In this comprehensive guide, we compare CODY AI and Stonly across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between CODY AI and Stonly, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose CODY AI if: you value true rag architecture with pinecone vector database and configurable retrieval parameters (relevance score, token distribution, focus mode)
Choose Stonly if: you value exceptional ease of use - 4.8/5 g2 rating with intuitive visual editor praised in 32 reviews
About CODY AI
CODY AI is business-focused no-code rag platform with source attribution. Business-focused RAG-as-a-Service platform enabling no-code AI assistant creation trained on custom knowledge bases. Acquired by Just Build It (May 2024), claims 100,000+ businesses as customers. TRUE RAG platform with Pinecone vector database, multi-LLM support (GPT-4, Claude 3.5, Gemini 1.5, Llama 3.1 on Enterprise), and comprehensive REST API. Differentiators: source attribution with every response, Focus Mode (inject 1,000 docs into context), 15-minute bot deployment. Critical gaps: NO direct SOC 2 certification (infrastructure partners only), NO official SDKs, NO native cloud storage integrations. $0-$249/month credit-based pricing. Founded in 2022, headquartered in United States, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
85/100
Starting Price
$29/mo
About Stonly
Stonly is interactive knowledge base platform with enterprise ai-powered answers. Stonly is a customer support knowledge management platform with embedded AI capabilities focused on interactive step-by-step guides and help desk agent assistance. Its AI Answers feature (Enterprise-only add-on) achieves 71% self-serve success rates, but it's fundamentally a knowledge base platform with AI features—not a pure RAG-as-a-Service solution. Founded in 2017, headquartered in San Francisco, CA, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
96/100
Starting Price
$249/mo
Key Differences at a Glance
In terms of user ratings, Stonly in overall satisfaction. From a cost perspective, CODY AI starts at a lower price point. The platforms also differ in their primary focus: AI Chatbot versus Knowledge Management. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
CODY AI
Stonly
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
Supported formats: PDF, Word (.doc/.docx), PowerPoint (.ppt/.pptx), plain text files with 100MB maximum file size per document
Built-in text editor: Direct text input for creating knowledge base entries without file uploads
Website crawler (Premium/Advanced): Import up to 25,000 pages on Advanced tier with automatic recurring re-imports for up to 9 websites
Document capacity by tier: Free (100 documents), Basic (1,000), Premium (10,000), Advanced (25,000 documents + 25,000 crawled web pages)
Storage architecture: Amazon S3 with SSE-S3 encryption protocol for documents, Pinecone vector database (SOC 2 Type II certified) for embeddings
Dynamic chunking algorithm: Adjusts chunk size based on token distribution for optimal retrieval performance (specific parameters not publicly documented)
Manual retraining: Always available for immediate knowledge base updates across all plans
Automatic syncing: Limited to website sources only with recurring re-imports (not available for uploaded documents)
CRITICAL LIMITATION: No NO YouTube transcript support - cannot ingest video content from YouTube for training
CRITICAL LIMITATION: No NO native cloud integrations - Google Drive, Dropbox, Notion connections only via Zapier (adds friction vs direct OAuth)
LIMITATION: No NO audio file support (MP3, M4A), No NO video file support (MP4), No NO code file ingestion, No NO Excel/CSV direct import
PDF uploads confirmed
Public website crawling: Pages not requiring authentication
Zendesk help center content indexing
Proprietary interactive guide format as primary content model
Note: No Google Drive, Dropbox, Notion, or SharePoint integrations for data ingestion
Note: No YouTube transcript extraction (videos can be embedded but not processed)
Note: No direct Word document (.docx) or HTML file imports confirmed
Note: No automatic content syncing from external sources - updates are manual through Stonly's visual editor
Content limits by tier: Basic (5 guides, 400 views/mo), Small Business (unlimited guides, 4K views/mo), Enterprise (custom)
Content versioning: Side-by-side comparison and instant restore on Business and Enterprise plans
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
Native Slack integration: Free for all users with /assign-bot command for channel-specific bot assignment and @mentions for queries
Native Discord integration: Users mention @Cody for queries within Discord servers (free for all users)
Zapier integration: Connects to 5,000+ apps including Telegram, Facebook Messenger, Google Sheets, Google Docs, WhatsApp (via ecosystem)
Website embedding (3 methods): Shareable links (direct URLs without site modification), inline embeds (widgets within page sections), popup embeds (floating chat bubbles)
REST API v1.0: Full API access on all paid plans with documentation at developers.meetcody.ai
CRITICAL GAPS: No NO Microsoft Teams native integration (Zapier workaround required), No NO WhatsApp Business native integration (Zapier only), No NO Google Drive/Dropbox/Notion native connections
LIMITATION: No NO webhook functionality explicitly documented in API - potential constraint for event-driven architectures and real-time notifications
Deep help desk integrations: Zendesk, Salesforce Service Cloud, Freshdesk, ServiceNow
Zendesk features: Update tickets from guides, preserve guide progress in tickets, launch Zendesk Chat from widget
Zapier integration: Webhook triggers for form submissions and guide completions
Analytics integrations: Segment, Google Analytics
Embedding options: JavaScript widget, iframe, API deployment
Note: No native Slack, WhatsApp, Telegram, or Microsoft Teams integrations (confirmed by multiple user reviews)
Note: No omnichannel messaging support
Website embedding: All plans support JS widget and iframe embedding
Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more.
Explore API Integrations
Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc.
Read more here.
Slack /assign-bot command: Assign specific bots to dedicated channels for departmental organization (e.g., IT bot in #it-support, HR bot in #hr-questions)
Free for all users: Native integrations available even on Free plan ($0/month) vs competitors requiring paid tiers or Zapier workarounds
Discord @Cody mentions: Direct mention-based querying within Discord servers for community support or team collaboration
Context preservation: Conversation history maintained within Slack/Discord threads for multi-turn interactions
Competitive advantage: Zero-friction deployment for Slack/Discord workspaces vs API-based integrations requiring developer involvement (7.5/10 rated differentiator)
Use case fit: Internal documentation assistants, IT support bots, HR policy Q&A within existing communication channels
Automatic citation: Every AI response includes links to exact documents used for generation enabling click-through verification
Source verification interface: Centralized conversation logs allow examination of which documents informed each response for audit trails
Trust building: Users can validate AI answers against source material reducing hallucination concerns and increasing adoption confidence
Knowledge gap identification: Responses lacking sufficient sources highlight areas needing additional training data
Compliance advantage: Source traceability supports regulatory requirements for explainable AI in regulated industries (healthcare, finance, legal)
Competitive positioning: Explicit citation vs black-box responses in competitors positions CODY for accuracy-critical use cases (9/10 rated differentiator)
User feedback: Reviews highlight source attribution as primary trust-building feature reducing manual fact-checking burden
N/A
N/A
Focus Mode ( Core Differentiator)
Targeted context injection: Inject up to 1,000 specific documents into single conversation context vs retrieving from full knowledge base
Use cases: Department-specific queries (HR policies for HR team, engineering docs for dev team), project-scoped assistance, client-specific information isolation
Noise reduction: Constrains retrieval to relevant subset preventing irrelevant information from interfering with responses
API support: Focus Mode available via REST API conversations endpoint with document ID array parameter for programmatic control
Performance advantage: Smaller search space improves retrieval speed and relevance vs full-corpus semantic search
Unique capability: Few RAG platforms offer explicit context scoping at this granularity - most retrieve from entire knowledge base (8.5/10 rated differentiator)
N/A
N/A
Core Chatbot Features
Multilingual support: Build and interact with chatbots in any language with no language restrictions or translation layers
Conversation memory: Context retention with configurable token distribution (e.g., 70% context, 10% history, 20% response) for multi-turn interactions
Conversation history logging: Centralized interface with filtering by bot or date range, tiered retention (14 days Basic, 30 days Premium, 90 days Advanced)
Conversational Interface: Securely upload documents (PowerPoints, PDFs) or crawl entire websites to build company-specific knowledge base and quickly retrieve precise information
Traceable Source Attribution: Every answer comes with traceable sources letting users verify accuracy and track where specific information originated
Prompt templates: Shareable custom prompts with variables across team members for consistent bot behavior
Conversation sharing: Share conversations with team via dedicated sharing option for collaboration and quality review
Scratchpad feature: Save, refine, and use derivatives of AI-generated responses to improve specificity over time with micro-management capabilities
Bot Personality Customization: Complete control over bot personality and description to define how bot presents itself and engages with users when creating new bot
LIMITATION: No NO native lead capture - requires custom implementation via API or Zapier workflows (vs built-in form capture in competitors)
LIMITATION: No NO automated human handoff - escalation achieved only through prompt engineering with manual contact info (no automated queue routing or agent assignment)
LIMITATION: Note: Basic analytics only - conversation logs and usage monitoring without advanced dashboards for funnel analysis or trend identification
Full translation support: Widget UI fully translatable to any language for global deployment consistency
White-labeling (Premium/Advanced): Complete CODY branding removal requires Premium ($99/month) or Advanced ($249/month) - not available on Free/Basic tiers
LIMITATION: No NO domain restriction capabilities documented - cannot limit widget usage to specific domains (security consideration for production deployments)
LIMITATION: Role-based access includes team member limits by tier (3/10/30 members on Basic/Premium/Advanced) with per-chatbot permission enforcement
N/A
N/A
L L M Model Options
Basic plan: GPT-3.5 Turbo only (1 credit per query)
Enterprise plan: Six LLM providers - Llama 3.1, Claude 3.5 Sonnet, GPT-4o, Gemini 1.5, Mixtral-8x7B, GPT-3.5 Turbo
Credit-based consumption: GPT-3.5 Turbo (1 credit), GPT-3.5 16K (5 credits), GPT-4 (10 credits) per query with transparent per-model costs
API model field: REST API returns 'model' field indicating which LLM generated each response for tracking and analysis
Proprietary optimizations: Scratchpad (micro-managing responses), Template Mode (pre-defined prompts), Reverse Vector Search (merging AI and user responses for relevance)
LIMITATION: No NO automatic model routing - users must manually select models, no dynamic routing based on query complexity or cost optimization (vs intelligent routing in competitors)
LIMITATION: Enterprise-only access to advanced models (Claude 3.5, Gemini 1.5, Llama 3.1) locks out SMBs on lower tiers from latest LLM capabilities
Note: Undisclosed proprietary LLM - Stonly does not disclose the specific model powering AI Answers
Note: No model selection - users cannot choose between GPT-3.5, GPT-4, Claude, or other models
Note: No temperature controls, fine-tuning, or model routing
AI Profiles: Up to 20 per team for tone and behavior customization
Custom Instructions: Up to 100 per team defining boundaries and style
Guided AI Answers: Define specific questions that trigger predetermined answers, bypassing AI generation for sensitive scenarios
Automatic fallback: When AI confidence is low, system falls back to ML-powered search rather than forcing an answer
Knowledge-grounded approach: AI responses anchored in Stonly guides, external websites, and selected PDFs to reduce hallucinations
Taps into top models—OpenAI’s GPT-5.1 series, GPT-4 series, and even Anthropic’s Claude for enterprise needs (4.5 opus and sonnet, etc ).
Automatically balances cost and performance by picking the right model for each request.
Model Selection Details
Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Developer Experience ( A P I & S D Ks)
REST API v1.0: Comprehensive with Bearer token authentication, last updated May 2024
Bots endpoint: List bots with keyword filtering for discovery and management
Conversations endpoint: Full CRUD operations with Focus Mode parameter (inject specific document IDs into context)
Messages endpoint: Send/receive with optional SSE streaming for real-time responses and progressive answer display
Documents endpoint: Upload files (up to 100MB max), create from text/HTML, import webpages programmatically
Folders endpoint: Organizational structure management for knowledge base hierarchy
Uploads endpoint: AWS S3 signed URLs for direct file uploads bypassing API size limits
Rate limiting: Standard headers (x-ratelimit-limit, x-ratelimit-remaining, x-ratelimit-reset, retry-after) with limits viewable in account settings
API changelog: Tracks breaking changes with explicit "Breaking" labels for version management
CRITICAL LIMITATION: No NO official SDKs for Python, JavaScript, Node.js, or any language - all integrations require direct REST API calls (development friction)
LIMITATION: No NO webhook functionality explicitly documented - limits event-driven architectures and real-time notification patterns
LIMITATION: Documentation quality functional but limited - clear endpoint docs with curl examples and response schemas but lacking tutorials, cookbooks, comprehensive code samples
REST API: Supports user provisioning, content management, widget control
Mobile SDKs (Enterprise only): iOS, Android, React Native, Flutter
Note: No Python SDK or server-side Node.js SDK
Note: No GraphQL API or OpenAPI/Swagger specification
Note: Rate limits not publicly documented
Note: No API Explorer, sandbox environment, or Postman collections
Note: REST API versioning strategy unclear
Widget API: Programmatic control including opening specific content, listening for events, user identification
CSP whitelisting: Instructions documented for Content Security Policy compliance
Widget versioning documented
Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat.
API Documentation
Backs you up with cookbooks, code samples, and step-by-step guides for every skill level.
R A G Implementation & Accuracy
TRUE RAG architecture: Pinecone vector database (SOC 2 Type II certified) with Amazon S3 document storage and SSE-S3 encryption
Dynamic chunking: Algorithm adjusts chunk size based on token distribution for optimal retrieval (specific parameters not publicly documented)
Relevance Score configuration: Adjustable trade-off between accuracy and completeness for retrieval tuning
Token Distribution control: Split configuration between context, history, and response (e.g., 70% context, 10% history, 20% response) for resource allocation
Persist Prompt feature: Continuous re-emphasis of system prompt for instruction compliance and behavior consistency
Reverse Vector Search: Proprietary technique merging AI and user responses for improved relevance matching
Creativity Settings: Options for "creative," "balanced," or "factual" outputs controlling temperature and generation style
Hallucination mitigation: Source citation with every response enables verification, Focus Mode constrains responses to specific documents reducing irrelevant injection
LIMITATION: No NO published benchmark results or quantitative accuracy metrics - no public validation of RAG performance claims vs competitors
LIMITATION: User reviews note "accuracy relies heavily on the quality of uploaded documents" with occasional struggles reported about document facts
N/A
N/A
Performance & Accuracy
Response time: Sub-500ms end-to-end latency target for typical queries on Premium/Advanced plans using GPT-3.5 Turbo (verified from user reports and platform specifications)
Accuracy metrics: No publicly published accuracy benchmarks or F1 scores; user reviews on G2 (4.7/5 stars, 150+ reviews) and Capterra (4.8/5, 50+ reviews) report generally high satisfaction with answer quality when knowledge base is well-curated
Scalability: AWS infrastructure with isolated Kubernetes containers on Enterprise plan supports high-volume deployments; Free plan supports 250 queries/month, scales to "unlimited" on Enterprise with custom infrastructure
Reliability: No public SLA or uptime guarantees on Free/Basic/Premium/Advanced plans; Enterprise plan offers SLA guarantees with dedicated infrastructure (specific uptime % requires sales engagement)
Benchmarks: No published performance benchmarks comparing retrieval speed, accuracy, or latency against competitors (ChatBase, Vectara, CustomGPT); users report "accuracy relies heavily on quality of uploaded documents" with occasional struggles on complex queries
Quality indicators: Source attribution feature enables verification of AI responses; G2 reviews highlight accuracy as strength when knowledge base is comprehensive, with some users noting need for careful prompt engineering
71% self-serve success rate with AI Answers feature (company data)
70-76% support ticket reduction documented in case studies
99.9% uptime claimed but no published SLA details or response time data
Note: No published latency metrics or performance benchmarks
Note: No real-time analytics - Flow reports update every 15 minutes
Hallucination controls: Strong grounding in structured content reduces off-topic responses
Widget lazy loading: Minimizes impact on host website performance
Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
Independent tests rate median answer accuracy at 5/5—outpacing many alternatives.
Benchmark Results
Always cites sources so users can verify facts on the spot.
Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
Customization & Branding
UI customization: Full widget customization including header layout alignment, message bubble size/colors, background colors, bot and human avatars, composer placeholder text, send button icons
Branding control: Business logo upload, color schemes (header, chat interface, launcher button), title and subtitle text configuration, full translation support for widget UI in any language
White-labeling: Complete removal of Cody branding available on Premium ($99/month) and Advanced ($249/month) plans; Free and Basic plans display Cody branding on widgets
Custom domain: Not explicitly documented in public materials; likely requires Enterprise plan with custom deployment infrastructure (specifics require sales engagement)
Design flexibility: Launcher configuration with size adjustment, screen position (left/right/bottom), custom launcher icons; three embedding methods (shareable links, inline embeds, popup embeds) for flexible deployment
Mobile customization: Responsive widget design adapts to mobile devices; mobile-specific branding controls not separately documented (inherits desktop configuration)
LIMITATION: No documented domain restriction capabilities to limit widget usage to specific domains (security consideration for production deployments)
Role-based access: Team member limits by tier (3/10/30 members on Basic/Premium/Advanced) with per-chatbot permission enforcement and real-time updates
Visual editor: Intuitive no-code interface for creating guides, decision trees, checklists, forms
CSS customization: Available on all paid plans
White-labeling: Enterprise plan only - complete branding removal
Pre-built templates: Common support scenarios covered
Role-based access control: Advanced permissions on Enterprise plan
Learning curve: Described as "small" - users can create guides in under 30 minutes
Note: No formal content approval workflows documented
Note: Cannot edit guides on mobile devices
Note: Angular framework compatibility issues reported - "Stonly onboarding will work randomly" with dynamic code
Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand.
White-label Options
Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
Uses domain allowlisting to ensure the chatbot appears only on approved sites.
No- Code Interface & Usability
Visual builder: Three-step bot creation process - (1) add data to knowledge base, (2) define bot purpose/personality, (3) test and share; no drag-and-drop interface, but prompt engineering UI with visual prompt builder including variables and template sharing
Setup complexity: 15-minute bot deployment from account creation to live widget (verified from marketing materials and user reviews); no technical expertise required for basic deployment
Learning curve: User reviews on G2 note "easy to set up" with "intuitive interface," but some users report learning curve for customizing bots to specific business needs despite no-code design; Capterra reviews highlight quick adoption for non-technical teams
Pre-built templates: 11+ templates including Marketing Assistant, HR Chatbot, IT Support, Customer Support, Sales Assistant, Training Bot, Translator AI, Hiring Assistant; each template includes sample prompts, recommended knowledge base content, and example queries
No-code workflows: Model switching (GPT-3.5/GPT-4/Claude/Gemini) without technical reconfiguration; conversation sharing and scratchpad feature for response refinement; testing simulator for pre-launch validation
User experience: G2 rating 4.7/5 (150+ reviews), Capterra 4.8/5 (50+ reviews); users praise ease of deployment and source attribution, note occasional need for prompt engineering expertise to optimize bot behavior
LIMITATION: No drag-and-drop conversation flow builder or visual automation designer like Botpress/Voiceflow; focuses on prompt-based configuration rather than graphical flow design
4.8/5 ease of use rating on G2
"Ease of use" mentioned 32 times in G2 reviews
Visual drag-and-drop editor requires no coding
Small learning curve - non-technical teams productive quickly
Guide creation in under 30 minutes reported by users
Pre-built templates for common scenarios
Intuitive interface for support teams
Note: Some navigation confusion reported in admin interface
Note: Cannot edit on mobile devices
Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing.
User Experience Review
Uses role-based access so business users and devs can collaborate smoothly.
Security & Privacy
CRITICAL LIMITATION: No CODY itself NOT SOC 2 certified - Help Center explicitly states "As an early stage startup, we are diligently working towards earning SOC 2 compliance"
Infrastructure compliance: Pinecone vector database (SOC 2 Type II certified), AWS S3 (PCI-DSS, HIPAA/HITECH, FedRAMP, FISMA compliant via AWS certification)
GDPR Compliant: Via AWS infrastructure in EU regions for European data residency and privacy requirements
Document storage: Amazon S3 with SSE-S3 encryption protocol for data at rest, TLS for transit
AI training policy: Customer data explicitly NOT used for training - "Your data will not be used to train any existing or new language model"
OpenAI data retention: API policy ensures data retained maximum 30 days for abuse monitoring only (not for model training)
Access controls: Per-chatbot permissions with real-time updates, API key management, role-based team member access
Enterprise security: Isolated Kubernetes containers on AWS with role-based security and custom infrastructure options
Procurement concern: Lack of direct SOC 2 certification may block enterprise adoption in regulated industries requiring vendor compliance attestations
Yes SOC 2 Type 2
Yes GDPR compliant
Yes HIPAA compliant
Yes ISO 27001
Yes PCI compliant
Yes CSA Star Level 1
Trust Center: trust.stonly.com with security documentation, subprocessor lists, controls information
15-minute bot deployment: Three-step process - (1) add data to knowledge base, (2) define bot purpose/personality, (3) test and share
11+ pre-built templates: Marketing Assistant, HR Chatbot, IT Support, Customer Support, Sales Assistant, Training Bot, Translator AI, Hiring Assistant
Template components: Sample prompts, recommended knowledge base content, example queries for rapid deployment
Model-agnostic interface: Switch between GPT-3.5, GPT-4, Claude, Gemini without technical reconfiguration
Prompt engineering UI: Visual prompt builder with variables, template sharing across team members, version control
Testing simulator: Test bot responses before publishing with conversation preview and refinement loops
Role-based access: Team member limits (3/10/30 by tier), per-chatbot permission enforcement, real-time permission updates
Target audience advantage: Business teams deploy knowledge assistants without developer resources vs API-centric platforms requiring technical expertise (9/10 rated differentiator for non-technical users)
N/A
N/A
Proprietary R A G Optimizations ( Differentiator)
Scratchpad: Save, refine, and use derivatives of AI-generated responses to improve specificity through micro-management and iterative enhancement
Template Mode: Pre-defined prompts with variables for consistent behavior patterns across conversations and use cases
Reverse Vector Search: Proprietary technique merging AI responses and user inputs for improved relevance matching and context awareness
Dynamic chunking: Algorithm adjusts chunk size based on token distribution rather than fixed-size chunks (adaptive optimization)
Persist Prompt: Continuous re-emphasis of system prompt throughout conversation preventing instruction drift in long conversations
Creativity Settings: Granular control over "creative," "balanced," or "factual" outputs for use-case-specific tone adjustment
Competitive positioning: Proprietary optimizations differentiate from standard RAG implementations but lack published performance benchmarks (7/10 rated differentiator)
N/A
N/A
Pricing & Scalability
Free plan: $0/month - 100 credits, 100 documents, 1 team member, 1 widget, NO API access, NO crawler, monthly query limit 250
Basic plan: $29/month - 2,500 credits, 1,000 documents, 3 team members, 14-day conversation logs, API access, GPT-3.5 only
Enterprise considerations: Lack of direct SOC 2 certification (infrastructure-partner-only compliance) may block regulated industry adoption requiring vendor attestations
Developer experience: Comprehensive REST API with SSE streaming but NO official SDKs requiring direct HTTP calls vs SDK-equipped platforms
Competitive positioning: Business-focused RAG platform emphasizing no-code deployment and source transparency vs developer-centric platforms with enterprise compliance (rated 7.5/10 as RAG platform)
Note: NOT a RAG-as-a-Service platform - fundamentally a knowledge base tool with embedded AI
Data source flexibility: Limited (PDF, public web, Zendesk only) vs comprehensive RAG platforms
LLM model options: None (undisclosed proprietary model, no user selection)
API-first architecture: Weak (widget-focused, limited SDKs, no server-side SDKs)
Performance benchmarks: Not published
Self-service AI pricing: Not available (Enterprise-gated, ~$39K/year)
Help desk integration depth: Excellent (best-in-class Zendesk, Salesforce, Freshdesk)
Hallucination controls: Strong (grounded in structured content)
Best for: Customer support ticket deflection, not flexible RAG backends
Not ideal for: Developers seeking pure RAG API, multi-tenant SaaS RAG backends, use cases needing model selection/fine-tuning
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Competitive Positioning
vs CustomGPT: CODY excels in no-code deployment and source attribution; CustomGPT excels in enterprise compliance (direct SOC 2) and official SDKs
vs Vectara: CODY offers simpler pricing and no-code interface; Vectara provides enterprise-grade accuracy benchmarks and HHEM hallucination detection
vs Pinecone Assistant: Both use Pinecone vector database; CODY differentiates with Focus Mode and business templates; Pinecone Assistant offers deeper infrastructure control
vs ChatBase/SiteGPT: CODY provides TRUE RAG architecture vs simpler chatbot platforms; Focus Mode and multi-LLM support vs single-model implementations
Market niche: Business-focused RAG platform for teams needing no-code deployment with source transparency, NOT developer tool requiring technical implementation
Unique strength: Interactive guide format for structured support content
vs CustomGPT: Not comparable - different product categories (knowledge base vs RAG-as-a-Service)
vs Zendesk: Lighter-weight alternative focused on self-service guides vs full customer service platform
vs traditional chatbots: Interactive guides provide structured paths vs free-form conversation
Target audience: Support teams using Zendesk/Salesforce, not developers building RAG applications
70-76% ticket reduction documented in case studies
71% self-serve success rate with AI Answers
Enterprise compliance suitable for regulated industries
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
Customer Base & Case Studies
Scale claim: 100,000+ businesses served (unverified, company-provided claim)
Acquisition: Acquired by Just Build It in May 2024 demonstrating market validation and growth trajectory
Use case examples: Customer support automation, HR policy Q&A, IT support documentation, sales enablement, internal knowledge management, training assistants
Target market: SMBs and mid-market companies seeking knowledge base automation without dedicated AI/ML engineering resources
User feedback themes: Ease of deployment praised, source attribution valued for trust, accuracy concerns noted for complex document sets
Common use cases: "AI virtual employee" positioning for customer support, HR, IT support, sales assistance, marketing, training, and hiring workflows
N/A
N/A
Company Background
Acquisition: Acquired by Just Build It in May 2024 (acquisition terms undisclosed)
Credit-Based Consumption: GPT-3.5 Turbo (1 credit), GPT-3.5 16K (5 credits), GPT-4 (10 credits) per query with transparent per-model costs
Model-Agnostic Architecture: Users stay current with latest LLM updates without retraining bots; bring your own API key for supported LLMs (Claude, Mistral, GPT, Gemini)
Claude 3 Default: Defaults to Claude 3 from Anthropic for code generation, autocomplete, and chat features vs competitors relying solely on GPT models
LIMITATION: No automatic model routing based on query complexity or cost optimization - users must manually select models
Undisclosed Proprietary LLM: Stonly does not publicly disclose the specific model powering AI Answers feature
No Model Selection: Users cannot choose between GPT-3.5, GPT-4, Claude, Gemini, or other LLM providers
No Temperature Controls: No user-facing controls for adjusting response creativity, randomness, or formatting
No Fine-Tuning or Model Routing: Cannot customize model behavior beyond predefined AI Profiles and Custom Instructions
AI Profiles (Up to 20): Define tone, boundaries, and behavior for different use cases or audiences
Custom Instructions (Up to 100): Set specific rules and style guidelines for AI response generation
Guided AI Answers: Predefined responses for specific questions bypassing AI generation for sensitive scenarios
Automatic Fallback: Low-confidence scenarios trigger fallback to ML-powered search rather than forcing unreliable AI answer
Knowledge-Grounded Approach: AI responses anchored in Stonly guides, external websites, and PDFs to reduce hallucinations
Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request
Model Selection Details
Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
TRUE RAG Architecture: Pinecone vector database (SOC 2 Type II certified) with Amazon S3 document storage using SSE-S3 encryption protocol
Dynamic Chunking Algorithm: Adjusts chunk size based on token distribution for optimal retrieval performance (specific parameters not publicly documented)
Relevance Score Configuration: Adjustable trade-off between accuracy and completeness for retrieval tuning
Token Distribution Control: Split configuration between context, history, and response (e.g., 70% context, 10% history, 20% response)
Reverse Vector Search: Proprietary technique merging AI and user responses for improved relevance matching
Context Window: Claude 2 integration provides up to 100K context windows for comprehensive codebase analysis
Advanced Chunking: Comprehensive data segmentation including metadata for superior data management across various file formats
LIMITATION: No published benchmark results or quantitative accuracy metrics for RAG performance validation
AI Answers (Enterprise Add-On): Generative AI responses grounded in Stonly guides, external websites, and selected PDFs
Knowledge-Grounding: Responses anchored to structured content (interactive guides, decision trees, checklists) reducing hallucinations vs generic chatbots
Confidence-Based Fallback: Automatic switch to ML-powered search when AI confidence is low preventing unreliable answers
Multi-Source Ingestion: PDF uploads, public website crawling, Zendesk help center content indexing
Interactive Guide Format: Proprietary content model combining structured workflows with AI-generated answers
Limited Data Sources: No Google Drive, Dropbox, Notion, SharePoint, or YouTube transcript extraction
Manual Content Updates: Updates through Stonly's visual editor—no automatic syncing from external sources
71% Self-Serve Success Rate: Documented effectiveness of AI Answers in reducing support escalations
Hallucination Controls: Strong grounding in structured content vs open-ended conversational AI
Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks
RAG Performance
Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content
Benchmark Details
Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
Source verification: Always cites sources so users can verify facts on the spot
Use Cases
Primary Departments: Marketing teams (creative strategies, campaign insights), HR departments (employee communication, query management), IT support (technical troubleshooting), Sales departments (AI-driven assistance)
Internal Operations: Answering internal or customer FAQs automatically, training new team members with AI support, generating reports/email replies/summaries using company data, searching thousands of documents instantly
Code Assistance: Engineers saving 5-6 hours per week, writing code 2x faster with AI-powered context-aware code generation and autocomplete
Industries: Financial services (trusted by 4/6 top US banks), technology companies (7/10 top public tech companies), healthcare, professional service firms, government agencies (15+ US agencies)
Team Sizes: Startups managing internal documentation to enterprises coordinating teams across regions; 100,000+ businesses served globally
Educational Use Cases: Educational institutions training students in AI applications, legal firms organizing and retrieving case documents
Customer Support Ticket Deflection: 70-76% ticket reduction through interactive self-service guides and AI Answers
Help Desk Integration: Deep Zendesk, Salesforce Service Cloud, Freshdesk, ServiceNow integration for unified support workflows
Interactive Onboarding: Step-by-step guides, decision trees, and checklists for product onboarding and user education
Knowledge Base Enhancement: Augment traditional help centers with interactive guides and AI-powered search
Agent Assistance: Provide support agents with guided workflows and AI answers during live interactions
Multi-Language Support: Auto-translation on Enterprise plan for global support teams and multilingual customers
Complex Troubleshooting: Decision tree logic guides users through multi-step troubleshooting processes
Compliance & Training: Structured guides ensuring consistent information delivery for regulated industries
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
Automatic Tier Upgrades: Exceeding limits for 2 consecutive months triggers automatic upgrade and billing adjustment
Enterprise-Gated Features: AI Answers, Mobile SDKs, SAML SSO, white-labeling all require Enterprise plan
Average Enterprise Contract: ~$39,000 annually according to Vendr procurement data
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
API Documentation: developers.meetcody.ai with endpoint reference, curl examples, response schemas, API changelog with breaking change labels
Help Center: intercom.help/cody/en/ with getting started guides, compliance information, security bulletins
Community Support: Active Discord community for peer support, troubleshooting, and best practices; GitHub discussions for developer engagement
Email Support: support@meetcody.ai available for all users across all plans
Response Times: Generally praised for responsiveness; Advanced plan includes dedicated account manager for onboarding and optimization guidance
Learning Resources: Blog with tutorials and guides for use case implementation and platform features
Enterprise SLA: Guaranteed response times and uptime commitments (specifics require sales engagement, not publicly documented)
LIMITATION: NO phone support or live chat on any tier (email and community only)
Documentation Quality: Functional but limited - clear endpoint docs with response schemas but lacking tutorials, cookbooks, comprehensive code samples for advanced implementations
4.8/5 G2 Rating: 132 reviews with consistently high satisfaction scores
Ease of Use Praised: "Ease of use" mentioned 32 times in G2 reviews indicating intuitive platform
Help Center Documentation: Comprehensive guides and tutorials for platform features
Email and Chat Support: Standard support channels for all paid plans
Dedicated Support (Enterprise): Priority support with dedicated account team and faster response times
Pre-Built Templates: Common support scenario templates accelerating guide creation
Quick Onboarding: Users report creating guides in under 30 minutes with small learning curve
REST API Documentation: API reference for user provisioning, content management, and widget control
Mobile SDKs (Enterprise): iOS, Android, React Native, Flutter for native app integration
Limited Developer Resources: No Python/Node.js SDKs, GraphQL, OpenAPI specs, or API Explorer/sandbox
Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding
Developer Docs
Email and in-app support: Quick support via email and in-app chat for all users
Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
Code samples: Cookbooks, step-by-step guides, and examples for every skill level
API Documentation
Real-Time Knowledge Updates: Always available manual retraining for immediate knowledge base updates across all plans
Automatic Syncing: Limited to website sources only with recurring re-imports - not available for uploaded documents
Bot Personality Customization: Create custom conversation starters tailored to specific tasks, adjust behavior, tone, and focus to suit each use case
Focus Mode: Generate highly specialized responses based on selected documents for targeted tasks with up to 1,000 specific documents injected into conversation context
Scratchpad for Fine-Tuning: Fine-tune bot responses and knowledge base interactions improving accuracy and relevance of future responses
Custom Prompts: Define bot purpose and personality during creation with shareable prompt templates across team members
Configurable Token Distribution: Adjust split between context, history, and response (e.g., 70% context, 10% history, 20% response)
LIMITATION: No NO programmatic personality management - tone/behavior settings dashboard-only, cannot modify per-user or via API (global configuration only)
LIMITATION: Knowledge base updates require manual intervention - no real-time sync from cloud sources (Google Drive, Dropbox, Notion) except website crawling
CSS and HTML customization: Change layout and look of knowledge base with custom code capabilities
Intuitive customization tools: Easy-to-use tools that don't require code for basic customization
Layout customization: Decide how content is structured and presented with flexible options
Design controls: Manage visual components like colors, logo, or cover image for brand alignment
Personalized content: Use customer data to show personalized content from knowledge base for targeted experiences
Data-driven personalization: Customers see what they need right away when first accessing knowledge base
Analytics insights: Guide usage analytics provide insight into customer behavior for continuous improvement
Highly flexible platform: Users appreciate ability to use Stonly for knowledge bases and guided tours with target properties based on specific user needs
Rich media support: Add images, GIFs, videos, and annotations to bring knowledge base content to life
Third-party scripts: Install scripts from other tools like Google Analytics for extended functionality
Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus.
Learn How to Update Sources
Supports multiple agents per account, so different teams can have their own bots.
Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Additional Considerations
Accuracy Heavily Data-Dependent: Response quality relies on quality and comprehensiveness of uploaded knowledge base - "accuracy relies heavily on quality of uploaded documents"
Learning Curve Exists: Initial setup and customization can be complex for new users despite "easy to set up" reputation - learning curve for customizing bots to specific business needs
Limited Complex Coding: Performs well for simple tasks but struggles with deeper logic, scalability issues, or nuanced multi-step coding challenges
Data Quality Critical: Occasional struggles with document facts - difficulty counting references, performing word counts, handling complex document sets
Cost for Small Businesses: Advanced features and Enterprise-only access (Claude 3.5, Gemini 1.5, Llama 3.1) expensive for smaller businesses
White-Label Minimum: Complete Cody branding removal requires Premium ($99/month) or Advanced ($249/month) - not available on Free/Basic tiers
Performance with Large Data: Speed may slow with large datasets or complex codebases on less powerful systems; requires stable internet (cloud-based)
Compliance Gap: Cody itself NOT SOC 2 certified as early-stage startup "diligently working towards earning SOC 2 compliance" - may block enterprise procurement
Infrastructure Compliance Only: Pinecone (SOC 2 Type II), AWS S3 (PCI-DSS, HIPAA/HITECH, FedRAMP) certified but Cody platform not directly certified
Best For: Business teams needing no-code deployment with 15-minute bot creation and source transparency for internal knowledge management
NOT Ideal For: Enterprises requiring direct SOC 2 vendor certification, native cloud storage sync, YouTube content ingestion, or deep technical problem-solving
Limited UI customization: Limited ability to customize user interface and workflows to match specific brand requirements is primary user concern
Basic collaboration tools: Without real-time editing or advanced team management features can hinder team productivity when multiple people need to work together
No offline access: Guides unavailable without internet connectivity reducing usability in areas with unreliable internet
Performance degradation: Can degrade with very large or complex guides causing slower responsiveness indicating scalability concerns
Restricted language options: Limit efficient creation of multilingual content which may be barrier for global organizations
Mixed media support missing: Users find missing features wishing for mixed media support and enhanced reporting tools
Step ordering difficulties: Users report limitations in feature usability and difficulties with step ordering though support offers helpful workarounds
Requires coding knowledge: Unlike most competitors, doesn't advertise as no-code platform - need coding knowledge to track events, target users, stream data, and style content
Image workflow limitations: Inability to use images in base offering limits utility in some workflows with some advanced features requiring extra costs
View-based pricing: Charges additional fees based on guide views - customers exceeding 4,000 guide views/month pay extra $250-500 monthly depending on volume
Integration reliability: Users find lack of integrations limits ability to fully connect Stonly with other tools - Stonly/Zendesk integration isn't as reliable as desired (stops working every few weeks)
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
Limitations & Considerations
Learning Curve: Initial setup and customization complex for new users; G2 users note "easy to set up" but learning curve exists for customizing bots to specific business needs despite no-code design
Accuracy Dependencies: Response quality heavily relies on quality and comprehensiveness of uploaded knowledge base; user reviews note "accuracy relies heavily on quality of uploaded documents" with occasional struggles on complex queries
Complex Coding Challenges: Limited ability to handle complex, multi-step coding challenges; performs well for simple tasks but struggles with deeper logic, scalability issues, or nuanced coding questions
Data Quality Critical: Occasional struggles with facts about documents - difficulty counting references, performing word counts, handling complex document sets
NO YouTube Transcripts: Cannot ingest video content from YouTube for training
NO Native Cloud Integrations: Google Drive, Dropbox, Notion connections only via Zapier (adds friction vs direct OAuth)
Performance Issues: Performance speed may slow with large datasets or complex codebases on less powerful systems; requires stable internet connection (cloud-based)
Cost Considerations: Advanced features and Enterprise-only access (Claude 3.5, Gemini 1.5, Llama 3.1) can be expensive for smaller businesses; white-labeling requires Premium ($99/month) minimum
NOT Ideal For: Enterprises requiring direct SOC 2 certification (infrastructure-only compliance may block procurement), teams needing deep technical problem-solving for critical systems without traditional development practices, organizations needing native cloud storage sync or YouTube content ingestion
NOT a RAG-as-a-Service Platform: Fundamentally a knowledge base tool with embedded AI—not a flexible RAG backend
AI Answers Enterprise-Gated: Core AI capabilities require expensive Enterprise plan (~$39K/year)—not available on $249/month Small Business tier
Undisclosed AI Model: No transparency on LLM provider—users cannot select or customize models
Limited Data Source Flexibility: PDF, public web, Zendesk only—missing Google Drive, Dropbox, Notion, SharePoint, YouTube
No Automatic Content Syncing: Manual updates through visual editor—no real-time integration with external knowledge sources
Missing Consumer Messaging: No Slack, WhatsApp, Telegram, Microsoft Teams native integrations (confirmed by user reviews)
No Omnichannel Messaging: Primarily website embedding and help desk integration—limited multi-channel support
Cannot Edit on Mobile: Guide creation and editing restricted to desktop—mobile limitation for on-the-go teams
No Real-Time Analytics: Flow reports update every 15 minutes—not true real-time monitoring
Limited Developer API: No Python/Node.js SDKs, GraphQL, Swagger specs, or API sandbox for testing
Overage Pricing Escalation: View limits can trigger expensive automatic upgrades after 2 consecutive months
Not Ideal For: Developers seeking pure RAG API, multi-tenant SaaS RAG backends, use cases needing model selection/fine-tuning, or flexible data source integration
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Knowledge Base Features
N/A
Interactive step-by-step guides with visual flow builder
Note: Available only as paid Enterprise add-on - not included in Small Business plan
Generative AI responses grounded in Stonly guides, external websites, and selected PDFs
20 AI Profiles per team: Define tone, boundaries, and behavior
100 Custom Instructions per team: Detailed response rules
Guided AI Answers: Predefined responses for specific questions
Confidence-based fallback: Automatically switches to ML-powered search when AI confidence is low
71% self-serve success rate achieved with AI Answers
Hallucination reduction: Knowledge-grounding approach vs generic chatbots
N/A
Core Agent Features
N/A
Conversational AI Bot: Delivers confident answers backed by verified structured knowledge unlike generic LLMs that can hallucinate or invent answers
Knowledge-grounded responses: Provides answers backed by verified structured knowledge from guides you create preventing fabricated information
AI Agent Assist: Automatically summarizes tickets, suggests right path to resolution, and generates responses for support agents
Three core automation functions: Automatically analyzes and summarizes support ticket content, recommends most relevant Stonly guide/knowledge path to resolve issues, drafts complete responses for agents to review/edit/send
Process automation: Define processes to be followed and link them to different back-office tools to resolve customer requests before they reach support
Personalized knowledge: AI-powered solutions and process automation allow creation of guides, walkthroughs, checklists, knowledge bases adapting to each customer's needs
71% self-serve success rate: With AI Answers feature documented in company data
Hallucination reduction: Knowledge-grounding approach vs generic chatbots reduces off-topic responses
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
After analyzing features, pricing, performance, and user feedback, both CODY AI and Stonly are capable platforms that serve different market segments and use cases effectively.
When to Choose CODY AI
You value true rag architecture with pinecone vector database and configurable retrieval parameters (relevance score, token distribution, focus mode)
Source attribution with every response - click-through to exact documents used for generation (transparency and trust differentiator)
Focus Mode unique capability: inject up to 1,000 specific documents into conversation context for targeted responses vs full knowledge base
Best For: TRUE RAG architecture with Pinecone vector database and configurable retrieval parameters (relevance score, token distribution, Focus Mode)
When to Choose Stonly
You value exceptional ease of use - 4.8/5 g2 rating with intuitive visual editor praised in 32 reviews
Deep help desk integrations - bidirectional Zendesk, Salesforce, Freshdesk, ServiceNow connections
Strong compliance - SOC 2 Type 2, GDPR, HIPAA, ISO 27001, PCI, CSA Star Level 1
Best For: Exceptional ease of use - 4.8/5 G2 rating with intuitive visual editor praised in 32 reviews
Migration & Switching Considerations
Switching between CODY AI and Stonly requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
CODY AI starts at $29/month, while Stonly begins at $249/month. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between CODY AI and Stonly comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 12, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...