CODY AI vs Fini AI

Make an informed decision with our comprehensive comparison. Discover which RAG solution perfectly fits your needs.

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT.ai

Fact checked and reviewed by Bill Cava

Published: 01.04.2025Updated: 25.04.2025

In this comprehensive guide, we compare CODY AI and Fini AI across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.

Overview

When choosing between CODY AI and Fini AI, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.

Quick Decision Guide

  • Choose CODY AI if: you value true rag architecture with pinecone vector database and configurable retrieval parameters (relevance score, token distribution, focus mode)
  • Choose Fini AI if: you value industry-leading 97-98% accuracy claim backed by customer testimonials

About CODY AI

CODY AI Landing Page Screenshot

CODY AI is business-focused no-code rag platform with source attribution. Business-focused RAG-as-a-Service platform enabling no-code AI assistant creation trained on custom knowledge bases. Acquired by Just Build It (May 2024), claims 100,000+ businesses as customers. TRUE RAG platform with Pinecone vector database, multi-LLM support (GPT-4, Claude 3.5, Gemini 1.5, Llama 3.1 on Enterprise), and comprehensive REST API. Differentiators: source attribution with every response, Focus Mode (inject 1,000 docs into context), 15-minute bot deployment. Critical gaps: NO direct SOC 2 certification (infrastructure partners only), NO official SDKs, NO native cloud storage integrations. $0-$249/month credit-based pricing. Founded in 2022, headquartered in United States, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
85/100
Starting Price
$29/mo

About Fini AI

Fini AI Landing Page Screenshot

Fini AI is ragless ai agent for customer support automation. Fini AI is a next-generation customer support platform built on proprietary RAGless architecture, claiming 97-98% accuracy. Founded by ex-Uber engineers and backed by Y Combinator, Fini specializes in action-taking AI agents that execute refunds, update accounts, and verify identities—going beyond traditional RAG document retrieval. Founded in 2022, headquartered in Amsterdam, Netherlands, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
91/100
Starting Price
Custom

Key Differences at a Glance

In terms of user ratings, Fini AI in overall satisfaction. From a cost perspective, Fini AI offers more competitive entry pricing. The platforms also differ in their primary focus: AI Chatbot versus AI Agent. These differences make each platform better suited for specific use cases and organizational requirements.

⚠️ What This Comparison Covers

We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.

Detailed Feature Comparison

logo of cody
CODY AI
logo of finai
Fini AI
logo of customGPT logo
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
  • Supported formats: PDF, Word (.doc/.docx), PowerPoint (.ppt/.pptx), plain text files with 100MB maximum file size per document
  • Built-in text editor: Direct text input for creating knowledge base entries without file uploads
  • Website crawler (Premium/Advanced): Import up to 25,000 pages on Advanced tier with automatic recurring re-imports for up to 9 websites
  • Document capacity by tier: Free (100 documents), Basic (1,000), Premium (10,000), Advanced (25,000 documents + 25,000 crawled web pages)
  • Storage architecture: Amazon S3 with SSE-S3 encryption protocol for documents, Pinecone vector database (SOC 2 Type II certified) for embeddings
  • Dynamic chunking algorithm: Adjusts chunk size based on token distribution for optimal retrieval performance (specific parameters not publicly documented)
  • Manual retraining: Always available for immediate knowledge base updates across all plans
  • Automatic syncing: Limited to website sources only with recurring re-imports (not available for uploaded documents)
  • CRITICAL LIMITATION: No NO YouTube transcript support - cannot ingest video content from YouTube for training
  • CRITICAL LIMITATION: No NO native cloud integrations - Google Drive, Dropbox, Notion connections only via Zapier (adds friction vs direct OAuth)
  • LIMITATION: No NO audio file support (MP3, M4A), No NO video file support (MP4), No NO code file ingestion, No NO Excel/CSV direct import
  • Supports PDF, Word/Docs, plain text, JSON, YAML, and CSV files
  • Full website crawling for web links
  • Note: YouTube transcript ingestion NOT supported - LLMs "not great at interpreting images or videos directly"
  • Cloud integrations: Native connections to Google Drive, Notion, Confluence, and Guru
  • Zendesk and Intercom serve as both knowledge sources (historical tickets) and deployment channels
  • Note: Dropbox integration not available
  • Chat2KB feature (Growth/Enterprise): Auto-extracts Q&A pairs from conversations, emails, tickets
  • Real-time knowledge refresh - updated content used immediately
  • Intelligent conflict resolution automatically removes contradictory information
  • Scaling: Starter 50 docs → Growth 1,000 docs → Enterprise unlimited
  • Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
  • Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
  • Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text. View Transcription Guide
  • Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier. See Zapier Connectors
  • Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
  • Native Slack integration: Free for all users with /assign-bot command for channel-specific bot assignment and @mentions for queries
  • Native Discord integration: Users mention @Cody for queries within Discord servers (free for all users)
  • Zapier integration: Connects to 5,000+ apps including Telegram, Facebook Messenger, Google Sheets, Google Docs, WhatsApp (via ecosystem)
  • Website embedding (3 methods): Shareable links (direct URLs without site modification), inline embeds (widgets within page sections), popup embeds (floating chat bubbles)
  • REST API v1.0: Full API access on all paid plans with documentation at developers.meetcody.ai
  • Third-party platforms: Pipedream (pre-built integration), n8n (via HTTP Request nodes for workflow automation)
  • CRITICAL GAPS: No NO Microsoft Teams native integration (Zapier workaround required), No NO WhatsApp Business native integration (Zapier only), No NO Google Drive/Dropbox/Notion native connections
  • LIMITATION: No NO webhook functionality explicitly documented in API - potential constraint for event-driven architectures and real-time notifications
  • 20+ native helpdesk integrations (no Zapier dependency)
  • Zendesk: Native marketplace app with full ticket management, auto-tagging, email/chat/social
  • Intercom: Native with Fin compatibility, works within ticketing backend
  • Salesforce Service Cloud: CRM sync, case management
  • Front: AI auto-replies, trains on conversation history
  • Gorgias: Email-to-chat automation, internal note generation
  • HubSpot: CRM integration, customer context sync
  • Also: LiveChat, Freshdesk, Help Scout, Kustomer, Gladly, Re:amaze
  • Omnichannel: Slack, Discord, Microsoft Teams for internal/community support
  • WhatsApp, Messenger, Instagram via Zendesk/Intercom routes (not native)
  • Note: Telegram not explicitly supported
  • Website embedding: Fini Widget (chat bubble), Fini Search Bar, Fini Standalone (full-page)
  • Chrome Extension: "Answer with Fini" for agent productivity across Gmail, Intercom, Zendesk
  • Note: Zapier integration absent - focuses on native integrations
  • Webhooks marked "Coming Soon" (Zendesk-specific available now)
  • Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
  • Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more. Explore API Integrations
  • Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
  • Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
  • Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc. Read more here.
  • Supports OpenAI API Endpoint compatibility. Read more here.
Native Slack & Discord Integration ( Differentiator)
  • Slack /assign-bot command: Assign specific bots to dedicated channels for departmental organization (e.g., IT bot in #it-support, HR bot in #hr-questions)
  • Free for all users: Native integrations available even on Free plan ($0/month) vs competitors requiring paid tiers or Zapier workarounds
  • Discord @Cody mentions: Direct mention-based querying within Discord servers for community support or team collaboration
  • Context preservation: Conversation history maintained within Slack/Discord threads for multi-turn interactions
  • Competitive advantage: Zero-friction deployment for Slack/Discord workspaces vs API-based integrations requiring developer involvement (7.5/10 rated differentiator)
  • Use case fit: Internal documentation assistants, IT support bots, HR policy Q&A within existing communication channels
N/A
N/A
Source Attribution & Transparency ( Core Differentiator)
  • Automatic citation: Every AI response includes links to exact documents used for generation enabling click-through verification
  • Source verification interface: Centralized conversation logs allow examination of which documents informed each response for audit trails
  • Trust building: Users can validate AI answers against source material reducing hallucination concerns and increasing adoption confidence
  • Knowledge gap identification: Responses lacking sufficient sources highlight areas needing additional training data
  • Compliance advantage: Source traceability supports regulatory requirements for explainable AI in regulated industries (healthcare, finance, legal)
  • Competitive positioning: Explicit citation vs black-box responses in competitors positions CODY for accuracy-critical use cases (9/10 rated differentiator)
  • User feedback: Reviews highlight source attribution as primary trust-building feature reducing manual fact-checking burden
N/A
N/A
Focus Mode ( Core Differentiator)
  • Targeted context injection: Inject up to 1,000 specific documents into single conversation context vs retrieving from full knowledge base
  • Use cases: Department-specific queries (HR policies for HR team, engineering docs for dev team), project-scoped assistance, client-specific information isolation
  • Noise reduction: Constrains retrieval to relevant subset preventing irrelevant information from interfering with responses
  • API support: Focus Mode available via REST API conversations endpoint with document ID array parameter for programmatic control
  • Performance advantage: Smaller search space improves retrieval speed and relevance vs full-corpus semantic search
  • Unique capability: Few RAG platforms offer explicit context scoping at this granularity - most retrieve from entire knowledge base (8.5/10 rated differentiator)
N/A
N/A
Core Chatbot Features
  • Multilingual support: Build and interact with chatbots in any language with no language restrictions or translation layers
  • Conversation memory: Context retention with configurable token distribution (e.g., 70% context, 10% history, 20% response) for multi-turn interactions
  • Conversation history logging: Centralized interface with filtering by bot or date range, tiered retention (14 days Basic, 30 days Premium, 90 days Advanced)
  • Conversational Interface: Securely upload documents (PowerPoints, PDFs) or crawl entire websites to build company-specific knowledge base and quickly retrieve precise information
  • Traceable Source Attribution: Every answer comes with traceable sources letting users verify accuracy and track where specific information originated
  • Prompt templates: Shareable custom prompts with variables across team members for consistent bot behavior
  • Conversation sharing: Share conversations with team via dedicated sharing option for collaboration and quality review
  • Scratchpad feature: Save, refine, and use derivatives of AI-generated responses to improve specificity over time with micro-management capabilities
  • Bot Personality Customization: Complete control over bot personality and description to define how bot presents itself and engages with users when creating new bot
  • LIMITATION: No NO native lead capture - requires custom implementation via API or Zapier workflows (vs built-in form capture in competitors)
  • LIMITATION: No NO automated human handoff - escalation achieved only through prompt engineering with manual contact info (no automated queue routing or agent assignment)
  • LIMITATION: Note: Basic analytics only - conversation logs and usage monitoring without advanced dashboards for funnel analysis or trend identification
  • Sophie AI Agent: 5-layer supervised execution framework
  • Layer 1 - Safety Guardrails: 40+ filters, PII masking (SSN, credit cards, passports), brand tone compliance
  • Layer 2 - LLM Supervisor: Core orchestration brain that determines resolution paths
  • Layer 3 - Skill Modules: Deterministic modules for Search, Write, Follow Process, Take Action
  • Layer 4 - Live Feedback: Auto-validates outputs, detects errors, learns from corrections
  • Layer 5 - Traceability: Full audit trail of decisions and reasoning
  • 100+ language support with locale-based routing and real-time translation
  • Human handoff preserves full conversation context
  • Configurable escalation triggers: keywords, sentiment analysis, topic-based rules, confidence thresholds
  • Conversation history with sentiment tracking and export (CSV, JSON)
  • AI Categorization auto-tags conversations by topic with intent classification
  • Reduces hallucinations by grounding replies in your data and adding source citations for transparency. Benchmark Details
  • Handles multi-turn, context-aware chats with persistent history and solid conversation management.
  • Speaks 90+ languages, making global rollouts straightforward.
  • Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Widget Customization & White- Labeling
  • Header customization: Layout alignment, business logo upload, color schemes, title and subtitle text configuration
  • Chat interface styling: Message bubble size, background colors, bot and human avatar customization
  • Composer controls: Placeholder text customization, send button icon selection
  • Launcher configuration: Size adjustment, screen position (left/right/bottom), floating button color, custom launcher icons
  • Full translation support: Widget UI fully translatable to any language for global deployment consistency
  • White-labeling (Premium/Advanced): Complete CODY branding removal requires Premium ($99/month) or Advanced ($249/month) - not available on Free/Basic tiers
  • LIMITATION: No NO domain restriction capabilities documented - cannot limit widget usage to specific domains (security consideration for production deployments)
  • LIMITATION: Role-based access includes team member limits by tier (3/10/30 members on Basic/Premium/Advanced) with per-chatbot permission enforcement
N/A
N/A
L L M Model Options
  • Basic plan: GPT-3.5 Turbo only (1 credit per query)
  • Premium/Advanced plans: GPT-3.5 Turbo, GPT-3.5 16K (5 credits), GPT-4 (10 credits), Claude Sonnet
  • Enterprise plan: Six LLM providers - Llama 3.1, Claude 3.5 Sonnet, GPT-4o, Gemini 1.5, Mixtral-8x7B, GPT-3.5 Turbo
  • Credit-based consumption: GPT-3.5 Turbo (1 credit), GPT-3.5 16K (5 credits), GPT-4 (10 credits) per query with transparent per-model costs
  • API model field: REST API returns 'model' field indicating which LLM generated each response for tracking and analysis
  • Proprietary optimizations: Scratchpad (micro-managing responses), Template Mode (pre-defined prompts), Reverse Vector Search (merging AI and user responses for relevance)
  • LIMITATION: No NO automatic model routing - users must manually select models, no dynamic routing based on query complexity or cost optimization (vs intelligent routing in competitors)
  • LIMITATION: Enterprise-only access to advanced models (Claude 3.5, Gemini 1.5, Llama 3.1) locks out SMBs on lower tiers from latest LLM capabilities
  • Starter (Free): GPT-4o mini only
  • Growth: GPT-4o mini + Claude (version unspecified)
  • Enterprise: GPT-4o + Multi-layer models
  • Multi-layer model architecture (Enterprise): Automatic routing to best-suited LLM per query part
  • Complex queries decomposed into sub-queries with specialized agents per part
  • Maximizes accuracy while controlling costs through intelligent routing
  • Note: No user-controlled runtime model switching - plan-based selection only
  • RAGless architecture: Query-writing AI, not traditional vector search
  • "No embeddings, no hallucinations" - precise source attribution
  • Bypasses retrieval at inference time for deterministic results
  • Taps into top models—OpenAI’s GPT-5.1 series, GPT-4 series, and even Anthropic’s Claude for enterprise needs (4.5 opus and sonnet, etc ).
  • Automatically balances cost and performance by picking the right model for each request. Model Selection Details
  • Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
  • Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Developer Experience ( A P I & S D Ks)
  • REST API v1.0: Comprehensive with Bearer token authentication, last updated May 2024
  • Bots endpoint: List bots with keyword filtering for discovery and management
  • Conversations endpoint: Full CRUD operations with Focus Mode parameter (inject specific document IDs into context)
  • Messages endpoint: Send/receive with optional SSE streaming for real-time responses and progressive answer display
  • Documents endpoint: Upload files (up to 100MB max), create from text/HTML, import webpages programmatically
  • Folders endpoint: Organizational structure management for knowledge base hierarchy
  • Uploads endpoint: AWS S3 signed URLs for direct file uploads bypassing API size limits
  • Rate limiting: Standard headers (x-ratelimit-limit, x-ratelimit-remaining, x-ratelimit-reset, retry-after) with limits viewable in account settings
  • Monthly query limits: 250 queries (Free), 2,500 (Basic), 10,000 GPT-3.5 queries or 1,000 GPT-4 queries (Premium), 15,000 GPT-3.5 16K queries (Advanced)
  • API changelog: Tracks breaking changes with explicit "Breaking" labels for version management
  • CRITICAL LIMITATION: No NO official SDKs for Python, JavaScript, Node.js, or any language - all integrations require direct REST API calls (development friction)
  • LIMITATION: No NO webhook functionality explicitly documented - limits event-driven architectures and real-time notification patterns
  • LIMITATION: Documentation quality functional but limited - clear endpoint docs with curl examples and response schemas but lacking tutorials, cookbooks, comprehensive code samples
  • Base URL: https://api-prod.usefini.com
  • Authentication: Bearer Token via API key (generated per bot in Dashboard)
  • Current Version: v2 (no documented versioning policy)
  • Core Endpoints: /v2/bots/ask-question (Q&A), /v2/bots/links/* (knowledge management)
  • Store Feedback, Get Chat History, Knowledge Items CRUD
  • Supports: messageHistory, instruction, stream, temperature, user_attributes, functions (JSON Schema)
  • Note: NO official SDKs for Python, JavaScript, or any language
  • Documentation provides basic Python (requests) and Node.js examples only
  • Documentation quality:
  • - Completeness: 3/5 (covers main endpoints, lacks depth)
  • - Code examples: 4/5 (good Python/Node.js examples)
  • - Error handling: 2/5 (no error codes documented)
  • - Rate limits: 1/5 (not documented)
  • Paramount: Open-source tool (github.com/ask-fini/paramount) for agent accuracy measurement
  • Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat. API Documentation
  • Offers open-source SDKs—like the Python customgpt-client—plus Postman collections to speed integration. Open-Source SDK
  • Backs you up with cookbooks, code samples, and step-by-step guides for every skill level.
R A G Implementation & Accuracy
  • TRUE RAG architecture: Pinecone vector database (SOC 2 Type II certified) with Amazon S3 document storage and SSE-S3 encryption
  • Dynamic chunking: Algorithm adjusts chunk size based on token distribution for optimal retrieval (specific parameters not publicly documented)
  • Relevance Score configuration: Adjustable trade-off between accuracy and completeness for retrieval tuning
  • Token Distribution control: Split configuration between context, history, and response (e.g., 70% context, 10% history, 20% response) for resource allocation
  • Persist Prompt feature: Continuous re-emphasis of system prompt for instruction compliance and behavior consistency
  • Reverse Vector Search: Proprietary technique merging AI and user responses for improved relevance matching
  • Creativity Settings: Options for "creative," "balanced," or "factual" outputs controlling temperature and generation style
  • Hallucination mitigation: Source citation with every response enables verification, Focus Mode constrains responses to specific documents reducing irrelevant injection
  • LIMITATION: No NO published benchmark results or quantitative accuracy metrics - no public validation of RAG performance claims vs competitors
  • LIMITATION: User reviews note "accuracy relies heavily on the quality of uploaded documents" with occasional struggles reported about document facts
N/A
N/A
Performance & Accuracy
  • Response time: Sub-500ms end-to-end latency target for typical queries on Premium/Advanced plans using GPT-3.5 Turbo (verified from user reports and platform specifications)
  • Accuracy metrics: No publicly published accuracy benchmarks or F1 scores; user reviews on G2 (4.7/5 stars, 150+ reviews) and Capterra (4.8/5, 50+ reviews) report generally high satisfaction with answer quality when knowledge base is well-curated
  • Context retrieval: Dynamic chunking with Pinecone vector database ensures relevant context retrieval; Relevance Score configuration allows tuning precision vs. recall tradeoff; Focus Mode (1,000-doc context injection) improves targeted retrieval accuracy
  • Scalability: AWS infrastructure with isolated Kubernetes containers on Enterprise plan supports high-volume deployments; Free plan supports 250 queries/month, scales to "unlimited" on Enterprise with custom infrastructure
  • Reliability: No public SLA or uptime guarantees on Free/Basic/Premium/Advanced plans; Enterprise plan offers SLA guarantees with dedicated infrastructure (specific uptime % requires sales engagement)
  • Benchmarks: No published performance benchmarks comparing retrieval speed, accuracy, or latency against competitors (ChatBase, Vectara, CustomGPT); users report "accuracy relies heavily on quality of uploaded documents" with occasional struggles on complex queries
  • Quality indicators: Source attribution feature enables verification of AI responses; G2 reviews highlight accuracy as strength when knowledge base is comprehensive, with some users noting need for careful prompt engineering
  • 97-98% accuracy claim across marketing materials and customer testimonials
  • Customer results:
  • - Column Tax: "Sophie's accurate in over 97% of cases, solves 85%+ of queries"
  • - Qogita: "Maggie's accurate in over 90% of cases"
  • - Qogita case study: 88% ticket resolution, 121% SLA improvement
  • - Column Tax: 94% accuracy, 98% queries resolved
  • Hallucination prevention via 6 mechanisms:
  • 1. RAGless architecture eliminates "black box retrieval"
  • 2. LLM filtering removes irrelevant/outdated knowledge pre-response
  • 3. Confidence-based gating escalates to humans when uncertain
  • 4. Every answer "LLM-reviewed—not just LLM-generated"
  • 5. Guardrails layer provides proactive safety checks
  • 6. Deterministic Skill Modules ensure business logic consistency
  • Accuracy measurement tools:
  • - Sophia AI Evaluator (Growth/Enterprise): Auto-evaluates correctness, tone, completeness
  • - Paramount: Open-source Python tool for tracking accuracy improvements
  • - CXACT Benchmarking Suite: Proprietary framework (whitepaper)
  • General claim: 80% of support tickets resolved end-to-end without human intervention
  • Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
  • Independent tests rate median answer accuracy at 5/5—outpacing many alternatives. Benchmark Results
  • Always cites sources so users can verify facts on the spot.
  • Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
Customization & Branding
  • UI customization: Full widget customization including header layout alignment, message bubble size/colors, background colors, bot and human avatars, composer placeholder text, send button icons
  • Branding control: Business logo upload, color schemes (header, chat interface, launcher button), title and subtitle text configuration, full translation support for widget UI in any language
  • White-labeling: Complete removal of Cody branding available on Premium ($99/month) and Advanced ($249/month) plans; Free and Basic plans display Cody branding on widgets
  • Custom domain: Not explicitly documented in public materials; likely requires Enterprise plan with custom deployment infrastructure (specifics require sales engagement)
  • Design flexibility: Launcher configuration with size adjustment, screen position (left/right/bottom), custom launcher icons; three embedding methods (shareable links, inline embeds, popup embeds) for flexible deployment
  • Mobile customization: Responsive widget design adapts to mobile devices; mobile-specific branding controls not separately documented (inherits desktop configuration)
  • LIMITATION: No documented domain restriction capabilities to limit widget usage to specific domains (security consideration for production deployments)
  • Role-based access: Team member limits by tier (3/10/30 members on Basic/Premium/Advanced) with per-chatbot permission enforcement and real-time updates
  • GUI-based chat widget editor (full CSS access not documented)
  • Options: Logo upload, brand color selection, title/description customization
  • Welcome messages, pre-defined FAQ questions, reference link visibility toggles
  • Streaming response toggles
  • White-labeling: Custom domain via CNAME, full logo replacement, agent identity renaming
  • 100+ tone options: Friendly, Professional, TaxAssistant, Finance advisor, Casual, Super polite
  • Domain restrictions: Specific domain lock, wildcard (*.domain.com), or unrestricted
  • Flows (Mini Specialized Agents): No-code specialized workflows for specific tasks
  • User context capture from backend systems
  • Dynamic routing based on user category (VIP, first-time, veteran)
  • Metadata-driven personalization: plan type, churn risk, subscription tier, purchase history
  • Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand. White-label Options
  • Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
  • Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
  • Uses domain allowlisting to ensure the chatbot appears only on approved sites.
No- Code Interface & Usability
  • Visual builder: Three-step bot creation process - (1) add data to knowledge base, (2) define bot purpose/personality, (3) test and share; no drag-and-drop interface, but prompt engineering UI with visual prompt builder including variables and template sharing
  • Setup complexity: 15-minute bot deployment from account creation to live widget (verified from marketing materials and user reviews); no technical expertise required for basic deployment
  • Learning curve: User reviews on G2 note "easy to set up" with "intuitive interface," but some users report learning curve for customizing bots to specific business needs despite no-code design; Capterra reviews highlight quick adoption for non-technical teams
  • Pre-built templates: 11+ templates including Marketing Assistant, HR Chatbot, IT Support, Customer Support, Sales Assistant, Training Bot, Translator AI, Hiring Assistant; each template includes sample prompts, recommended knowledge base content, and example queries
  • No-code workflows: Model switching (GPT-3.5/GPT-4/Claude/Gemini) without technical reconfiguration; conversation sharing and scratchpad feature for response refinement; testing simulator for pre-launch validation
  • User experience: G2 rating 4.7/5 (150+ reviews), Capterra 4.8/5 (50+ reviews); users praise ease of deployment and source attribution, note occasional need for prompt engineering expertise to optimize bot behavior
  • LIMITATION: No drag-and-drop conversation flow builder or visual automation designer like Botpress/Voiceflow; focuses on prompt-based configuration rather than graphical flow design
  • Time to go live:
  • - "2 minutes" initial setup (provide links to knowledge base)
  • - "Day 1 Ready-to-Use" confirmed
  • - Less than 1 week full integration (G2 review verified)
  • - Enterprise: 1-2 weeks with no-code dashboard
  • No-code deployment options:
  • 1. Fini Widget (chat bubble - JavaScript snippet)
  • 2. Fini Search Bar (embeddable knowledge search)
  • 3. Fini Standalone (full-page interface)
  • 4. Native helpdesk installations (one-click for Zendesk, Intercom)
  • 5. Chrome Extension for agent productivity
  • Admin dashboard structure:
  • - Home Screen: Central hub for AI agent creation and deployment tracking
  • - Knowledge Hub: External sync (Notion, Confluence, Drive), knowledge items
  • - Prompt Configurator: Escalation guidelines, incident instructions, categorization, guardrails
  • - All configurable without code
  • Pre-built templates: E-commerce, fintech, SaaS onboarding workflows
  • Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
  • Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing. User Experience Review
  • Uses role-based access so business users and devs can collaborate smoothly.
Security & Privacy
  • CRITICAL LIMITATION: No CODY itself NOT SOC 2 certified - Help Center explicitly states "As an early stage startup, we are diligently working towards earning SOC 2 compliance"
  • Infrastructure compliance: Pinecone vector database (SOC 2 Type II certified), AWS S3 (PCI-DSS, HIPAA/HITECH, FedRAMP, FISMA compliant via AWS certification)
  • GDPR Compliant: Via AWS infrastructure in EU regions for European data residency and privacy requirements
  • Document storage: Amazon S3 with SSE-S3 encryption protocol for data at rest, TLS for transit
  • AI training policy: Customer data explicitly NOT used for training - "Your data will not be used to train any existing or new language model"
  • OpenAI data retention: API policy ensures data retained maximum 30 days for abuse monitoring only (not for model training)
  • Access controls: Per-chatbot permissions with real-time updates, API key management, role-based team member access
  • Enterprise security: Isolated Kubernetes containers on AWS with role-based security and custom infrastructure options
  • Procurement concern: Lack of direct SOC 2 certification may block enterprise adoption in regulated industries requiring vendor compliance attestations
  • Confirmed certifications:
  • - SOC 2 Type II: Certified (zero audit findings per Sprinto case study)
  • - ISO 27001: Certified
  • - ISO 42001: Certified (AI governance standard - rare achievement)
  • - GDPR: Compliant with full data subject rights, EU data residency option
  • Note: HIPAA status conflicting: Marketing claims compliance, but case study says "next up"
  • PCI DSS: Claimed but not on official pricing page security section
  • Data privacy guarantees:
  • - "We do not train on your data" policy with formal DPA with OpenAI
  • - PII Shield Layer: Auto-masks SSN, passport, driver's license, taxpayer ID, credit cards
  • - AES-256 encryption at rest, TLS 1.3 in transit
  • - EU and US data residency options
  • - Dedicated AI instance option (Enterprise only)
  • Access controls: RBAC (Growth/Enterprise), SSO (all tiers), audit logging
  • Note: IP whitelisting not documented
  • Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
  • Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private. Security Certifications
  • Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Observability & Monitoring
  • Conversation logs: Centralized view of all interactions across interface, API, and website widgets with searchability
  • Filtering capabilities: By bot or date range for quick access to specific conversation subsets
  • Source verification: Click-through to examine exact documents used for each response enabling audit trails
  • Usage tracking: Real-time credit consumption monitoring in dedicated usage tab for cost management
  • Tiered log retention: 14 days (Basic), 30 days (Premium), 90 days (Advanced) - historical analysis constrained on lower plans
  • Third-party mentions: Usage pattern monitoring, performance metrics, common question tracking, knowledge gap identification (features lack detailed public documentation)
  • LIMITATION: Note: Advanced analytics dashboard features mentioned in sources lack public screenshots or comprehensive documentation (transparency gap)
  • LIMITATION: No NO real-time alerting for conversation volume spikes, error rates, or performance degradation
  • LIMITATION: No NO funnel analytics or conversion tracking for lead generation use cases
  • Fini 2.0 Observability (January 2025 release):
  • - AI resolution rate and fallback frequency
  • - Message quality and confidence scores per response
  • - CSAT trends over time
  • - Agent productivity metrics (resolution time, escalation frequency)
  • - Category-level performance breakdowns
  • - Step-level drop-off analysis
  • Chat History dashboard (February 2025):
  • - Centralized view: source, question, answer, thread, categories, ticket ID, knowledge source
  • - Filtering by channel, intent, escalation status, resolution rate, KB tags
  • - Keyword/phrase search across historical conversations
  • - CSV and JSON export for Looker, Tableau
  • - Real-time updates as conversations occur
  • AI Categorization: Auto-tags by topic (returns, login, pricing, shipping)
  • Knowledge gap analysis: Identifies unanswerable questions with automated content improvement suggestions
  • Bulk-flagging of problematic conversations
  • Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
  • Lets you export logs and metrics via API to plug into third-party monitoring or BI tools. Analytics API
  • Provides detailed insights for troubleshooting and ongoing optimization.
No- Code Interface & Templates ( Core Differentiator)
  • 15-minute bot deployment: Three-step process - (1) add data to knowledge base, (2) define bot purpose/personality, (3) test and share
  • 11+ pre-built templates: Marketing Assistant, HR Chatbot, IT Support, Customer Support, Sales Assistant, Training Bot, Translator AI, Hiring Assistant
  • Template components: Sample prompts, recommended knowledge base content, example queries for rapid deployment
  • Model-agnostic interface: Switch between GPT-3.5, GPT-4, Claude, Gemini without technical reconfiguration
  • Prompt engineering UI: Visual prompt builder with variables, template sharing across team members, version control
  • Testing simulator: Test bot responses before publishing with conversation preview and refinement loops
  • Role-based access: Team member limits (3/10/30 by tier), per-chatbot permission enforcement, real-time permission updates
  • Target audience advantage: Business teams deploy knowledge assistants without developer resources vs API-centric platforms requiring technical expertise (9/10 rated differentiator for non-technical users)
N/A
N/A
Proprietary R A G Optimizations ( Differentiator)
  • Scratchpad: Save, refine, and use derivatives of AI-generated responses to improve specificity through micro-management and iterative enhancement
  • Template Mode: Pre-defined prompts with variables for consistent behavior patterns across conversations and use cases
  • Reverse Vector Search: Proprietary technique merging AI responses and user inputs for improved relevance matching and context awareness
  • Dynamic chunking: Algorithm adjusts chunk size based on token distribution rather than fixed-size chunks (adaptive optimization)
  • Persist Prompt: Continuous re-emphasis of system prompt throughout conversation preventing instruction drift in long conversations
  • Creativity Settings: Granular control over "creative," "balanced," or "factual" outputs for use-case-specific tone adjustment
  • Competitive positioning: Proprietary optimizations differentiate from standard RAG implementations but lack published performance benchmarks (7/10 rated differentiator)
N/A
N/A
Pricing & Scalability
  • Free plan: $0/month - 100 credits, 100 documents, 1 team member, 1 widget, NO API access, NO crawler, monthly query limit 250
  • Basic plan: $29/month - 2,500 credits, 1,000 documents, 3 team members, 14-day conversation logs, API access, GPT-3.5 only
  • Premium plan: $99/month - 10,000 credits, 10,000 documents, 10 team members, 30-day logs, website crawler (500 URLs), white-labeling, GPT-4/Claude access
  • Advanced plan: $249/month - 25,000 credits, 25,000 documents + 25,000 crawled pages, 30 team members, 90-day logs, 9 recurring website re-imports, 50 embed sites
  • Enterprise plan: Custom pricing - Unlimited credits, custom documents/members, SLA guarantees, dedicated infrastructure, on-premises/multi-cloud/hybrid deployment, 6 LLM providers
  • Credit consumption: GPT-3.5 Turbo (1 credit), GPT-3.5 16K (5 credits), GPT-4 (10 credits) per query with transparent per-model costs
  • Cost predictability: Credit-based model enables budget forecasting - 2,500 GPT-3.5 queries or 250 GPT-4 queries on Basic ($29/month)
  • Enterprise features: Custom feature development, SLA guarantees, role-based security with isolated Kubernetes containers, deployment flexibility (on-prem/multi-cloud/hybrid)
  • Note: Pricing NOT publicly disclosed - requires sales contact
  • Starter (Free): GPT-4o mini, ~50 questions/month, ~50 docs, ~5 users, 2 bots, SSO only
  • Growth: Estimated $999/mo (3rd party) - GPT-4o mini/Claude, 1K docs, unlimited users
  • Growth includes: SOC 2, GDPR, ISO 27001, RBAC, Chat2KB, Sophia AI Evaluator
  • Enterprise: Custom pricing - GPT-4o, Multi-layer models, unlimited docs
  • Enterprise adds: Dedicated AI instance, AI Actions, full compliance, white-glove onboarding
  • Cost model: Cost-per-resolution rather than per-seat pricing
  • Zero-Pay Guarantee: Only pay if >80% accuracy thresholds met
  • Note: Third-party mentions: "$0.10/interaction" (SaaSworthy) - unverified
  • Support tiers: White-glove onboarding, 60-day implementation program
  • Weekly alignment calls during implementation
  • Enterprise: Dedicated AI engineers, customer success managers, 24/7 Slack channels
  • Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
  • Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates. View Pricing
  • Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Support & Ecosystem
  • API documentation: developers.meetcody.ai with endpoint reference, curl examples, response schemas, API changelog with breaking change labels
  • Help Center: intercom.help/cody/en/ with getting started guides, compliance information, security bulletins
  • Active Discord community: Peer support and user knowledge sharing for troubleshooting and best practices
  • Email support: support@meetcody.ai for all users across all plans
  • Blog: Tutorials and guides for use case implementation and platform features
  • Advanced plan: Dedicated account manager for onboarding and optimization guidance
  • Enterprise SLA: Guaranteed response times and uptime commitments (specifics require sales engagement, not publicly documented)
  • LIMITATION: No NO phone support available on any tier (email and community only)
  • LIMITATION: No NO live chat support documented for real-time assistance
  • Documentation quality: Functional but limited - clear endpoint docs and response schemas but lacking tutorials, cookbooks, comprehensive code samples for advanced implementations
  • User feedback: Reviews note learning curve for customizing bots to specific business needs despite no-code interface
  • Founding team: Ex-Uber engineers (CEO led 4M+ interactions/month at Uber)
  • Backed by: Y Combinator Summer 2022 ($125K seed), Matrix Partners
  • Angel investors from Uber, Intercom, Softbank, McKinsey, Twitter
  • Company metrics: ~$2.5M annual revenue, 14 employees, 500K+ tickets/month
  • Customers: HackerRank, Qogita, Column Tax, Atlas, TrainingPeaks, Bitdefender, Duolingo, Meesho
  • Implementation program: 60-day structured program (Discovery → Deployment → Optimization → Production)
  • White-glove onboarding with dedicated implementation managers
  • Enterprise: Dedicated AI engineers and customer success managers
  • Dedicated Slack channels for 24/7 support
  • Product roadmap: Upcoming SDKs, multi-agent systems with collaboration/self-repair
  • Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast. Developer Docs
  • Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs. Enterprise Solutions
  • Benefits from an active user community plus integrations through Zapier and GitHub resources.
R A G-as-a- Service Assessment
  • Platform classification: TRUE RAG-as-a-Service platform with Pinecone vector database, dynamic chunking, and configurable retrieval parameters
  • Architecture validation: Amazon S3 (document storage) + Pinecone (embeddings) + multi-LLM support confirms genuine RAG implementation vs chatbot platforms
  • Target audience: Business teams needing no-code deployment with 15-minute bot creation vs developer-centric platforms requiring technical expertise
  • RAG capabilities: Relevance score tuning, token distribution control, Focus Mode (1,000 doc context injection), dynamic chunking, Reverse Vector Search
  • Differentiators: Source attribution (click-through verification), Focus Mode (targeted context), Scratchpad (response refinement), native Slack/Discord integrations
  • Enterprise considerations: Lack of direct SOC 2 certification (infrastructure-partner-only compliance) may block regulated industry adoption requiring vendor attestations
  • Developer experience: Comprehensive REST API with SSE streaming but NO official SDKs requiring direct HTTP calls vs SDK-equipped platforms
  • Competitive positioning: Business-focused RAG platform emphasizing no-code deployment and source transparency vs developer-centric platforms with enterprise compliance (rated 7.5/10 as RAG platform)
  • Platform Type: AGENTIC AI CUSTOMER SUPPORT PLATFORM with RAGless architecture - NOT traditional RAG-as-a-Service but query-writing AI specifically designed for customer support automation
  • Architectural Approach: RAGless architecture using query-writing AI instead of traditional vector search - "no embeddings, no hallucinations" with precise source attribution and deterministic results Platform Overview
  • Controversial Positioning: Criticizes RAG as "just smarter search engines" claiming "will become obsolete" - emphasizes action-taking over information-only responses, positioning against traditional RAG platforms
  • Agent Capabilities: Sophie's 5-layer supervised execution framework with Safety Guardrails, LLM Supervisor, Skill Modules (Search, Write, Follow Process, Take Action), Live Feedback, and Traceability - 97-98% accuracy claim
  • Developer Experience: Basic REST API (v2) with Bearer Token authentication but LIMITED - NO official SDKs (Python, JavaScript, or any language), only basic Python/Node.js examples, documentation quality concerns (3/5 completeness, 2/5 error handling, 1/5 rate limits)
  • No-Code Capabilities: Dashboard for agent configuration, 20+ native helpdesk integrations (Zendesk, Intercom, Salesforce), "2 minutes" initial setup, "Day 1 Ready-to-Use" - but requires existing helpdesk platform
  • Target Market: Enterprise B2C companies with high support volumes (fintech, e-commerce, healthcare), helpdesk teams using Zendesk/Intercom/Salesforce Service Cloud requiring action-taking AI beyond simple Q&A
  • Technology Differentiation: 6-mechanism hallucination prevention (RAGless architecture, LLM filtering, confidence-based gating, LLM-reviewed responses, guardrails, deterministic skill modules), 97-98% accuracy vs ~80% competitors, Zero-Pay Guarantee (only pay if >80% accuracy)
  • Deployment Model: Cloud-hosted SaaS tightly integrated with helpdesk platforms - NOT standalone deployment, requires Zendesk/Intercom/Salesforce as foundation
  • Enterprise Features: SOC 2 Type II, ISO 27001, ISO 42001 (AI governance), GDPR compliant, HIPAA status conflicting (verify before healthcare use), PII Shield Layer auto-masking, EU/US data residency, dedicated AI instance (Enterprise)
  • Pricing Model: NOT publicly disclosed (estimated ~$999/month Growth tier), cost-per-resolution model vs per-seat pricing, Zero-Pay Guarantee, 60-day implementation program with weekly alignment calls
  • Use Case Fit: Enterprise B2C support teams needing action-taking AI (refunds, account updates, CRM sync) beyond information retrieval, organizations using Zendesk/Intercom/Salesforce requiring 20+ native integrations, companies prioritizing 97-98% accuracy with ISO 42001 certification
  • NOT A RAG PLATFORM: Explicitly positions AGAINST traditional RAG - uses query-writing AI bypassing retrieval at inference for deterministic results, fundamentally different approach than RAG-as-a-Service competitors
  • NOT Suitable For: General-purpose document Q&A, content generation, organizations without existing helpdesk platforms, developers needing programmatic RAG API access, teams wanting traditional RAG architecture
  • Competitive Positioning: Positions against Intercom Fin with "agentic" differentiation claiming 95%+ accuracy vs ~80%, competes with Zendesk Answer Bot, Ada, Ultimate.ai - unique RAGless approach vs traditional RAG chatbots
  • Platform Type: TRUE RAG-AS-A-SERVICE PLATFORM - all-in-one managed solution combining developer APIs with no-code deployment capabilities
  • Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
  • API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat API Documentation
  • Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
  • No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
  • Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
  • RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses Benchmark Details
  • Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
  • Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
  • Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
  • Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Competitive Positioning
  • vs CustomGPT: CODY excels in no-code deployment and source attribution; CustomGPT excels in enterprise compliance (direct SOC 2) and official SDKs
  • vs Vectara: CODY offers simpler pricing and no-code interface; Vectara provides enterprise-grade accuracy benchmarks and HHEM hallucination detection
  • vs Pinecone Assistant: Both use Pinecone vector database; CODY differentiates with Focus Mode and business templates; Pinecone Assistant offers deeper infrastructure control
  • vs ChatBase/SiteGPT: CODY provides TRUE RAG architecture vs simpler chatbot platforms; Focus Mode and multi-LLM support vs single-model implementations
  • Market niche: Business-focused RAG platform for teams needing no-code deployment with source transparency, NOT developer tool requiring technical implementation
  • Market position: Agentic AI platform specifically designed for customer support automation with Sophie's 5-layer supervised execution framework and RAGless architecture claiming 97-98% accuracy
  • Target customers: Enterprise B2C companies with high support volumes (fintech, e-commerce, healthcare), helpdesk teams using Zendesk/Intercom/Salesforce Service Cloud, and organizations needing action-taking AI beyond simple Q&A
  • Key competitors: Intercom Fin, Zendesk Answer Bot, Ada, Ultimate.ai, and traditional RAG chatbots (positions against Intercom with "agentic" differentiation)
  • Competitive advantages: 97-98% accuracy vs. ~80% competitors, 20+ native helpdesk integrations without Zapier dependency, RAGless architecture eliminating "black box retrieval," Sophie's 5-layer supervised execution with PII masking, 100+ language support, AI Actions for autonomous CRM/Stripe/Shopify updates, Zero-Pay Guarantee (only pay if >80% accuracy), and Y Combinator backing with ex-Uber engineers
  • Pricing advantage: Pricing not publicly disclosed (estimated ~$999/month Growth tier); cost-per-resolution model vs. per-seat pricing may benefit high-volume teams; 80% ticket resolution claim reduces support costs significantly; best value for enterprises prioritizing accuracy over affordability
  • Use case fit: Ideal for enterprise B2C support teams needing action-taking AI (refunds, account updates, CRM sync) beyond information retrieval, organizations using Zendesk/Intercom/Salesforce requiring 20+ native integrations, and companies prioritizing 97-98% accuracy with ISO 42001 certification for regulated industries (fintech, healthcare)
  • Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
  • Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
  • Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
  • Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
  • Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
  • Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
Customer Base & Case Studies
  • Scale claim: 100,000+ businesses served (unverified, company-provided claim)
  • Acquisition: Acquired by Just Build It in May 2024 demonstrating market validation and growth trajectory
  • Use case examples: Customer support automation, HR policy Q&A, IT support documentation, sales enablement, internal knowledge management, training assistants
  • Target market: SMBs and mid-market companies seeking knowledge base automation without dedicated AI/ML engineering resources
  • User feedback themes: Ease of deployment praised, source attribution valued for trust, accuracy concerns noted for complex document sets
  • Common use cases: "AI virtual employee" positioning for customer support, HR, IT support, sales assistance, marketing, training, and hiring workflows
N/A
N/A
Company Background
  • Acquisition: Acquired by Just Build It in May 2024 (acquisition terms undisclosed)
  • Customer base: Claims 100,000+ businesses globally (company-provided statistic, third-party verification unavailable)
  • Market positioning: Business-focused RAG platform emphasizing no-code deployment vs developer-centric competitors
  • Infrastructure partners: Pinecone (SOC 2 Type II vector database), AWS S3 (document storage with PCI-DSS/HIPAA/FedRAMP compliance), OpenAI/Anthropic (LLM providers)
  • Compliance status: Early-stage startup working toward SOC 2 certification (not yet achieved as of documentation date)
  • Product evolution: REST API v1.0 with May 2024 update, Enterprise tier with 6 LLM providers demonstrates platform maturation
N/A
N/A
A I Models
  • Multi-LLM Support: GPT-3.5 Turbo, GPT-3.5 16K, GPT-4, Claude Sonnet across paid tiers
  • Enterprise Tier (6 LLM Providers): Llama 3.1, Claude 3.5 Sonnet, GPT-4o, Gemini 1.5, Mixtral-8x7B, GPT-3.5 Turbo
  • Credit-Based Consumption: GPT-3.5 Turbo (1 credit), GPT-3.5 16K (5 credits), GPT-4 (10 credits) per query with transparent per-model costs
  • Model-Agnostic Architecture: Users stay current with latest LLM updates without retraining bots; bring your own API key for supported LLMs (Claude, Mistral, GPT, Gemini)
  • Claude 3 Default: Defaults to Claude 3 from Anthropic for code generation, autocomplete, and chat features vs competitors relying solely on GPT models
  • LIMITATION: No automatic model routing based on query complexity or cost optimization - users must manually select models
  • Starter (Free): GPT-4o mini only for ~50 questions/month
  • Growth: GPT-4o mini + Claude (version unspecified) with 1K docs and unlimited users
  • Enterprise: GPT-4o + Multi-layer model architecture with unlimited documents
  • Multi-layer model architecture (Enterprise): Automatic routing to best-suited LLM per query part - complex queries decomposed into sub-queries with specialized agents
  • Cost optimization: Maximizes accuracy while controlling costs through intelligent model routing
  • No user-controlled runtime switching: Plan-based model selection only, no manual model switching interface
  • Target accuracy: 97-98% accuracy claim across marketing materials and customer testimonials
  • Human-in-the-loop: Suggested reply customization before sending when confidence is low
  • Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
  • Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request Model Selection Details
  • Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
  • Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
  • Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
  • TRUE RAG Architecture: Pinecone vector database (SOC 2 Type II certified) with Amazon S3 document storage using SSE-S3 encryption protocol
  • Dynamic Chunking Algorithm: Adjusts chunk size based on token distribution for optimal retrieval performance (specific parameters not publicly documented)
  • Relevance Score Configuration: Adjustable trade-off between accuracy and completeness for retrieval tuning
  • Token Distribution Control: Split configuration between context, history, and response (e.g., 70% context, 10% history, 20% response)
  • Reverse Vector Search: Proprietary technique merging AI and user responses for improved relevance matching
  • Context Window: Claude 2 integration provides up to 100K context windows for comprehensive codebase analysis
  • Advanced Chunking: Comprehensive data segmentation including metadata for superior data management across various file formats
  • LIMITATION: No published benchmark results or quantitative accuracy metrics for RAG performance validation
  • RAGless architecture: Query-writing AI, not traditional vector search - "no embeddings, no hallucinations" with precise source attribution
  • Bypasses retrieval at inference: Deterministic results without "black box retrieval" typical of RAG systems
  • 6-mechanism hallucination prevention: LLM filtering, confidence-based gating, LLM-reviewed responses, guardrails layer, deterministic skill modules
  • Real-time knowledge updates: Content used immediately after ingestion without retraining delays
  • Chat2KB auto-learning (Growth/Enterprise): Auto-extracts Q&A pairs from conversations, emails, tickets with MECE classification
  • Intelligent conflict resolution: Automatically removes contradictory information from knowledge base
  • Customer accuracy results: Column Tax (94% accuracy, 98% queries resolved), Qogita (90% accuracy, 88% ticket resolution, 121% SLA improvement)
  • Positioning: Criticizes RAG as "just smarter search engines" claiming "will become obsolete" - emphasizes action-taking over information-only responses
  • Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks RAG Performance
  • Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content Benchmark Details
  • Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
  • Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
  • Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
  • Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
  • Source verification: Always cites sources so users can verify facts on the spot
Use Cases
  • Primary Departments: Marketing teams (creative strategies, campaign insights), HR departments (employee communication, query management), IT support (technical troubleshooting), Sales departments (AI-driven assistance)
  • Internal Operations: Answering internal or customer FAQs automatically, training new team members with AI support, generating reports/email replies/summaries using company data, searching thousands of documents instantly
  • Code Assistance: Engineers saving 5-6 hours per week, writing code 2x faster with AI-powered context-aware code generation and autocomplete
  • Industries: Financial services (trusted by 4/6 top US banks), technology companies (7/10 top public tech companies), healthcare, professional service firms, government agencies (15+ US agencies)
  • Team Sizes: Startups managing internal documentation to enterprises coordinating teams across regions; 100,000+ businesses served globally
  • Educational Use Cases: Educational institutions training students in AI applications, legal firms organizing and retrieving case documents
  • Enterprise B2C customer support: High-volume fintech, e-commerce, and healthcare companies needing 80% ticket resolution with 97-98% accuracy
  • Action-taking AI agents: Autonomous refund processing, account updates, CRM sync (Salesforce), Stripe payment handling, Shopify order management beyond simple Q&A
  • Helpdesk platform integration: 20+ native integrations (Zendesk, Intercom, Salesforce Service Cloud, Front, Gorgias, HubSpot, LiveChat, Freshdesk, Help Scout) without Zapier
  • Multi-channel support: Slack, Discord, Microsoft Teams for internal/community support; website embedding (Fini Widget, Search Bar, Standalone)
  • 100+ languages: Locale-based routing and real-time translation for global customer bases
  • PII-sensitive industries: Auto-masking of SSN, passport, driver's license, taxpayer ID, credit cards with PII Shield Layer
  • NOT suitable for: General-purpose document Q&A, content generation, or organizations without existing helpdesk platforms (Zendesk/Intercom/Salesforce)
  • Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
  • Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
  • Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
  • Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
  • Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
  • Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
  • Financial services: Product guides, compliance documentation, customer education with GDPR compliance
  • E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
  • SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
  • CRITICAL LIMITATION: Cody itself NOT SOC 2 certified - "As an early stage startup, we are diligently working towards earning SOC 2 compliance"
  • Infrastructure Compliance: Pinecone vector database (SOC 2 Type II certified), AWS S3 (PCI-DSS, HIPAA/HITECH, FedRAMP, FISMA compliant via AWS certification)
  • GDPR Compliant: Via AWS infrastructure in EU regions for European data residency and privacy requirements; Data Processing Addendums available
  • Document Encryption: Amazon S3 with SSE-S3 encryption protocol for data at rest, TLS for transit
  • AI Training Policy: Customer data explicitly NOT used for training - "Your data will not be used to train any existing or new language model"
  • OpenAI Data Retention: API policy ensures data retained maximum 30 days for abuse monitoring only (not for model training)
  • Access Controls: Per-chatbot permissions with real-time updates, API key management, role-based team member access
  • Enterprise Security: Isolated Kubernetes containers on AWS with role-based security and custom infrastructure options
  • Procurement Concern: Lack of direct SOC 2 certification may block enterprise adoption in regulated industries requiring vendor compliance attestations
  • SOC 2 Type II certified: Zero audit findings per Sprinto case study with annual audits
  • ISO 27001 certified: International information security management standard
  • ISO 42001 certified: AI governance standard - rare achievement demonstrating AI-specific compliance
  • GDPR compliant: Full data subject rights with EU data residency option available
  • HIPAA status conflicting: Marketing claims compliance, but case study says "next up" - verify before healthcare deployment
  • PCI DSS: Claimed but not listed on official pricing page security section - verify for payment data
  • "We do not train on your data" policy: Formal Data Processing Agreement (DPA) with OpenAI
  • PII Shield Layer: Auto-masks SSN, passport, driver's license, taxpayer ID, credit cards in conversations
  • AES-256 encryption at rest, TLS 1.3 in transit
  • EU and US data residency options: Choose data storage location
  • Dedicated AI instance (Enterprise): Single-tenant deployment for maximum data control
  • RBAC (Growth/Enterprise), SSO (all tiers), audit logging
  • Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
  • SOC 2 Type II certification: Industry-leading security standards with regular third-party audits Security Certifications
  • GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
  • Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
  • Data isolation: Customer data stays isolated and private - platform never trains on user data
  • Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
  • Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
  • Free Plan: $0/month - 100 credits (250 queries/month), 100 documents, 1 team member, 1 widget, NO API access, NO crawler
  • Basic Plan: $29/month - 2,500 credits, 1,000 documents, 3 team members, 14-day conversation logs, API access, GPT-3.5 only
  • Premium Plan: $99/month - 10,000 credits, 10,000 documents, 10 team members, 30-day logs, website crawler (500 URLs), white-labeling, GPT-4/Claude access
  • Advanced Plan: $249/month - 25,000 credits, 25,000 documents + 25,000 crawled pages, 30 team members, 90-day logs, 9 recurring website re-imports, 50 embed sites
  • Enterprise Plan: Custom pricing - Unlimited credits, custom documents/members, SLA guarantees, dedicated infrastructure, on-premises/multi-cloud/hybrid deployment, 6 LLM providers
  • Credit System: GPT-3.5 Turbo (1 credit), GPT-3.5 16K (5 credits), GPT-4 (10 credits) per query - enables budget forecasting (2,500 GPT-3.5 queries or 250 GPT-4 queries on Basic)
  • 14-Day Free Trials: Available for all paid plans to evaluate features before commitment
  • Pricing NOT publicly disclosed - requires sales contact for quotes
  • Starter (Free): GPT-4o mini, ~50 questions/month, ~50 docs, ~5 users, 2 bots, SSO only
  • Growth (estimated $999/mo): GPT-4o mini/Claude, 1K docs, unlimited users, SOC 2, GDPR, ISO 27001, RBAC, Chat2KB, Sophia AI Evaluator
  • Enterprise (custom): GPT-4o, Multi-layer models, unlimited docs, dedicated AI instance, AI Actions, full compliance, white-glove onboarding
  • Cost-per-resolution model: Pay based on resolved tickets rather than per-seat pricing - benefits high-volume teams
  • Zero-Pay Guarantee: Only pay if >80% accuracy thresholds met (unique risk mitigation)
  • Third-party estimates: "$0.10/interaction" (SaaSworthy) - unverified
  • Implementation program: 60-day structured program (Discovery → Deployment → Optimization → Production) with weekly alignment calls
  • Enterprise support: Dedicated AI engineers, customer success managers, 24/7 Slack channels
  • Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security View Pricing
  • Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
  • Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs Enterprise Solutions
  • 7-Day Free Trial: Full access to Standard features without charges - available to all users
  • Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
  • Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
  • Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
  • API Documentation: developers.meetcody.ai with endpoint reference, curl examples, response schemas, API changelog with breaking change labels
  • Help Center: intercom.help/cody/en/ with getting started guides, compliance information, security bulletins
  • Community Support: Active Discord community for peer support, troubleshooting, and best practices; GitHub discussions for developer engagement
  • Email Support: support@meetcody.ai available for all users across all plans
  • Response Times: Generally praised for responsiveness; Advanced plan includes dedicated account manager for onboarding and optimization guidance
  • Learning Resources: Blog with tutorials and guides for use case implementation and platform features
  • Enterprise SLA: Guaranteed response times and uptime commitments (specifics require sales engagement, not publicly documented)
  • LIMITATION: NO phone support or live chat on any tier (email and community only)
  • Documentation Quality: Functional but limited - clear endpoint docs with response schemas but lacking tutorials, cookbooks, comprehensive code samples for advanced implementations
  • Founding team: Ex-Uber engineers with CEO leading 4M+ interactions/month at Uber
  • Backed by: Y Combinator Summer 2022 ($125K seed), Matrix Partners, angel investors from Uber, Intercom, Softbank, McKinsey, Twitter
  • Company metrics: ~$2.5M annual revenue, 14 employees, 500K+ tickets/month processed
  • Customers: HackerRank, Qogita, Column Tax, Atlas, TrainingPeaks, Bitdefender, Duolingo, Meesho
  • 60-day implementation program: White-glove onboarding with dedicated implementation managers (Discovery → Deployment → Optimization → Production)
  • Enterprise support tiers: Dedicated AI engineers and customer success managers with 24/7 Slack channels
  • Documentation quality: Basic REST API documentation with Python and Node.js examples (completeness 3/5, error handling 2/5, rate limits 1/5)
  • NO official SDKs: No Python, JavaScript, or other language SDKs - only API examples provided
  • Open-source tool: Paramount (github.com/ask-fini/paramount) for agent accuracy measurement
  • Product roadmap: Upcoming SDKs, multi-agent systems with collaboration/self-repair capabilities
  • Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding Developer Docs
  • Email and in-app support: Quick support via email and in-app chat for all users
  • Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
  • Code samples: Cookbooks, step-by-step guides, and examples for every skill level API Documentation
  • Open-source resources: Python SDK (customgpt-client), Postman collections, GitHub integrations Open-Source SDK
  • Active community: User community plus 5,000+ app integrations through Zapier ecosystem
  • Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Customization & Flexibility ( Behavior & Knowledge)
  • Real-Time Knowledge Updates: Always available manual retraining for immediate knowledge base updates across all plans
  • Automatic Syncing: Limited to website sources only with recurring re-imports - not available for uploaded documents
  • Bot Personality Customization: Create custom conversation starters tailored to specific tasks, adjust behavior, tone, and focus to suit each use case
  • Focus Mode: Generate highly specialized responses based on selected documents for targeted tasks with up to 1,000 specific documents injected into conversation context
  • Scratchpad for Fine-Tuning: Fine-tune bot responses and knowledge base interactions improving accuracy and relevance of future responses
  • Custom Prompts: Define bot purpose and personality during creation with shareable prompt templates across team members
  • Configurable Token Distribution: Adjust split between context, history, and response (e.g., 70% context, 10% history, 20% response)
  • LIMITATION: No NO programmatic personality management - tone/behavior settings dashboard-only, cannot modify per-user or via API (global configuration only)
  • LIMITATION: Knowledge base updates require manual intervention - no real-time sync from cloud sources (Google Drive, Dropbox, Notion) except website crawling
  • Guidelines system: Define tone, preferred phrases, forbidden terminology, formatting rules
  • Response length options: Short, Medium, Long
  • Welcome messages and starter questions customizable
  • Bot duplication for creating similar agents quickly
  • Multiple bots per tier: Starter 2 bots → Growth unlimited → Enterprise unlimited
  • Real-time knowledge updates - content used immediately after ingestion
  • Chat2KB auto-learning eliminates duplicate responses with MECE classification
  • Flows enable specialized workflows per customer segment or task type
  • User context from backend systems enables dynamic personalization
  • Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
  • Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus. Learn How to Update Sources
  • Supports multiple agents per account, so different teams can have their own bots.
  • Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Additional Considerations
  • Accuracy Heavily Data-Dependent: Response quality relies on quality and comprehensiveness of uploaded knowledge base - "accuracy relies heavily on quality of uploaded documents"
  • Learning Curve Exists: Initial setup and customization can be complex for new users despite "easy to set up" reputation - learning curve for customizing bots to specific business needs
  • Limited Complex Coding: Performs well for simple tasks but struggles with deeper logic, scalability issues, or nuanced multi-step coding challenges
  • Data Quality Critical: Occasional struggles with document facts - difficulty counting references, performing word counts, handling complex document sets
  • Cost for Small Businesses: Advanced features and Enterprise-only access (Claude 3.5, Gemini 1.5, Llama 3.1) expensive for smaller businesses
  • White-Label Minimum: Complete Cody branding removal requires Premium ($99/month) or Advanced ($249/month) - not available on Free/Basic tiers
  • Performance with Large Data: Speed may slow with large datasets or complex codebases on less powerful systems; requires stable internet (cloud-based)
  • Compliance Gap: Cody itself NOT SOC 2 certified as early-stage startup "diligently working towards earning SOC 2 compliance" - may block enterprise procurement
  • Infrastructure Compliance Only: Pinecone (SOC 2 Type II), AWS S3 (PCI-DSS, HIPAA/HITECH, FedRAMP) certified but Cody platform not directly certified
  • Best For: Business teams needing no-code deployment with 15-minute bot creation and source transparency for internal knowledge management
  • NOT Ideal For: Enterprises requiring direct SOC 2 vendor certification, native cloud storage sync, YouTube content ingestion, or deep technical problem-solving
  • RAGless positioning: Fini criticizes RAG as "just smarter search engines"
  • Claims RAG "fails in mission-critical customer support" and "will become obsolete"
  • Action-taking vs. information-only: Key differentiator from traditional chatbots
  • "It's the difference between 'You can find details here' and 'Done! I've processed that refund'"
  • Target customer: Enterprise B2C with high support volume (fintech, e-commerce, healthcare)
  • Less suitable for general-purpose document Q&A or content generation
  • Competitive target: Positions against Intercom Fin with "agentic" narrative
  • Claims 95%+ accuracy vs. Intercom's ~80%
  • Platform agnostic: Works with any helpdesk vs. vendor lock-in
  • Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
  • Gets you to value quickly: launch a functional AI assistant in minutes.
  • Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
  • Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
Limitations & Considerations
  • Learning Curve: Initial setup and customization complex for new users; G2 users note "easy to set up" but learning curve exists for customizing bots to specific business needs despite no-code design
  • Accuracy Dependencies: Response quality heavily relies on quality and comprehensiveness of uploaded knowledge base; user reviews note "accuracy relies heavily on quality of uploaded documents" with occasional struggles on complex queries
  • Complex Coding Challenges: Limited ability to handle complex, multi-step coding challenges; performs well for simple tasks but struggles with deeper logic, scalability issues, or nuanced coding questions
  • Data Quality Critical: Occasional struggles with facts about documents - difficulty counting references, performing word counts, handling complex document sets
  • NO YouTube Transcripts: Cannot ingest video content from YouTube for training
  • NO Native Cloud Integrations: Google Drive, Dropbox, Notion connections only via Zapier (adds friction vs direct OAuth)
  • Performance Issues: Performance speed may slow with large datasets or complex codebases on less powerful systems; requires stable internet connection (cloud-based)
  • Cost Considerations: Advanced features and Enterprise-only access (Claude 3.5, Gemini 1.5, Llama 3.1) can be expensive for smaller businesses; white-labeling requires Premium ($99/month) minimum
  • NOT Ideal For: Enterprises requiring direct SOC 2 certification (infrastructure-only compliance may block procurement), teams needing deep technical problem-solving for critical systems without traditional development practices, organizations needing native cloud storage sync or YouTube content ingestion
  • Pricing opacity: No public pricing - requires sales contact creating friction for evaluation vs transparent competitors
  • HIPAA status conflicting: Marketing claims compliance but case study says "next up" - verify before healthcare deployment
  • PCI DSS unverified: Claimed but not on official pricing page - verify for payment data handling
  • Documentation limitations: Basic API docs (3/5 completeness, 2/5 error handling, 1/5 rate limits), no official SDKs
  • Small team (14 employees): Limited support capacity compared to enterprise competitors (Intercom, Zendesk)
  • RAGless positioning controversial: Claims RAG "will become obsolete" but many enterprises rely on proven RAG architectures
  • Platform lock-in: Requires existing helpdesk platform (Zendesk/Intercom/Salesforce) - not standalone solution
  • Less suitable for: General-purpose document Q&A, content generation, startups without established helpdesk infrastructure, organizations prioritizing transparent pricing
  • Best for: Enterprise B2C support teams with high volumes prioritizing 97-98% accuracy over pricing transparency, willing to commit to 60-day implementation
  • Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
  • Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
  • Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
  • Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
  • Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
  • Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
  • Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
  • Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
N/A
  • Sophie AI Agent: Fully autonomous customer service agent designed to act like a company's best support representative, resolving up to 80% of tickets end-to-end without human intervention
  • 5-Layer Supervised Execution Framework:
    • Layer 1 - Safety Guardrails: 40+ filters, PII masking (SSN, credit cards, passports), brand tone compliance
    • Layer 2 - LLM Supervisor: Core orchestration brain determining resolution paths and task routing
    • Layer 3 - Skill Modules: Deterministic modules for Search, Write, Follow Process, Take Action capabilities
    • Layer 4 - Live Feedback: Auto-validates outputs, detects errors, learns from corrections in real-time
    • Layer 5 - Traceability: Full audit trail of decisions and reasoning for transparency and compliance
  • Multi-Layer Model Architecture (Enterprise): Automatic routing to best-suited LLM per query part - complex queries decomposed into sub-queries with specialized agents handling each component for maximum accuracy while controlling costs
  • Action-Taking Capabilities: Goes beyond information retrieval - autonomous refund processing, account updates, CRM sync (Salesforce), Stripe payment handling, Shopify order management without human involvement
  • AI Actions (Growth/Enterprise): Autonomous CRM/Stripe/Shopify updates triggered by conversation context - "It's the difference between 'You can find details here' and 'Done! I've processed that refund'"
  • Continuous Learning: Sophie learns from every interaction through Chat2KB auto-learning (Growth/Enterprise), getting smarter, faster, and more accurate over time with MECE classification eliminating duplicate responses
  • 100+ Language Support: Automatic translation with locale-based routing and real-time language detection - serve global customer bases without multilingual content management
  • Intelligent Escalation: Human handoff preserves full conversation context with configurable triggers (keywords, sentiment analysis, topic-based rules, confidence thresholds) - seamless transition to human agents when needed
  • Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
  • Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
  • Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
  • Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions View Agent Documentation
  • Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
  • Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
  • Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining

Ready to experience the CustomGPT difference?

Start Free Trial →

Final Thoughts

Final Verdict: CODY AI vs Fini AI

After analyzing features, pricing, performance, and user feedback, both CODY AI and Fini AI are capable platforms that serve different market segments and use cases effectively.

When to Choose CODY AI

  • You value true rag architecture with pinecone vector database and configurable retrieval parameters (relevance score, token distribution, focus mode)
  • Source attribution with every response - click-through to exact documents used for generation (transparency and trust differentiator)
  • Focus Mode unique capability: inject up to 1,000 specific documents into conversation context for targeted responses vs full knowledge base

Best For: TRUE RAG architecture with Pinecone vector database and configurable retrieval parameters (relevance score, token distribution, Focus Mode)

When to Choose Fini AI

  • You value industry-leading 97-98% accuracy claim backed by customer testimonials
  • True action-taking capabilities - executes refunds, KYC, account updates beyond Q&A
  • RAGless architecture eliminates hallucinations with precise source attribution

Best For: Industry-leading 97-98% accuracy claim backed by customer testimonials

Migration & Switching Considerations

Switching between CODY AI and Fini AI requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.

Pricing Comparison Summary

CODY AI starts at $29/month, while Fini AI begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.

Our Recommendation Process

  1. Start with a free trial - Both platforms offer trial periods to test with your actual data
  2. Define success metrics - Response accuracy, latency, user satisfaction, cost per query
  3. Test with real use cases - Don't rely on generic demos; use your production data
  4. Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
  5. Check vendor stability - Review roadmap transparency, update frequency, and support quality

For most organizations, the decision between CODY AI and Fini AI comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.

📚 Next Steps

Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.

  • Review: Check the detailed feature comparison table above
  • Test: Sign up for free trials and test with real queries
  • Calculate: Estimate your monthly costs based on expected usage
  • Decide: Choose the platform that best aligns with your requirements

Last updated: December 12, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.

Ready to Get Started with CustomGPT?

Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.

Why Choose CustomGPT?

97% Accuracy

Industry-leading benchmarks

5-Min Setup

Get started instantly

24/7 Support

Expert help when you need it

Enterprise Ready

Scale with confidence

Trusted by leading companies worldwide

Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us

Join the Discussion

Loading comments...

Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.

Watch: Understanding AI Tool Comparisons