learning RAG internals with full visibility into retrieval and generation processes
Local Experimentation: Prototype RAG applications locally before committing to cloud infrastructure and subscription costs
Data Sovereignty: Organizations with strict data residency requirements preventing cloud storage or processing
Zero-Cost RAG: Teams with existing GPU infrastructure wanting to avoid subscription fees for RAG capabilities
Custom Model Development: Research teams fine-tuning and testing custom LLMs and embedding models for specific domains
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
Certifications: HIPAA with Business Associate Agreement (BAA) capability, FINRA compliance for financial services, GDPR compliance for EU data protection
Deployment options: On-premise or VPC deployments for full data sovereignty and control; cloud-agnostic architecture
Encryption: Enterprise-grade encryption at rest and in transit; granular access controls and role-based permissions
Data retention: Custom data retention policies tailored to industry requirements and compliance mandates
Monitoring: Comprehensive logging and monitoring tied to client monitoring stacks (Splunk, CloudWatch, etc.) for real-time alerts and KPI-driven analytics
Vulnerability management: Continuous security scanning and threat detection for production systems
100% Local Execution: All data and processing stays on-premises with zero external transmission or cloud dependencies
No Third-Party APIs: No external API calls to OpenAI, Anthropic, or other cloud LLM providers
Complete Data Isolation: Ideal for classified, PHI, PII, or confidential data requiring air-gapped processing
No Built-In Authentication: Security implementation is user responsibility in deployment environment
Open-Source Auditing: MIT license with full source code transparency for security reviews and compliance validation
Compliance Flexibility: Can be configured to meet HIPAA, FedRAMP, GDPR, or other regulatory requirements through deployment architecture
Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
SOC 2 Type II certification: Industry-leading security standards with regular third-party audits
Security Certifications
GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
Data isolation: Customer data stays isolated and private - platform never trains on user data
Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
Pricing model: Bespoke project-based pricing with costs scaling by scope, complexity, and timeline; higher upfront investment than SaaS subscriptions
Minimum project size: $10,000+ minimum engagement; average hourly rate $25-49/hour
Project cost range: $4,200 to over $70,000 depending on complexity and requirements
Billing structure: Week-by-week exploratory pricing available for flexibility; custom enterprise agreements for long-term partnerships (average 3.2+ years)
Team composition: Clients work with teams of 1-15 members ensuring quality service and timely delivery
Value proposition: Full code ownership without recurring subscription costs; long-term investment for organizations with unique, complex requirements
Completely Free: MIT open-source license with no subscription fees, API charges, or usage limits
Infrastructure Costs Only: GPU hardware or cloud compute (AWS/GCP/Azure GPU instances) are the only expenses
No Per-Query Charges: Unlimited queries without per-request pricing or rate limits
No Vendor Fees: Zero payments to SaaS providers or LLM API vendors (OpenAI, Anthropic, etc.)
GPU Requirements: Single GPU sufficient for development; scale hardware based on throughput needs
Open-Source Ecosystem: Leverage free Hugging Face models, FAISS library, and PyTorch without licensing costs
Best Value For: Teams with existing GPU infrastructure or ability to provision cloud GPU instances economically
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
Support model: White-glove support with dedicated account manager and direct access to development team during and after deployment
Project management: Weekly meetings, backlog system, continuous engagement throughout project lifecycle and post-delivery assistance beyond original scope
Documentation: Custom documentation delivered with code including endpoint design, architecture diagrams, and implementation guides
Training: In-person training and knowledge transfer sessions with client teams; hands-over clear docs and code reviews on delivery
Response times: Direct communication with dedicated team; no formal SLAs but clients report high responsiveness and transparency
Community: No public community forum; support delivered through professional services engagement model
GitHub Repository: Open-source at github.com/RCGAI/SimplyRetrieve with code, documentation, and examples
Research Paper: Academic publication on arXiv (2308.03983) explaining RCG approach and architecture
Community Support: GitHub Issues for bug reports, feature requests, and community troubleshooting
Lightweight Documentation: README and docs directory with setup instructions and usage examples
No Paid Support: Community-driven support only; no SLAs or enterprise help desk available
Code Examples: Example scripts and Jupyter notebooks demonstrating core functionality
Academic Background: Built on established libraries (Hugging Face, Gradio, PyTorch, FAISS) with extensive external documentation
Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding
Developer Docs
Email and in-app support: Quick support via email and in-app chat for all users
Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
Code samples: Cookbooks, step-by-step guides, and examples for every skill level
API Documentation
Active community: User community plus 5,000+ app integrations through Zapier ecosystem
Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
Higher initial investment: Project-based pricing ($10,000+ minimum) significantly higher than SaaS alternatives; not suitable for small businesses or startups with limited budgets
Longer implementation timeline: Expect 12-18 month pilot phases before enterprise-wide rollout; implementations take weeks to months vs. hours for self-service platforms
Requires technical resources: Organizations need internal development teams to maintain and extend custom solutions post-delivery; not a turnkey solution
Services-driven approach: Model selection, configuration, and customization determined by Azumo team vs. self-service dashboard controls
Learning curve: Custom systems require significant onboarding and training for client teams to operate and maintain effectively
Not ideal for: Simple use cases that can be solved with off-the-shelf tools, organizations seeking rapid deployment without development resources, budget-constrained small businesses
Developer-Only Tool: Requires Python expertise, GPU knowledge, and technical setup—not suitable for non-technical users
GPU Infrastructure Required: Needs dedicated GPU hardware or cloud GPU instances with associated costs and management overhead
Basic UI: Gradio interface is functional but not polished—requires custom front-end development for production use
Limited Scalability: Scaling requires manual infrastructure management and load balancing vs auto-scaling cloud platforms
No Enterprise Features: Missing multi-tenancy, user management, advanced analytics, and production-grade monitoring
Slower Inference: Open-source models on single GPU (few to 10+ seconds per reply) vs sub-second cloud API responses
Manual Knowledge Base Updates: No automatic web crawling, syncing, or scheduled reindexing capabilities
No Pre-Built Integrations: Requires custom development to integrate with Slack, websites, or support platforms
Limited Context Memory: Primarily single-turn Q&A with minimal conversation history retention
Maintenance Burden: User responsible for updates, model management, troubleshooting, and infrastructure maintenance
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
After analyzing features, pricing, performance, and user feedback, both Azumo and SimplyRetrieve are capable platforms that serve different market segments and use cases effectively.
When to Choose Azumo
You value highly skilled nearshore developers in same timezone
Extensive AI/ML expertise since 2016
Flexible engagement models (staff aug or project-based)
Best For: Highly skilled nearshore developers in same timezone
When to Choose SimplyRetrieve
You value completely free and open source
Strong privacy focus - fully localized
Lightweight - runs on single GPU
Best For: Completely free and open source
Migration & Switching Considerations
Switching between Azumo and SimplyRetrieve requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
Azumo starts at $100000/month, while SimplyRetrieve begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between Azumo and SimplyRetrieve comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 18, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...