CODY AI vs Nuclia

Make an informed decision with our comprehensive comparison. Discover which RAG solution perfectly fits your needs.

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT.ai

Fact checked and reviewed by Bill Cava

Published: 01.04.2025Updated: 25.04.2025

In this comprehensive guide, we compare CODY AI and Nuclia across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.

Overview

When choosing between CODY AI and Nuclia, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.

Quick Decision Guide

  • Choose CODY AI if: you value true rag architecture with pinecone vector database and configurable retrieval parameters (relevance score, token distribution, focus mode)
  • Choose Nuclia if: you value specialized for unstructured data

About CODY AI

CODY AI Landing Page Screenshot

CODY AI is business-focused no-code rag platform with source attribution. Business-focused RAG-as-a-Service platform enabling no-code AI assistant creation trained on custom knowledge bases. Acquired by Just Build It (May 2024), claims 100,000+ businesses as customers. TRUE RAG platform with Pinecone vector database, multi-LLM support (GPT-4, Claude 3.5, Gemini 1.5, Llama 3.1 on Enterprise), and comprehensive REST API. Differentiators: source attribution with every response, Focus Mode (inject 1,000 docs into context), 15-minute bot deployment. Critical gaps: NO direct SOC 2 certification (infrastructure partners only), NO official SDKs, NO native cloud storage integrations. $0-$249/month credit-based pricing. Founded in 2022, headquartered in United States, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
85/100
Starting Price
$29/mo

About Nuclia

Nuclia Landing Page Screenshot

Nuclia is ai search and rag-as-a-service for unstructured data. Nuclia is a RAG-as-a-Service platform that automatically indexes unstructured data from any source to deliver AI search, generative answers, and knowledge extraction with enterprise-grade security and multilingual support. Founded in 2019, headquartered in Barcelona, Spain, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
81/100
Starting Price
$300/mo

Key Differences at a Glance

In terms of user ratings, both platforms score similarly in overall satisfaction. From a cost perspective, CODY AI starts at a lower price point. The platforms also differ in their primary focus: AI Chatbot versus RAG Platform. These differences make each platform better suited for specific use cases and organizational requirements.

⚠️ What This Comparison Covers

We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.

Detailed Feature Comparison

logo of cody
CODY AI
logo of nuclia
Nuclia
logo of customGPT logo
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
  • Supported formats: PDF, Word (.doc/.docx), PowerPoint (.ppt/.pptx), plain text files with 100MB maximum file size per document
  • Built-in text editor: Direct text input for creating knowledge base entries without file uploads
  • Website crawler (Premium/Advanced): Import up to 25,000 pages on Advanced tier with automatic recurring re-imports for up to 9 websites
  • Document capacity by tier: Free (100 documents), Basic (1,000), Premium (10,000), Advanced (25,000 documents + 25,000 crawled web pages)
  • Storage architecture: Amazon S3 with SSE-S3 encryption protocol for documents, Pinecone vector database (SOC 2 Type II certified) for embeddings
  • Dynamic chunking algorithm: Adjusts chunk size based on token distribution for optimal retrieval performance (specific parameters not publicly documented)
  • Manual retraining: Always available for immediate knowledge base updates across all plans
  • Automatic syncing: Limited to website sources only with recurring re-imports (not available for uploaded documents)
  • CRITICAL LIMITATION: No NO YouTube transcript support - cannot ingest video content from YouTube for training
  • CRITICAL LIMITATION: No NO native cloud integrations - Google Drive, Dropbox, Notion connections only via Zapier (adds friction vs direct OAuth)
  • LIMITATION: No NO audio file support (MP3, M4A), No NO video file support (MP4), No NO code file ingestion, No NO Excel/CSV direct import
  • Indexes just about any unstructured data, in any language—PDF, Word, Excel, PowerPoint, web pages, you name it. [Nuclia Documentation]
  • Runs OCR on images and converts speech in audio / video to text, so everything becomes searchable. [Nuclia Website]
  • Lets you ingest data programmatically via REST API, Python / JS SDKs, a CLI, or a Sync Agent for nonstop updates. [Nuclia Docs]
  • The Sync Agent watches connected repos (cloud drives, sitemaps, etc.) and auto-indexes any changes.
  • Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
  • Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
  • Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text. View Transcription Guide
  • Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier. See Zapier Connectors
  • Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
  • Native Slack integration: Free for all users with /assign-bot command for channel-specific bot assignment and @mentions for queries
  • Native Discord integration: Users mention @Cody for queries within Discord servers (free for all users)
  • Zapier integration: Connects to 5,000+ apps including Telegram, Facebook Messenger, Google Sheets, Google Docs, WhatsApp (via ecosystem)
  • Website embedding (3 methods): Shareable links (direct URLs without site modification), inline embeds (widgets within page sections), popup embeds (floating chat bubbles)
  • REST API v1.0: Full API access on all paid plans with documentation at developers.meetcody.ai
  • Third-party platforms: Pipedream (pre-built integration), n8n (via HTTP Request nodes for workflow automation)
  • CRITICAL GAPS: No NO Microsoft Teams native integration (Zapier workaround required), No NO WhatsApp Business native integration (Zapier only), No NO Google Drive/Dropbox/Notion native connections
  • LIMITATION: No NO webhook functionality explicitly documented in API - potential constraint for event-driven architectures and real-time notifications
  • No-code widget generator lets you drop a search or Q&A panel onto your site in minutes. [Nuclia No-Code]
  • No one-click Slack or Teams bots out of the box, but the REST API / SDKs make custom bots easy.
  • Works with n8n and Zapier, so you can hook Nuclia into thousands of other services. [n8n Integration]
  • API-first philosophy means you can embed Nuclia search or Q&A into any channel you like.
  • Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
  • Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more. Explore API Integrations
  • Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
  • Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
  • Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc. Read more here.
  • Supports OpenAI API Endpoint compatibility. Read more here.
Native Slack & Discord Integration ( Differentiator)
  • Slack /assign-bot command: Assign specific bots to dedicated channels for departmental organization (e.g., IT bot in #it-support, HR bot in #hr-questions)
  • Free for all users: Native integrations available even on Free plan ($0/month) vs competitors requiring paid tiers or Zapier workarounds
  • Discord @Cody mentions: Direct mention-based querying within Discord servers for community support or team collaboration
  • Context preservation: Conversation history maintained within Slack/Discord threads for multi-turn interactions
  • Competitive advantage: Zero-friction deployment for Slack/Discord workspaces vs API-based integrations requiring developer involvement (7.5/10 rated differentiator)
  • Use case fit: Internal documentation assistants, IT support bots, HR policy Q&A within existing communication channels
N/A
N/A
Source Attribution & Transparency ( Core Differentiator)
  • Automatic citation: Every AI response includes links to exact documents used for generation enabling click-through verification
  • Source verification interface: Centralized conversation logs allow examination of which documents informed each response for audit trails
  • Trust building: Users can validate AI answers against source material reducing hallucination concerns and increasing adoption confidence
  • Knowledge gap identification: Responses lacking sufficient sources highlight areas needing additional training data
  • Compliance advantage: Source traceability supports regulatory requirements for explainable AI in regulated industries (healthcare, finance, legal)
  • Competitive positioning: Explicit citation vs black-box responses in competitors positions CODY for accuracy-critical use cases (9/10 rated differentiator)
  • User feedback: Reviews highlight source attribution as primary trust-building feature reducing manual fact-checking burden
N/A
N/A
Focus Mode ( Core Differentiator)
  • Targeted context injection: Inject up to 1,000 specific documents into single conversation context vs retrieving from full knowledge base
  • Use cases: Department-specific queries (HR policies for HR team, engineering docs for dev team), project-scoped assistance, client-specific information isolation
  • Noise reduction: Constrains retrieval to relevant subset preventing irrelevant information from interfering with responses
  • API support: Focus Mode available via REST API conversations endpoint with document ID array parameter for programmatic control
  • Performance advantage: Smaller search space improves retrieval speed and relevance vs full-corpus semantic search
  • Unique capability: Few RAG platforms offer explicit context scoping at this granularity - most retrieve from entire knowledge base (8.5/10 rated differentiator)
N/A
N/A
Core Chatbot Features
  • Multilingual support: Build and interact with chatbots in any language with no language restrictions or translation layers
  • Conversation memory: Context retention with configurable token distribution (e.g., 70% context, 10% history, 20% response) for multi-turn interactions
  • Conversation history logging: Centralized interface with filtering by bot or date range, tiered retention (14 days Basic, 30 days Premium, 90 days Advanced)
  • Conversational Interface: Securely upload documents (PowerPoints, PDFs) or crawl entire websites to build company-specific knowledge base and quickly retrieve precise information
  • Traceable Source Attribution: Every answer comes with traceable sources letting users verify accuracy and track where specific information originated
  • Prompt templates: Shareable custom prompts with variables across team members for consistent bot behavior
  • Conversation sharing: Share conversations with team via dedicated sharing option for collaboration and quality review
  • Scratchpad feature: Save, refine, and use derivatives of AI-generated responses to improve specificity over time with micro-management capabilities
  • Bot Personality Customization: Complete control over bot personality and description to define how bot presents itself and engages with users when creating new bot
  • LIMITATION: No NO native lead capture - requires custom implementation via API or Zapier workflows (vs built-in form capture in competitors)
  • LIMITATION: No NO automated human handoff - escalation achieved only through prompt engineering with manual contact info (no automated queue routing or agent assignment)
  • LIMITATION: Note: Basic analytics only - conversation logs and usage monitoring without advanced dashboards for funnel analysis or trend identification
  • Powers AI Search and generative Q&A on your data, returning “trusted answers” drawn straight from your content. [Nuclia Homepage]
  • Shows source citations so users can see exactly where each answer came from.
  • Auto-summarizes long docs and can run entity recognition or AI classification.
  • Handles both one-shot Q→A and multi-turn chat in the same flexible interface.
  • Reduces hallucinations by grounding replies in your data and adding source citations for transparency. Benchmark Details
  • Handles multi-turn, context-aware chats with persistent history and solid conversation management.
  • Speaks 90+ languages, making global rollouts straightforward.
  • Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Widget Customization & White- Labeling
  • Header customization: Layout alignment, business logo upload, color schemes, title and subtitle text configuration
  • Chat interface styling: Message bubble size, background colors, bot and human avatar customization
  • Composer controls: Placeholder text customization, send button icon selection
  • Launcher configuration: Size adjustment, screen position (left/right/bottom), floating button color, custom launcher icons
  • Full translation support: Widget UI fully translatable to any language for global deployment consistency
  • White-labeling (Premium/Advanced): Complete CODY branding removal requires Premium ($99/month) or Advanced ($249/month) - not available on Free/Basic tiers
  • LIMITATION: No NO domain restriction capabilities documented - cannot limit widget usage to specific domains (security consideration for production deployments)
  • LIMITATION: Role-based access includes team member limits by tier (3/10/30 members on Basic/Premium/Advanced) with per-chatbot permission enforcement
N/A
N/A
L L M Model Options
  • Basic plan: GPT-3.5 Turbo only (1 credit per query)
  • Premium/Advanced plans: GPT-3.5 Turbo, GPT-3.5 16K (5 credits), GPT-4 (10 credits), Claude Sonnet
  • Enterprise plan: Six LLM providers - Llama 3.1, Claude 3.5 Sonnet, GPT-4o, Gemini 1.5, Mixtral-8x7B, GPT-3.5 Turbo
  • Credit-based consumption: GPT-3.5 Turbo (1 credit), GPT-3.5 16K (5 credits), GPT-4 (10 credits) per query with transparent per-model costs
  • API model field: REST API returns 'model' field indicating which LLM generated each response for tracking and analysis
  • Proprietary optimizations: Scratchpad (micro-managing responses), Template Mode (pre-defined prompts), Reverse Vector Search (merging AI and user responses for relevance)
  • LIMITATION: No NO automatic model routing - users must manually select models, no dynamic routing based on query complexity or cost optimization (vs intelligent routing in competitors)
  • LIMITATION: Enterprise-only access to advanced models (Claude 3.5, Gemini 1.5, Llama 3.1) locks out SMBs on lower tiers from latest LLM capabilities
  • Model-agnostic: use OpenAI, Azure OpenAI, Google PaLM 2, Cohere, Anthropic, and more.
  • “100 % private generative AI” mode keeps everything on Nuclia-hosted infrastructure if you prefer. [Privacy & Security]
  • Hooks into Hugging Face so you can drop in open-source or domain models. [HF Integration]
  • Swap or blend models to hit the right cost-vs-quality balance; local models take extra setup.
  • Taps into top models—OpenAI’s GPT-5.1 series, GPT-4 series, and even Anthropic’s Claude for enterprise needs (4.5 opus and sonnet, etc ).
  • Automatically balances cost and performance by picking the right model for each request. Model Selection Details
  • Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
  • Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Developer Experience ( A P I & S D Ks)
  • REST API v1.0: Comprehensive with Bearer token authentication, last updated May 2024
  • Bots endpoint: List bots with keyword filtering for discovery and management
  • Conversations endpoint: Full CRUD operations with Focus Mode parameter (inject specific document IDs into context)
  • Messages endpoint: Send/receive with optional SSE streaming for real-time responses and progressive answer display
  • Documents endpoint: Upload files (up to 100MB max), create from text/HTML, import webpages programmatically
  • Folders endpoint: Organizational structure management for knowledge base hierarchy
  • Uploads endpoint: AWS S3 signed URLs for direct file uploads bypassing API size limits
  • Rate limiting: Standard headers (x-ratelimit-limit, x-ratelimit-remaining, x-ratelimit-reset, retry-after) with limits viewable in account settings
  • Monthly query limits: 250 queries (Free), 2,500 (Basic), 10,000 GPT-3.5 queries or 1,000 GPT-4 queries (Premium), 15,000 GPT-3.5 16K queries (Advanced)
  • API changelog: Tracks breaking changes with explicit "Breaking" labels for version management
  • CRITICAL LIMITATION: No NO official SDKs for Python, JavaScript, Node.js, or any language - all integrations require direct REST API calls (development friction)
  • LIMITATION: No NO webhook functionality explicitly documented - limits event-driven architectures and real-time notification patterns
  • LIMITATION: Documentation quality functional but limited - clear endpoint docs with curl examples and response schemas but lacking tutorials, cookbooks, comprehensive code samples
  • Rich REST APIs, Python / JS SDKs, and a CLI cover everything from ingestion to querying. [Ingestion Docs]
  • Index first, query later—modular design fits nicely into dev workflows.
  • Step-by-step ingestion and custom retrieval logic are fully supported.
  • Self-host NucliaDB if you need on-prem; open-source repos and samples help you get started fast.
  • Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat. API Documentation
  • Offers open-source SDKs—like the Python customgpt-client—plus Postman collections to speed integration. Open-Source SDK
  • Backs you up with cookbooks, code samples, and step-by-step guides for every skill level.
R A G Implementation & Accuracy
  • TRUE RAG architecture: Pinecone vector database (SOC 2 Type II certified) with Amazon S3 document storage and SSE-S3 encryption
  • Dynamic chunking: Algorithm adjusts chunk size based on token distribution for optimal retrieval (specific parameters not publicly documented)
  • Relevance Score configuration: Adjustable trade-off between accuracy and completeness for retrieval tuning
  • Token Distribution control: Split configuration between context, history, and response (e.g., 70% context, 10% history, 20% response) for resource allocation
  • Persist Prompt feature: Continuous re-emphasis of system prompt for instruction compliance and behavior consistency
  • Reverse Vector Search: Proprietary technique merging AI and user responses for improved relevance matching
  • Creativity Settings: Options for "creative," "balanced," or "factual" outputs controlling temperature and generation style
  • Hallucination mitigation: Source citation with every response enables verification, Focus Mode constrains responses to specific documents reducing irrelevant injection
  • LIMITATION: No NO published benchmark results or quantitative accuracy metrics - no public validation of RAG performance claims vs competitors
  • LIMITATION: User reviews note "accuracy relies heavily on the quality of uploaded documents" with occasional struggles reported about document facts
N/A
N/A
Performance & Accuracy
  • Response time: Sub-500ms end-to-end latency target for typical queries on Premium/Advanced plans using GPT-3.5 Turbo (verified from user reports and platform specifications)
  • Accuracy metrics: No publicly published accuracy benchmarks or F1 scores; user reviews on G2 (4.7/5 stars, 150+ reviews) and Capterra (4.8/5, 50+ reviews) report generally high satisfaction with answer quality when knowledge base is well-curated
  • Context retrieval: Dynamic chunking with Pinecone vector database ensures relevant context retrieval; Relevance Score configuration allows tuning precision vs. recall tradeoff; Focus Mode (1,000-doc context injection) improves targeted retrieval accuracy
  • Scalability: AWS infrastructure with isolated Kubernetes containers on Enterprise plan supports high-volume deployments; Free plan supports 250 queries/month, scales to "unlimited" on Enterprise with custom infrastructure
  • Reliability: No public SLA or uptime guarantees on Free/Basic/Premium/Advanced plans; Enterprise plan offers SLA guarantees with dedicated infrastructure (specific uptime % requires sales engagement)
  • Benchmarks: No published performance benchmarks comparing retrieval speed, accuracy, or latency against competitors (ChatBase, Vectara, CustomGPT); users report "accuracy relies heavily on quality of uploaded documents" with occasional struggles on complex queries
  • Quality indicators: Source attribution feature enables verification of AI responses; G2 reviews highlight accuracy as strength when knowledge base is comprehensive, with some users noting need for careful prompt engineering
  • Markets itself as “quality-based” RAG—focused on trusted, source-linked answers. [Nuclia Overview]
  • Tune semantic vs. keyword weighting and thresholds for domain precision.
  • Summaries and entity extraction enrich your corpus for better Q&A.
  • Scales to large datasets; speed and cost depend on your chosen LLM and hosting.
  • Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
  • Independent tests rate median answer accuracy at 5/5—outpacing many alternatives. Benchmark Results
  • Always cites sources so users can verify facts on the spot.
  • Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
Customization & Branding
  • UI customization: Full widget customization including header layout alignment, message bubble size/colors, background colors, bot and human avatars, composer placeholder text, send button icons
  • Branding control: Business logo upload, color schemes (header, chat interface, launcher button), title and subtitle text configuration, full translation support for widget UI in any language
  • White-labeling: Complete removal of Cody branding available on Premium ($99/month) and Advanced ($249/month) plans; Free and Basic plans display Cody branding on widgets
  • Custom domain: Not explicitly documented in public materials; likely requires Enterprise plan with custom deployment infrastructure (specifics require sales engagement)
  • Design flexibility: Launcher configuration with size adjustment, screen position (left/right/bottom), custom launcher icons; three embedding methods (shareable links, inline embeds, popup embeds) for flexible deployment
  • Mobile customization: Responsive widget design adapts to mobile devices; mobile-specific branding controls not separately documented (inherits desktop configuration)
  • LIMITATION: No documented domain restriction capabilities to limit widget usage to specific domains (security consideration for production deployments)
  • Role-based access: Team member limits by tier (3/10/30 members on Basic/Premium/Advanced) with per-chatbot permission enforcement and real-time updates
  • No-code widget offers basic styling; deeper branding means building your own front-end on the API.
  • You can set a custom system prompt to tweak tone and style. [Nuclia Docs]
  • Develop your own UI for a fully branded experience—API flexibility makes it doable.
  • Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand. White-label Options
  • Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
  • Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
  • Uses domain allowlisting to ensure the chatbot appears only on approved sites.
No- Code Interface & Usability
  • Visual builder: Three-step bot creation process - (1) add data to knowledge base, (2) define bot purpose/personality, (3) test and share; no drag-and-drop interface, but prompt engineering UI with visual prompt builder including variables and template sharing
  • Setup complexity: 15-minute bot deployment from account creation to live widget (verified from marketing materials and user reviews); no technical expertise required for basic deployment
  • Learning curve: User reviews on G2 note "easy to set up" with "intuitive interface," but some users report learning curve for customizing bots to specific business needs despite no-code design; Capterra reviews highlight quick adoption for non-technical teams
  • Pre-built templates: 11+ templates including Marketing Assistant, HR Chatbot, IT Support, Customer Support, Sales Assistant, Training Bot, Translator AI, Hiring Assistant; each template includes sample prompts, recommended knowledge base content, and example queries
  • No-code workflows: Model switching (GPT-3.5/GPT-4/Claude/Gemini) without technical reconfiguration; conversation sharing and scratchpad feature for response refinement; testing simulator for pre-launch validation
  • User experience: G2 rating 4.7/5 (150+ reviews), Capterra 4.8/5 (50+ reviews); users praise ease of deployment and source attribution, note occasional need for prompt engineering expertise to optimize bot behavior
  • LIMITATION: No drag-and-drop conversation flow builder or visual automation designer like Botpress/Voiceflow; focuses on prompt-based configuration rather than graphical flow design
  • No-code dashboard walks you through: create Knowledge Box → upload data → tune search → embed widget. [No-Code Intro]
  • Advanced sliders (retrieval strategy, prompt tweaks) may feel technical for absolute beginners.
  • Defaults work fine out of the gate, but power users can dive into embeddings, chunking, and more.
  • For full custom UI / branding, build on the API and craft the front end yourself.
  • Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
  • Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing. User Experience Review
  • Uses role-based access so business users and devs can collaborate smoothly.
Security & Privacy
  • CRITICAL LIMITATION: No CODY itself NOT SOC 2 certified - Help Center explicitly states "As an early stage startup, we are diligently working towards earning SOC 2 compliance"
  • Infrastructure compliance: Pinecone vector database (SOC 2 Type II certified), AWS S3 (PCI-DSS, HIPAA/HITECH, FedRAMP, FISMA compliant via AWS certification)
  • GDPR Compliant: Via AWS infrastructure in EU regions for European data residency and privacy requirements
  • Document storage: Amazon S3 with SSE-S3 encryption protocol for data at rest, TLS for transit
  • AI training policy: Customer data explicitly NOT used for training - "Your data will not be used to train any existing or new language model"
  • OpenAI data retention: API policy ensures data retained maximum 30 days for abuse monitoring only (not for model training)
  • Access controls: Per-chatbot permissions with real-time updates, API key management, role-based team member access
  • Enterprise security: Isolated Kubernetes containers on AWS with role-based security and custom infrastructure options
  • Procurement concern: Lack of direct SOC 2 certification may block enterprise adoption in regulated industries requiring vendor compliance attestations
  • Data lives in isolated Knowledge Boxes with disk encryption—never cross-trained between customers. [Privacy & Security]
  • Supports on-prem or private-cloud NucliaDB and local LLMs for strict residency. [On-Prem Option]
  • GDPR-compliant; no data is used to train global models unless you opt in.
  • Enterprise SSO and role-based access, with region pick (EU, etc.) for data zones.
  • Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
  • Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private. Security Certifications
  • Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Observability & Monitoring
  • Conversation logs: Centralized view of all interactions across interface, API, and website widgets with searchability
  • Filtering capabilities: By bot or date range for quick access to specific conversation subsets
  • Source verification: Click-through to examine exact documents used for each response enabling audit trails
  • Usage tracking: Real-time credit consumption monitoring in dedicated usage tab for cost management
  • Tiered log retention: 14 days (Basic), 30 days (Premium), 90 days (Advanced) - historical analysis constrained on lower plans
  • Third-party mentions: Usage pattern monitoring, performance metrics, common question tracking, knowledge gap identification (features lack detailed public documentation)
  • LIMITATION: Note: Advanced analytics dashboard features mentioned in sources lack public screenshots or comprehensive documentation (transparency gap)
  • LIMITATION: No NO real-time alerting for conversation volume spikes, error rates, or performance degradation
  • LIMITATION: No NO funnel analytics or conversion tracking for lead generation use cases
  • Dashboard shows usage and token spend for indexing and queries.
  • Activity logs track who ingested or queried what—great for audits. [Management Docs]
  • Open APIs / CLI make it easy to send logs to Splunk, Elastic, or your favorite tool.
  • You control how Q&A events are logged when you build your own front end.
  • Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
  • Lets you export logs and metrics via API to plug into third-party monitoring or BI tools. Analytics API
  • Provides detailed insights for troubleshooting and ongoing optimization.
No- Code Interface & Templates ( Core Differentiator)
  • 15-minute bot deployment: Three-step process - (1) add data to knowledge base, (2) define bot purpose/personality, (3) test and share
  • 11+ pre-built templates: Marketing Assistant, HR Chatbot, IT Support, Customer Support, Sales Assistant, Training Bot, Translator AI, Hiring Assistant
  • Template components: Sample prompts, recommended knowledge base content, example queries for rapid deployment
  • Model-agnostic interface: Switch between GPT-3.5, GPT-4, Claude, Gemini without technical reconfiguration
  • Prompt engineering UI: Visual prompt builder with variables, template sharing across team members, version control
  • Testing simulator: Test bot responses before publishing with conversation preview and refinement loops
  • Role-based access: Team member limits (3/10/30 by tier), per-chatbot permission enforcement, real-time permission updates
  • Target audience advantage: Business teams deploy knowledge assistants without developer resources vs API-centric platforms requiring technical expertise (9/10 rated differentiator for non-technical users)
N/A
N/A
Proprietary R A G Optimizations ( Differentiator)
  • Scratchpad: Save, refine, and use derivatives of AI-generated responses to improve specificity through micro-management and iterative enhancement
  • Template Mode: Pre-defined prompts with variables for consistent behavior patterns across conversations and use cases
  • Reverse Vector Search: Proprietary technique merging AI responses and user inputs for improved relevance matching and context awareness
  • Dynamic chunking: Algorithm adjusts chunk size based on token distribution rather than fixed-size chunks (adaptive optimization)
  • Persist Prompt: Continuous re-emphasis of system prompt throughout conversation preventing instruction drift in long conversations
  • Creativity Settings: Granular control over "creative," "balanced," or "factual" outputs for use-case-specific tone adjustment
  • Competitive positioning: Proprietary optimizations differentiate from standard RAG implementations but lack published performance benchmarks (7/10 rated differentiator)
N/A
N/A
Pricing & Scalability
  • Free plan: $0/month - 100 credits, 100 documents, 1 team member, 1 widget, NO API access, NO crawler, monthly query limit 250
  • Basic plan: $29/month - 2,500 credits, 1,000 documents, 3 team members, 14-day conversation logs, API access, GPT-3.5 only
  • Premium plan: $99/month - 10,000 credits, 10,000 documents, 10 team members, 30-day logs, website crawler (500 URLs), white-labeling, GPT-4/Claude access
  • Advanced plan: $249/month - 25,000 credits, 25,000 documents + 25,000 crawled pages, 30 team members, 90-day logs, 9 recurring website re-imports, 50 embed sites
  • Enterprise plan: Custom pricing - Unlimited credits, custom documents/members, SLA guarantees, dedicated infrastructure, on-premises/multi-cloud/hybrid deployment, 6 LLM providers
  • Credit consumption: GPT-3.5 Turbo (1 credit), GPT-3.5 16K (5 credits), GPT-4 (10 credits) per query with transparent per-model costs
  • Cost predictability: Credit-based model enables budget forecasting - 2,500 GPT-3.5 queries or 250 GPT-4 queries on Basic ($29/month)
  • Enterprise features: Custom feature development, SLA guarantees, role-based security with isolated Kubernetes containers, deployment flexibility (on-prem/multi-cloud/hybrid)
  • License + consumption model: pay the base, then add costs for indexing, queries, LLM calls. [Consumption Docs]
  • Granular controls mean light usage stays cheap, heavy usage scales automatically.
  • Free trial available; platform scales from tiny projects to huge multi-tenant setups.
  • On-prem or hybrid hosting gives large orgs total resource control.
  • Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
  • Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates. View Pricing
  • Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Support & Ecosystem
  • API documentation: developers.meetcody.ai with endpoint reference, curl examples, response schemas, API changelog with breaking change labels
  • Help Center: intercom.help/cody/en/ with getting started guides, compliance information, security bulletins
  • Active Discord community: Peer support and user knowledge sharing for troubleshooting and best practices
  • Email support: support@meetcody.ai for all users across all plans
  • Blog: Tutorials and guides for use case implementation and platform features
  • Advanced plan: Dedicated account manager for onboarding and optimization guidance
  • Enterprise SLA: Guaranteed response times and uptime commitments (specifics require sales engagement, not publicly documented)
  • LIMITATION: No NO phone support available on any tier (email and community only)
  • LIMITATION: No NO live chat support documented for real-time assistance
  • Documentation quality: Functional but limited - clear endpoint docs and response schemas but lacking tutorials, cookbooks, comprehensive code samples for advanced implementations
  • User feedback: Reviews note learning curve for customizing bots to specific business needs despite no-code interface
  • Docs, Slack community, and Stack Overflow keep devs productive. [Community]
  • Open-source pieces like NucliaDB and nuclia-eval ensure transparency.
  • LangChain integration, HF presence, and many samples foster a healthy dev scene.
  • Enterprise customers get personalized support—especially for on-prem or hybrid installs.
  • Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast. Developer Docs
  • Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs. Enterprise Solutions
  • Benefits from an active user community plus integrations through Zapier and GitHub resources.
R A G-as-a- Service Assessment
  • Platform classification: TRUE RAG-as-a-Service platform with Pinecone vector database, dynamic chunking, and configurable retrieval parameters
  • Architecture validation: Amazon S3 (document storage) + Pinecone (embeddings) + multi-LLM support confirms genuine RAG implementation vs chatbot platforms
  • Target audience: Business teams needing no-code deployment with 15-minute bot creation vs developer-centric platforms requiring technical expertise
  • RAG capabilities: Relevance score tuning, token distribution control, Focus Mode (1,000 doc context injection), dynamic chunking, Reverse Vector Search
  • Differentiators: Source attribution (click-through verification), Focus Mode (targeted context), Scratchpad (response refinement), native Slack/Discord integrations
  • Enterprise considerations: Lack of direct SOC 2 certification (infrastructure-partner-only compliance) may block regulated industry adoption requiring vendor attestations
  • Developer experience: Comprehensive REST API with SSE streaming but NO official SDKs requiring direct HTTP calls vs SDK-equipped platforms
  • Competitive positioning: Business-focused RAG platform emphasizing no-code deployment and source transparency vs developer-centric platforms with enterprise compliance (rated 7.5/10 as RAG platform)
  • Platform Type: TRUE RAG-AS-A-SERVICE PLATFORM - Core mission is retrieval-augmented generation backend with managed infrastructure and API-first design
  • Agentic RAG Focus: Progress Agentic RAG (acquired June 2025) - specialized RAG platform with autonomous decision-making vs traditional manual RAG systems
  • Fully Managed Infrastructure: Hosted NucliaDB with automatic scaling, chunking, embedding, storage - no infrastructure management required
  • API-First Backend: Complete REST API + dual SDKs (Python/JavaScript) for programmatic knowledge base management and retrieval
  • Model-Agnostic Service: Supports OpenAI, Azure OpenAI, Google PaLM 2, Cohere, Anthropic, Hugging Face - switch providers without architectural changes
  • Open-Source Transparency: NucliaDB foundation (710+ GitHub stars, AGPLv3) provides visibility into retrieval mechanisms vs black-box platforms
  • Embeddable Widgets: No-code dashboard generates widgets for website deployment - not closed conversational marketing platform
  • Agent-Ready Infrastructure: Only RAG platform specifically designed for AI agent integration - CrewAI official integration, LangChain compatible
  • Comparison Alignment: Direct comparison to CustomGPT valid - both are RAG-as-a-Service with API access and managed infrastructure
  • Use Case Fit: Organizations prioritizing multimodal search (text/audio/video), semantic retrieval, generative Q&A, and AI agent knowledge backends
  • Hybrid Deployment: Cloud-managed service with on-prem NucliaDB option for strict data sovereignty - true RaaS flexibility
  • 100% Private GenAI: Option to keep all processing on Nuclia infrastructure without third-party LLM exposure - unique RaaS feature
  • Platform Type: TRUE RAG-AS-A-SERVICE PLATFORM - all-in-one managed solution combining developer APIs with no-code deployment capabilities
  • Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
  • API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat API Documentation
  • Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
  • No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
  • Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
  • RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses Benchmark Details
  • Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
  • Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
  • Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
  • Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Competitive Positioning
  • vs CustomGPT: CODY excels in no-code deployment and source attribution; CustomGPT excels in enterprise compliance (direct SOC 2) and official SDKs
  • vs Vectara: CODY offers simpler pricing and no-code interface; Vectara provides enterprise-grade accuracy benchmarks and HHEM hallucination detection
  • vs Pinecone Assistant: Both use Pinecone vector database; CODY differentiates with Focus Mode and business templates; Pinecone Assistant offers deeper infrastructure control
  • vs ChatBase/SiteGPT: CODY provides TRUE RAG architecture vs simpler chatbot platforms; Focus Mode and multi-LLM support vs single-model implementations
  • Market niche: Business-focused RAG platform for teams needing no-code deployment with source transparency, NOT developer tool requiring technical implementation
  • Market position: API-first RAG platform with comprehensive multimodal indexing (text, audio, video, OCR) and model-agnostic architecture, balancing developer flexibility with no-code dashboard usability
  • Target customers: Development teams needing multimodal search across text/audio/video, organizations wanting model flexibility (OpenAI, Azure, PaLM, Cohere, Anthropic, Hugging Face), and companies requiring on-prem/hybrid deployment with open-source NucliaDB foundation
  • Key competitors: Deepset/Haystack, Vectara.ai, Azure AI Search, and custom RAG implementations using Pinecone/Weaviate
  • Competitive advantages: Comprehensive multimodal indexing (OCR for images, speech-to-text for audio/video), model-agnostic with "100% private generative AI" option, open-source NucliaDB for self-hosting and portability, Sync Agent for automated continuous indexing, n8n/Zapier integration for workflow automation, and GDPR compliance with isolated Knowledge Boxes never cross-training between customers
  • Pricing advantage: License + consumption model with granular control (base + indexing + queries + LLM calls); light usage stays cheap while scaling automatically; free trial available; best value for organizations wanting to control costs through usage optimization and on-prem deployment options
  • Use case fit: Ideal for enterprises with diverse content types requiring multimodal search (documents, audio, video), organizations prioritizing model flexibility without vendor lock-in, and companies needing hybrid/on-prem deployment with strict data residency requirements using open-source NucliaDB foundation
  • Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
  • Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
  • Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
  • Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
  • Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
  • Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
Customer Base & Case Studies
  • Scale claim: 100,000+ businesses served (unverified, company-provided claim)
  • Acquisition: Acquired by Just Build It in May 2024 demonstrating market validation and growth trajectory
  • Use case examples: Customer support automation, HR policy Q&A, IT support documentation, sales enablement, internal knowledge management, training assistants
  • Target market: SMBs and mid-market companies seeking knowledge base automation without dedicated AI/ML engineering resources
  • User feedback themes: Ease of deployment praised, source attribution valued for trust, accuracy concerns noted for complex document sets
  • Common use cases: "AI virtual employee" positioning for customer support, HR, IT support, sales assistance, marketing, training, and hiring workflows
N/A
N/A
Company Background
  • Acquisition: Acquired by Just Build It in May 2024 (acquisition terms undisclosed)
  • Customer base: Claims 100,000+ businesses globally (company-provided statistic, third-party verification unavailable)
  • Market positioning: Business-focused RAG platform emphasizing no-code deployment vs developer-centric competitors
  • Infrastructure partners: Pinecone (SOC 2 Type II vector database), AWS S3 (document storage with PCI-DSS/HIPAA/FedRAMP compliance), OpenAI/Anthropic (LLM providers)
  • Compliance status: Early-stage startup working toward SOC 2 certification (not yet achieved as of documentation date)
  • Product evolution: REST API v1.0 with May 2024 update, Enterprise tier with 6 LLM providers demonstrates platform maturation
N/A
N/A
A I Models
  • Multi-LLM Support: GPT-3.5 Turbo, GPT-3.5 16K, GPT-4, Claude Sonnet across paid tiers
  • Enterprise Tier (6 LLM Providers): Llama 3.1, Claude 3.5 Sonnet, GPT-4o, Gemini 1.5, Mixtral-8x7B, GPT-3.5 Turbo
  • Credit-Based Consumption: GPT-3.5 Turbo (1 credit), GPT-3.5 16K (5 credits), GPT-4 (10 credits) per query with transparent per-model costs
  • Model-Agnostic Architecture: Users stay current with latest LLM updates without retraining bots; bring your own API key for supported LLMs (Claude, Mistral, GPT, Gemini)
  • Claude 3 Default: Defaults to Claude 3 from Anthropic for code generation, autocomplete, and chat features vs competitors relying solely on GPT models
  • LIMITATION: No automatic model routing based on query complexity or cost optimization - users must manually select models
  • Model-Agnostic Architecture: Supports OpenAI, Azure OpenAI, Google PaLM 2, Cohere, Anthropic Claude, and Hugging Face models - complete flexibility without vendor lock-in
  • Private GenAI Option: "100% private generative AI" mode keeps everything on Nuclia-hosted infrastructure for maximum data isolation
  • Hugging Face Integration: Drop in open-source or domain-specific models from Hugging Face for specialized use cases
  • Flexible Model Switching: Swap or blend models to optimize cost-vs-quality balance based on query complexity
  • Local Model Support: Self-hosted models require extra setup but provide complete control for sensitive deployments
  • Multi-Language Support: All models benefit from Nuclia's multilingual indexing covering virtually any non-pictogram language
  • Developer Freedom: Choose optimal LLM per query or Knowledge Box without architectural changes - true flexibility for AI applications
  • Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
  • Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request Model Selection Details
  • Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
  • Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
  • Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
  • TRUE RAG Architecture: Pinecone vector database (SOC 2 Type II certified) with Amazon S3 document storage using SSE-S3 encryption protocol
  • Dynamic Chunking Algorithm: Adjusts chunk size based on token distribution for optimal retrieval performance (specific parameters not publicly documented)
  • Relevance Score Configuration: Adjustable trade-off between accuracy and completeness for retrieval tuning
  • Token Distribution Control: Split configuration between context, history, and response (e.g., 70% context, 10% history, 20% response)
  • Reverse Vector Search: Proprietary technique merging AI and user responses for improved relevance matching
  • Context Window: Claude 2 integration provides up to 100K context windows for comprehensive codebase analysis
  • Advanced Chunking: Comprehensive data segmentation including metadata for superior data management across various file formats
  • LIMITATION: No published benchmark results or quantitative accuracy metrics for RAG performance validation
  • Quality-Based RAG: Focused on trusted, source-linked answers with comprehensive citation attribution for every response
  • Hybrid Search Engine: Combine semantic vector search with keyword matching for domain-precision retrieval
  • Customizable Chunking: Adjust chunk sizes, weighting, and segmentation strategies for optimal context windows
  • Configurable Retrieval: Fine-tune similarity thresholds, metadata filters, and ranking parameters for use case optimization
  • Knowledge Graph Extraction: Automatic entity and relationship extraction enriches corpus for better Q&A
  • Multimodal Indexing: OCR for images, speech-to-text for audio/video creates comprehensive searchable knowledge base
  • Anti-Hallucination: Source citations, confidence scoring, and quality validation reduce false responses
  • Open Architecture: NucliaDB open-source foundation provides transparency into retrieval mechanisms vs black-box competitors
  • Developer Control: Full API access for embeddings, chunking, retrieval strategies - not opaque proprietary systems
  • Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks RAG Performance
  • Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content Benchmark Details
  • Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
  • Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
  • Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
  • Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
  • Source verification: Always cites sources so users can verify facts on the spot
Use Cases
  • Primary Departments: Marketing teams (creative strategies, campaign insights), HR departments (employee communication, query management), IT support (technical troubleshooting), Sales departments (AI-driven assistance)
  • Internal Operations: Answering internal or customer FAQs automatically, training new team members with AI support, generating reports/email replies/summaries using company data, searching thousands of documents instantly
  • Code Assistance: Engineers saving 5-6 hours per week, writing code 2x faster with AI-powered context-aware code generation and autocomplete
  • Industries: Financial services (trusted by 4/6 top US banks), technology companies (7/10 top public tech companies), healthcare, professional service firms, government agencies (15+ US agencies)
  • Team Sizes: Startups managing internal documentation to enterprises coordinating teams across regions; 100,000+ businesses served globally
  • Educational Use Cases: Educational institutions training students in AI applications, legal firms organizing and retrieving case documents
  • Enterprise Search Replacement: Modernize legacy search with AI-powered semantic search across text, audio, video with RAG accuracy
  • Customer Support Knowledge: Internal Q&A systems for support teams needing fast, accurate answers from product documentation
  • Multimodal Content Discovery: Search across diverse content types - PDFs, videos, audio recordings, presentations with unified interface
  • Regulatory Compliance: GDPR-compliant knowledge retrieval for regulated industries requiring data residency and isolation guarantees
  • Developer RAG Backend: API-first RAG infrastructure for building custom AI applications without managing vector databases
  • Multilingual Organizations: Global companies needing search across multiple languages with consistent quality
  • Research & Analysis: Extract insights from large document collections with entity recognition and AI classification
  • On-Prem Deployments: Organizations requiring hybrid/on-prem with NucliaDB for strict data sovereignty requirements
  • Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
  • Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
  • Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
  • Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
  • Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
  • Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
  • Financial services: Product guides, compliance documentation, customer education with GDPR compliance
  • E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
  • SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
  • CRITICAL LIMITATION: Cody itself NOT SOC 2 certified - "As an early stage startup, we are diligently working towards earning SOC 2 compliance"
  • Infrastructure Compliance: Pinecone vector database (SOC 2 Type II certified), AWS S3 (PCI-DSS, HIPAA/HITECH, FedRAMP, FISMA compliant via AWS certification)
  • GDPR Compliant: Via AWS infrastructure in EU regions for European data residency and privacy requirements; Data Processing Addendums available
  • Document Encryption: Amazon S3 with SSE-S3 encryption protocol for data at rest, TLS for transit
  • AI Training Policy: Customer data explicitly NOT used for training - "Your data will not be used to train any existing or new language model"
  • OpenAI Data Retention: API policy ensures data retained maximum 30 days for abuse monitoring only (not for model training)
  • Access Controls: Per-chatbot permissions with real-time updates, API key management, role-based team member access
  • Enterprise Security: Isolated Kubernetes containers on AWS with role-based security and custom infrastructure options
  • Procurement Concern: Lack of direct SOC 2 certification may block enterprise adoption in regulated industries requiring vendor compliance attestations
  • GDPR Compliant: EU-based with strict data protection - customer data never used to train global models unless opt-in
  • Data Isolation: Knowledge Boxes provide tenant separation with disk encryption - data never cross-trained between customers
  • On-Prem Deployment: Self-host NucliaDB and local LLMs for complete data residency and control
  • Private Cloud Options: Hybrid deployment with processing in Nuclia cloud but storage on-premise for data sovereignty
  • Enterprise SSO: Identity provider integration with role-based access control for organizational security
  • Regional Data Centers: EU and other region selection for compliance with local data residency laws
  • Zero Cross-Training: Explicit commitment that customer data never used to improve models for other customers
  • Encryption Standards: Data encrypted in transit and at rest with enterprise-grade security
  • Open-Source Transparency: NucliaDB source code available for security audits and verification
  • Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
  • SOC 2 Type II certification: Industry-leading security standards with regular third-party audits Security Certifications
  • GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
  • Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
  • Data isolation: Customer data stays isolated and private - platform never trains on user data
  • Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
  • Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
  • Free Plan: $0/month - 100 credits (250 queries/month), 100 documents, 1 team member, 1 widget, NO API access, NO crawler
  • Basic Plan: $29/month - 2,500 credits, 1,000 documents, 3 team members, 14-day conversation logs, API access, GPT-3.5 only
  • Premium Plan: $99/month - 10,000 credits, 10,000 documents, 10 team members, 30-day logs, website crawler (500 URLs), white-labeling, GPT-4/Claude access
  • Advanced Plan: $249/month - 25,000 credits, 25,000 documents + 25,000 crawled pages, 30 team members, 90-day logs, 9 recurring website re-imports, 50 embed sites
  • Enterprise Plan: Custom pricing - Unlimited credits, custom documents/members, SLA guarantees, dedicated infrastructure, on-premises/multi-cloud/hybrid deployment, 6 LLM providers
  • Credit System: GPT-3.5 Turbo (1 credit), GPT-3.5 16K (5 credits), GPT-4 (10 credits) per query - enables budget forecasting (2,500 GPT-3.5 queries or 250 GPT-4 queries on Basic)
  • 14-Day Free Trials: Available for all paid plans to evaluate features before commitment
  • Pricing Model: License + consumption (base subscription + usage-based costs for indexing, queries, and LLM calls)
  • Free Trial: Available for hands-on evaluation before committing to paid plans
  • Granular Cost Control: Pay for what you use - light usage stays cheap, heavy usage scales automatically with predictable costs
  • Token-Based Billing: Consumption measured in tokens for indexing and query operations with transparent pricing
  • On-Prem Economics: Self-hosting NucliaDB provides cost control for organizations with existing infrastructure
  • Multi-Tenant Scalability: Platform scales from small projects to massive multi-tenant deployments without architectural changes
  • No Hidden Costs: Transparent billing for all components - storage, indexing, queries, LLM usage clearly itemized
  • Enterprise Flexibility: Custom pricing available for large deployments with volume discounts and dedicated resources
  • Best Value For: Organizations wanting to control costs through usage optimization rather than fixed seat-based pricing
  • Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security View Pricing
  • Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
  • Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs Enterprise Solutions
  • 7-Day Free Trial: Full access to Standard features without charges - available to all users
  • Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
  • Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
  • Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
  • API Documentation: developers.meetcody.ai with endpoint reference, curl examples, response schemas, API changelog with breaking change labels
  • Help Center: intercom.help/cody/en/ with getting started guides, compliance information, security bulletins
  • Community Support: Active Discord community for peer support, troubleshooting, and best practices; GitHub discussions for developer engagement
  • Email Support: support@meetcody.ai available for all users across all plans
  • Response Times: Generally praised for responsiveness; Advanced plan includes dedicated account manager for onboarding and optimization guidance
  • Learning Resources: Blog with tutorials and guides for use case implementation and platform features
  • Enterprise SLA: Guaranteed response times and uptime commitments (specifics require sales engagement, not publicly documented)
  • LIMITATION: NO phone support or live chat on any tier (email and community only)
  • Documentation Quality: Functional but limited - clear endpoint docs with response schemas but lacking tutorials, cookbooks, comprehensive code samples for advanced implementations
  • Comprehensive Documentation: docs.nuclia.dev and docs.rag.progress.cloud with detailed guides, API references, and code examples
  • Active Community: Slack community, Stack Overflow support, and developer forums for peer assistance
  • Open-Source Resources: NucliaDB GitHub (710+ stars, AGPLv3) with transparent code and community contributions
  • LangChain Integration: Official integration with popular AI frameworks for developer ecosystem compatibility
  • Code Samples: Python and JavaScript SDK examples for common RAG workflows and use cases
  • Enterprise Support: Dedicated support for paid customers, especially for on-prem/hybrid installations
  • nuclia-eval Library: Open-source evaluation tools for RAG quality assessment and continuous improvement
  • API Documentation: Complete REST API reference with authentication, rate limits, and error handling guides
  • Quick Start Guides: Step-by-step tutorials for common scenarios from basic setup to advanced configurations
  • Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding Developer Docs
  • Email and in-app support: Quick support via email and in-app chat for all users
  • Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
  • Code samples: Cookbooks, step-by-step guides, and examples for every skill level API Documentation
  • Open-source resources: Python SDK (customgpt-client), Postman collections, GitHub integrations Open-Source SDK
  • Active community: User community plus 5,000+ app integrations through Zapier ecosystem
  • Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Customization & Flexibility ( Behavior & Knowledge)
  • Real-Time Knowledge Updates: Always available manual retraining for immediate knowledge base updates across all plans
  • Automatic Syncing: Limited to website sources only with recurring re-imports - not available for uploaded documents
  • Bot Personality Customization: Create custom conversation starters tailored to specific tasks, adjust behavior, tone, and focus to suit each use case
  • Focus Mode: Generate highly specialized responses based on selected documents for targeted tasks with up to 1,000 specific documents injected into conversation context
  • Scratchpad for Fine-Tuning: Fine-tune bot responses and knowledge base interactions improving accuracy and relevance of future responses
  • Custom Prompts: Define bot purpose and personality during creation with shareable prompt templates across team members
  • Configurable Token Distribution: Adjust split between context, history, and response (e.g., 70% context, 10% history, 20% response)
  • LIMITATION: No NO programmatic personality management - tone/behavior settings dashboard-only, cannot modify per-user or via API (global configuration only)
  • LIMITATION: Knowledge base updates require manual intervention - no real-time sync from cloud sources (Google Drive, Dropbox, Notion) except website crawling
  • Adjust chunk sizes, weighting, metadata filters—fine-tune retrieval to your needs.
  • Pass a custom prompt per query to set persona or style on the fly. [Nuclia Docs]
  • Use multiple Knowledge Boxes for isolated data, with tags for granular scopes.
  • Return structured output (JSON, etc.) or fine-tune private models when you need something very specific.
  • Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
  • Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus. Learn How to Update Sources
  • Supports multiple agents per account, so different teams can have their own bots.
  • Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Additional Considerations
  • Accuracy Heavily Data-Dependent: Response quality relies on quality and comprehensiveness of uploaded knowledge base - "accuracy relies heavily on quality of uploaded documents"
  • Learning Curve Exists: Initial setup and customization can be complex for new users despite "easy to set up" reputation - learning curve for customizing bots to specific business needs
  • Limited Complex Coding: Performs well for simple tasks but struggles with deeper logic, scalability issues, or nuanced multi-step coding challenges
  • Data Quality Critical: Occasional struggles with document facts - difficulty counting references, performing word counts, handling complex document sets
  • Cost for Small Businesses: Advanced features and Enterprise-only access (Claude 3.5, Gemini 1.5, Llama 3.1) expensive for smaller businesses
  • White-Label Minimum: Complete Cody branding removal requires Premium ($99/month) or Advanced ($249/month) - not available on Free/Basic tiers
  • Performance with Large Data: Speed may slow with large datasets or complex codebases on less powerful systems; requires stable internet (cloud-based)
  • Compliance Gap: Cody itself NOT SOC 2 certified as early-stage startup "diligently working towards earning SOC 2 compliance" - may block enterprise procurement
  • Infrastructure Compliance Only: Pinecone (SOC 2 Type II), AWS S3 (PCI-DSS, HIPAA/HITECH, FedRAMP) certified but Cody platform not directly certified
  • Best For: Business teams needing no-code deployment with 15-minute bot creation and source transparency for internal knowledge management
  • NOT Ideal For: Enterprises requiring direct SOC 2 vendor certification, native cloud storage sync, YouTube content ingestion, or deep technical problem-solving
  • More than just search—Nuclia covers AI search, Q&A, classification, and multi-language out of the box.
  • Great for replacing or boosting enterprise search across text, audio, and video with RAG.
  • Open-source core reduces lock-in and lets you extend or self-host if desired.
  • Very flexible platform—powerful, but may need extra ML / DevOps effort for advanced setups.
  • Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
  • Gets you to value quickly: launch a functional AI assistant in minutes.
  • Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
  • Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
Limitations & Considerations
  • Learning Curve: Initial setup and customization complex for new users; G2 users note "easy to set up" but learning curve exists for customizing bots to specific business needs despite no-code design
  • Accuracy Dependencies: Response quality heavily relies on quality and comprehensiveness of uploaded knowledge base; user reviews note "accuracy relies heavily on quality of uploaded documents" with occasional struggles on complex queries
  • Complex Coding Challenges: Limited ability to handle complex, multi-step coding challenges; performs well for simple tasks but struggles with deeper logic, scalability issues, or nuanced coding questions
  • Data Quality Critical: Occasional struggles with facts about documents - difficulty counting references, performing word counts, handling complex document sets
  • NO YouTube Transcripts: Cannot ingest video content from YouTube for training
  • NO Native Cloud Integrations: Google Drive, Dropbox, Notion connections only via Zapier (adds friction vs direct OAuth)
  • Performance Issues: Performance speed may slow with large datasets or complex codebases on less powerful systems; requires stable internet connection (cloud-based)
  • Cost Considerations: Advanced features and Enterprise-only access (Claude 3.5, Gemini 1.5, Llama 3.1) can be expensive for smaller businesses; white-labeling requires Premium ($99/month) minimum
  • NOT Ideal For: Enterprises requiring direct SOC 2 certification (infrastructure-only compliance may block procurement), teams needing deep technical problem-solving for critical systems without traditional development practices, organizations needing native cloud storage sync or YouTube content ingestion
  • API-First Complexity: Developer-focused platform requires technical skills - not plug-and-play for non-technical teams
  • No Turnkey UI: No-code dashboard covers basics, but advanced branding/customization requires building custom front-end
  • No Native Messaging Channels: No one-click Slack or Teams bots - requires custom development via API
  • Language Limitations: Cannot index pictogram-based languages (Japanese, Chinese characters) - text-based languages only
  • Local Model Setup: Self-hosted LLMs require extra ML/DevOps effort for deployment and maintenance
  • Learning Curve: Advanced RAG parameters (chunking, embeddings, retrieval strategies) may feel technical for beginners
  • No Built-In Analytics: Platform focuses on RAG quality - conversation analytics, lead capture require custom implementation
  • Resource Requirements: On-prem NucliaDB deployment needs infrastructure planning and ongoing operational management
  • Integration Effort: While flexible, connecting to business systems (CRM, helpdesk) requires developer work vs turnkey connectors
  • Best For Developers: Powerful platform for teams with technical resources, less suitable for non-coders wanting self-serve deployment
  • Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
  • Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
  • Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
  • Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
  • Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
  • Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
  • Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
  • Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
N/A
  • Agentic RAG Architecture: Progress Agentic RAG (formerly Nuclia) incorporates autonomous decision-making capabilities unlike traditional RAG requiring explicit prompting
  • Autonomous Retrieval Strategies: System automatically determines optimal retrieval strategies based on query complexity without manual configuration
  • Intelligent Query Routing: Routes queries to appropriate knowledge sources based on content type, metadata, and semantic understanding
  • Dynamic Response Generation: Adjusts response generation parameters based on context - answer length, detail level, citation density adapted per query
  • CrewAI Integration: Only RAG platform specifically designed to deliver reliable, scalable retrieval to AI agents - integrates with CrewAI for orchestrating autonomous AI agent teams
  • Multi-Agent Support: Enables creating AI teams where each agent has specific roles, tools, and goals with Nuclia providing knowledge retrieval backend
  • Python SDK Agent Workflows: Easy integration of AI agents into workflows through Nuclia's Python SDK unlocking intelligent automation possibilities
  • AI Search Copilot: Customizable LLM agents (AI copilots) interact through human-like conversation, behaving according to given goals - employee support, customer service, troubleshooting
  • Learning Capability: Agentic approach learns from user interactions to improve future performance through feedback loops
  • Automatic Context Adjustment: Dynamically manages context window utilization based on query complexity and available knowledge
  • Pre-Built Ingestion Agents (Beta): Labeler (auto-classification), Generator (summaries/JSON extraction), Graph Extraction (entities/relationships), Q&A Generator, Content Safety flagging
  • MISSING FEATURES: NO lead capture, NO human handoff/escalation workflows, NO proactive alerting documented (monitoring exists, alerting unclear)
  • Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
  • Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
  • Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
  • Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions View Agent Documentation
  • Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
  • Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
  • Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining

Ready to experience the CustomGPT difference?

Start Free Trial →

Final Thoughts

Final Verdict: CODY AI vs Nuclia

After analyzing features, pricing, performance, and user feedback, both CODY AI and Nuclia are capable platforms that serve different market segments and use cases effectively.

When to Choose CODY AI

  • You value true rag architecture with pinecone vector database and configurable retrieval parameters (relevance score, token distribution, focus mode)
  • Source attribution with every response - click-through to exact documents used for generation (transparency and trust differentiator)
  • Focus Mode unique capability: inject up to 1,000 specific documents into conversation context for targeted responses vs full knowledge base

Best For: TRUE RAG architecture with Pinecone vector database and configurable retrieval parameters (relevance score, token distribution, Focus Mode)

When to Choose Nuclia

  • You value specialized for unstructured data
  • Strong multilingual support (100+ languages)
  • SOC2 Type 2 and ISO 27001 compliant

Best For: Specialized for unstructured data

Migration & Switching Considerations

Switching between CODY AI and Nuclia requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.

Pricing Comparison Summary

CODY AI starts at $29/month, while Nuclia begins at $300/month. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.

Our Recommendation Process

  1. Start with a free trial - Both platforms offer trial periods to test with your actual data
  2. Define success metrics - Response accuracy, latency, user satisfaction, cost per query
  3. Test with real use cases - Don't rely on generic demos; use your production data
  4. Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
  5. Check vendor stability - Review roadmap transparency, update frequency, and support quality

For most organizations, the decision between CODY AI and Nuclia comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.

📚 Next Steps

Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.

  • Review: Check the detailed feature comparison table above
  • Test: Sign up for free trials and test with real queries
  • Calculate: Estimate your monthly costs based on expected usage
  • Decide: Choose the platform that best aligns with your requirements

Last updated: December 11, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.

Ready to Get Started with CustomGPT?

Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.

Why Choose CustomGPT?

97% Accuracy

Industry-leading benchmarks

5-Min Setup

Get started instantly

24/7 Support

Expert help when you need it

Enterprise Ready

Scale with confidence

Trusted by leading companies worldwide

Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us

Join the Discussion

Loading comments...

Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.

Watch: Understanding AI Tool Comparisons