In this comprehensive guide, we compare CODY AI and Yellow.ai across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between CODY AI and Yellow.ai, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose CODY AI if: you value true rag architecture with pinecone vector database and configurable retrieval parameters (relevance score, token distribution, focus mode)
Choose Yellow.ai if: you value genuinely comprehensive 35+ channel coverage: whatsapp bsp, messenger, instagram, telegram, slack, teams, voice, sms
About CODY AI
CODY AI is business-focused no-code rag platform with source attribution. Business-focused RAG-as-a-Service platform enabling no-code AI assistant creation trained on custom knowledge bases. Acquired by Just Build It (May 2024), claims 100,000+ businesses as customers. TRUE RAG platform with Pinecone vector database, multi-LLM support (GPT-4, Claude 3.5, Gemini 1.5, Llama 3.1 on Enterprise), and comprehensive REST API. Differentiators: source attribution with every response, Focus Mode (inject 1,000 docs into context), 15-minute bot deployment. Critical gaps: NO direct SOC 2 certification (infrastructure partners only), NO official SDKs, NO native cloud storage integrations. $0-$249/month credit-based pricing. Founded in 2022, headquartered in United States, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
85/100
Starting Price
$29/mo
About Yellow.ai
Yellow.ai is enterprise conversational ai platform with multi-llm orchestration. Enterprise conversational AI platform with embedded RAG capabilities processing 16 billion+ conversations annually. Multi-LLM orchestration across 35+ channels and 135+ languages with proprietary YellowG LLM claiming <1% hallucination rates. Founded in 2016, headquartered in San Mateo, CA, USA / Bengaluru, India, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
85/100
Starting Price
Custom
Key Differences at a Glance
In terms of user ratings, both platforms score similarly in overall satisfaction. From a cost perspective, Yellow.ai offers more competitive entry pricing. The platforms also differ in their primary focus: AI Chatbot versus Conversational AI. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
CODY AI
Yellow.ai
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
Supported formats: PDF, Word (.doc/.docx), PowerPoint (.ppt/.pptx), plain text files with 100MB maximum file size per document
Built-in text editor: Direct text input for creating knowledge base entries without file uploads
Website crawler (Premium/Advanced): Import up to 25,000 pages on Advanced tier with automatic recurring re-imports for up to 9 websites
Document capacity by tier: Free (100 documents), Basic (1,000), Premium (10,000), Advanced (25,000 documents + 25,000 crawled web pages)
Storage architecture: Amazon S3 with SSE-S3 encryption protocol for documents, Pinecone vector database (SOC 2 Type II certified) for embeddings
Dynamic chunking algorithm: Adjusts chunk size based on token distribution for optimal retrieval performance (specific parameters not publicly documented)
Manual retraining: Always available for immediate knowledge base updates across all plans
Automatic syncing: Limited to website sources only with recurring re-imports (not available for uploaded documents)
CRITICAL LIMITATION: No NO YouTube transcript support - cannot ingest video content from YouTube for training
CRITICAL LIMITATION: No NO native cloud integrations - Google Drive, Dropbox, Notion connections only via Zapier (adds friction vs direct OAuth)
LIMITATION: No NO audio file support (MP3, M4A), No NO video file support (MP4), No NO code file ingestion, No NO Excel/CSV direct import
Document Cognition (DocCog) Engine: 75-85% accuracy depending on document complexity using T5 model fine-tuned on SQuAD/TriviaQA
Supported Formats: PDF, DOCX, DOC, PPTX, PPT, TXT via manual upload through platform UI only (no API upload)
Automatic Synchronization: Configurable intervals - hourly, daily, weekly for external knowledge base updates
Website Crawling: URL ingestion and sitemap.xml parsing for structured site content extraction
Missing Integrations: No Google Drive, Dropbox, or Notion support - significant gap vs competitors
YouTube Limitation: Transcript ingestion not natively supported
API Gap: No programmatic document upload or knowledge base management via API
Q&A Extraction: T5 model-based question-answer pair generation from ingested documents
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
Native Slack integration: Free for all users with /assign-bot command for channel-specific bot assignment and @mentions for queries
Native Discord integration: Users mention @Cody for queries within Discord servers (free for all users)
Zapier integration: Connects to 5,000+ apps including Telegram, Facebook Messenger, Google Sheets, Google Docs, WhatsApp (via ecosystem)
Website embedding (3 methods): Shareable links (direct URLs without site modification), inline embeds (widgets within page sections), popup embeds (floating chat bubbles)
REST API v1.0: Full API access on all paid plans with documentation at developers.meetcody.ai
CRITICAL GAPS: No NO Microsoft Teams native integration (Zapier workaround required), No NO WhatsApp Business native integration (Zapier only), No NO Google Drive/Dropbox/Notion native connections
LIMITATION: No NO webhook functionality explicitly documented in API - potential constraint for event-driven architectures and real-time notifications
Slack /assign-bot command: Assign specific bots to dedicated channels for departmental organization (e.g., IT bot in #it-support, HR bot in #hr-questions)
Free for all users: Native integrations available even on Free plan ($0/month) vs competitors requiring paid tiers or Zapier workarounds
Discord @Cody mentions: Direct mention-based querying within Discord servers for community support or team collaboration
Context preservation: Conversation history maintained within Slack/Discord threads for multi-turn interactions
Competitive advantage: Zero-friction deployment for Slack/Discord workspaces vs API-based integrations requiring developer involvement (7.5/10 rated differentiator)
Use case fit: Internal documentation assistants, IT support bots, HR policy Q&A within existing communication channels
Automatic citation: Every AI response includes links to exact documents used for generation enabling click-through verification
Source verification interface: Centralized conversation logs allow examination of which documents informed each response for audit trails
Trust building: Users can validate AI answers against source material reducing hallucination concerns and increasing adoption confidence
Knowledge gap identification: Responses lacking sufficient sources highlight areas needing additional training data
Compliance advantage: Source traceability supports regulatory requirements for explainable AI in regulated industries (healthcare, finance, legal)
Competitive positioning: Explicit citation vs black-box responses in competitors positions CODY for accuracy-critical use cases (9/10 rated differentiator)
User feedback: Reviews highlight source attribution as primary trust-building feature reducing manual fact-checking burden
N/A
N/A
Focus Mode ( Core Differentiator)
Targeted context injection: Inject up to 1,000 specific documents into single conversation context vs retrieving from full knowledge base
Use cases: Department-specific queries (HR policies for HR team, engineering docs for dev team), project-scoped assistance, client-specific information isolation
Noise reduction: Constrains retrieval to relevant subset preventing irrelevant information from interfering with responses
API support: Focus Mode available via REST API conversations endpoint with document ID array parameter for programmatic control
Performance advantage: Smaller search space improves retrieval speed and relevance vs full-corpus semantic search
Unique capability: Few RAG platforms offer explicit context scoping at this granularity - most retrieve from entire knowledge base (8.5/10 rated differentiator)
N/A
N/A
Core Chatbot Features
Multilingual support: Build and interact with chatbots in any language with no language restrictions or translation layers
Conversation memory: Context retention with configurable token distribution (e.g., 70% context, 10% history, 20% response) for multi-turn interactions
Conversation history logging: Centralized interface with filtering by bot or date range, tiered retention (14 days Basic, 30 days Premium, 90 days Advanced)
Conversational Interface: Securely upload documents (PowerPoints, PDFs) or crawl entire websites to build company-specific knowledge base and quickly retrieve precise information
Traceable Source Attribution: Every answer comes with traceable sources letting users verify accuracy and track where specific information originated
Prompt templates: Shareable custom prompts with variables across team members for consistent bot behavior
Conversation sharing: Share conversations with team via dedicated sharing option for collaboration and quality review
Scratchpad feature: Save, refine, and use derivatives of AI-generated responses to improve specificity over time with micro-management capabilities
Bot Personality Customization: Complete control over bot personality and description to define how bot presents itself and engages with users when creating new bot
LIMITATION: No NO native lead capture - requires custom implementation via API or Zapier workflows (vs built-in form capture in competitors)
LIMITATION: No NO automated human handoff - escalation achieved only through prompt engineering with manual contact info (no automated queue routing or agent assignment)
LIMITATION: Note: Basic analytics only - conversation logs and usage monitoring without advanced dashboards for funnel analysis or trend identification
Multi-Turn Conversations: Super Agent maintains conversation context across turns with intent detection, entity extraction, slot filling, and dialogue state management
150+ Language Support: Automatic language detection with native multilingual processing across all 150+ supported languages reducing accuracy loss vs translation-based systems
Human Handoff: Configurable escalation triggers with full conversation history transfer, agent workload balancing, queue management, and SLA tracking
Analytics & Insights: Comprehensive dashboards with containment rates, CSAT scores, conversation flows, drop-off points, user journey analytics, and business KPI tracking
Agent Performance Monitoring: Bot accuracy scoring, user satisfaction metrics, conversation success rates, A/B testing capabilities for continuous improvement
Voice AI Capabilities: Real-time voice agents in 50+ languages with sentiment analysis during calls, IVR integration, call deflection, automated transcription
Lead Capture & Qualification: Real-time lead scoring, CRM integration (Salesforce, HubSpot, Zoho), automatic contact creation, lead routing based on firmographics
Safety & Conduct Controls: Configurable filters ensuring ethical communication, avoiding harmful topics, handling sensitive data responsibly with compliance guardrails
Conversational Behavior Rules: Define conversation rules guiding agent responses in different situations ensuring consistent interactions across channels and use cases
Reduces hallucinations by grounding replies in your data and adding source citations for transparency.
Benchmark Details
Handles multi-turn, context-aware chats with persistent history and solid conversation management.
Speaks 90+ languages, making global rollouts straightforward.
Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Widget Customization & White- Labeling
Header customization: Layout alignment, business logo upload, color schemes, title and subtitle text configuration
Chat interface styling: Message bubble size, background colors, bot and human avatar customization
Composer controls: Placeholder text customization, send button icon selection
Full translation support: Widget UI fully translatable to any language for global deployment consistency
White-labeling (Premium/Advanced): Complete CODY branding removal requires Premium ($99/month) or Advanced ($249/month) - not available on Free/Basic tiers
LIMITATION: No NO domain restriction capabilities documented - cannot limit widget usage to specific domains (security consideration for production deployments)
LIMITATION: Role-based access includes team member limits by tier (3/10/30 members on Basic/Premium/Advanced) with per-chatbot permission enforcement
N/A
N/A
L L M Model Options
Basic plan: GPT-3.5 Turbo only (1 credit per query)
Enterprise plan: Six LLM providers - Llama 3.1, Claude 3.5 Sonnet, GPT-4o, Gemini 1.5, Mixtral-8x7B, GPT-3.5 Turbo
Credit-based consumption: GPT-3.5 Turbo (1 credit), GPT-3.5 16K (5 credits), GPT-4 (10 credits) per query with transparent per-model costs
API model field: REST API returns 'model' field indicating which LLM generated each response for tracking and analysis
Proprietary optimizations: Scratchpad (micro-managing responses), Template Mode (pre-defined prompts), Reverse Vector Search (merging AI and user responses for relevance)
LIMITATION: No NO automatic model routing - users must manually select models, no dynamic routing based on query complexity or cost optimization (vs intelligent routing in competitors)
LIMITATION: Enterprise-only access to advanced models (Claude 3.5, Gemini 1.5, Llama 3.1) locks out SMBs on lower tiers from latest LLM capabilities
Proprietary YellowG LLM: Claims <1% hallucination rate vs GPT-3's 22.7% (vendor benchmarks), 0.6s avg response time
API changelog: Tracks breaking changes with explicit "Breaking" labels for version management
CRITICAL LIMITATION: No NO official SDKs for Python, JavaScript, Node.js, or any language - all integrations require direct REST API calls (development friction)
LIMITATION: No NO webhook functionality explicitly documented - limits event-driven architectures and real-time notification patterns
LIMITATION: Documentation quality functional but limited - clear endpoint docs with curl examples and response schemas but lacking tutorials, cookbooks, comprehensive code samples
Platform-First Architecture: Designed for UI-based development with APIs serving supplementary functions (not primary access)
Available via API: User management (create/update/delete/list), event pushing for custom triggers, outbound notifications, webhook integrations
NOT Available via API: Bot/agent creation or management, document upload, knowledge base management, direct RAG query endpoints, embedding/vector store access, analytics data export
Mobile SDKs: Well-documented Android (Java), iOS (Swift), React Native, Flutter, Cordova with complete code examples, Postman collections, demo applications
Python SDK: Does not exist - major limitation for backend developers and data science teams
Web SDK: Script tag injection only (no npm package) - documentation criticized as incomplete by G2 reviewers
Rate Limits: Not publicly documented - no transparency for production capacity planning
OpenAPI Spec: Not published - no Swagger documentation for API exploration
Critical Limitation: Cannot use Yellow.ai as RAG backend - queries must flow through platform conversation flows vs direct API calls
Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat.
API Documentation
Backs you up with cookbooks, code samples, and step-by-step guides for every skill level.
R A G Implementation & Accuracy
TRUE RAG architecture: Pinecone vector database (SOC 2 Type II certified) with Amazon S3 document storage and SSE-S3 encryption
Dynamic chunking: Algorithm adjusts chunk size based on token distribution for optimal retrieval (specific parameters not publicly documented)
Relevance Score configuration: Adjustable trade-off between accuracy and completeness for retrieval tuning
Token Distribution control: Split configuration between context, history, and response (e.g., 70% context, 10% history, 20% response) for resource allocation
Persist Prompt feature: Continuous re-emphasis of system prompt for instruction compliance and behavior consistency
Reverse Vector Search: Proprietary technique merging AI and user responses for improved relevance matching
Creativity Settings: Options for "creative," "balanced," or "factual" outputs controlling temperature and generation style
Hallucination mitigation: Source citation with every response enables verification, Focus Mode constrains responses to specific documents reducing irrelevant injection
LIMITATION: No NO published benchmark results or quantitative accuracy metrics - no public validation of RAG performance claims vs competitors
LIMITATION: User reviews note "accuracy relies heavily on the quality of uploaded documents" with occasional struggles reported about document facts
N/A
N/A
Performance & Accuracy
Response time: Sub-500ms end-to-end latency target for typical queries on Premium/Advanced plans using GPT-3.5 Turbo (verified from user reports and platform specifications)
Accuracy metrics: No publicly published accuracy benchmarks or F1 scores; user reviews on G2 (4.7/5 stars, 150+ reviews) and Capterra (4.8/5, 50+ reviews) report generally high satisfaction with answer quality when knowledge base is well-curated
Scalability: AWS infrastructure with isolated Kubernetes containers on Enterprise plan supports high-volume deployments; Free plan supports 250 queries/month, scales to "unlimited" on Enterprise with custom infrastructure
Reliability: No public SLA or uptime guarantees on Free/Basic/Premium/Advanced plans; Enterprise plan offers SLA guarantees with dedicated infrastructure (specific uptime % requires sales engagement)
Benchmarks: No published performance benchmarks comparing retrieval speed, accuracy, or latency against competitors (ChatBase, Vectara, CustomGPT); users report "accuracy relies heavily on quality of uploaded documents" with occasional struggles on complex queries
Quality indicators: Source attribution feature enables verification of AI responses; G2 reviews highlight accuracy as strength when knowledge base is comprehensive, with some users noting need for careful prompt engineering
YellowG Hallucination Rate: Vendor claims <1% vs GPT-3's 22.7% (Yellow.ai internal benchmarks - no independent validation)
Response Latency: 0.6-second average response time (YellowG LLM performance claim)
Document Cognition: 75-85% accuracy depending on complexity (T5 model fine-tuned on SQuAD/TriviaQA)
Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
Independent tests rate median answer accuracy at 5/5—outpacing many alternatives.
Benchmark Results
Always cites sources so users can verify facts on the spot.
Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
Customization & Branding
UI customization: Full widget customization including header layout alignment, message bubble size/colors, background colors, bot and human avatars, composer placeholder text, send button icons
Branding control: Business logo upload, color schemes (header, chat interface, launcher button), title and subtitle text configuration, full translation support for widget UI in any language
White-labeling: Complete removal of Cody branding available on Premium ($99/month) and Advanced ($249/month) plans; Free and Basic plans display Cody branding on widgets
Custom domain: Not explicitly documented in public materials; likely requires Enterprise plan with custom deployment infrastructure (specifics require sales engagement)
Design flexibility: Launcher configuration with size adjustment, screen position (left/right/bottom), custom launcher icons; three embedding methods (shareable links, inline embeds, popup embeds) for flexible deployment
Mobile customization: Responsive widget design adapts to mobile devices; mobile-specific branding controls not separately documented (inherits desktop configuration)
LIMITATION: No documented domain restriction capabilities to limit widget usage to specific domains (security consideration for production deployments)
Role-based access: Team member limits by tier (3/10/30 members on Basic/Premium/Advanced) with per-chatbot permission enforcement and real-time updates
Visual Studio: Drag-and-drop conversation flow builder with no-code interface for business users
White-Labeling: Custom branding, domains, widget appearance on Enterprise plan
Orchestration Flows: Multi-checkpoint validation workflows with custom policy compliance rules
Regional Control: Customer-selected data residency across 6 regions (US, EU, Singapore, India, Indonesia, UAE)
RBAC: Six permission levels for granular access control across teams and departments
Widget Customization: JavaScript configuration for appearance, behavior, proactive triggers
PWA Customization: Progressive Web App with shareable links and custom branding for conversational landing pages
Webhook Integration: Custom workflow triggers and event-driven automation for external system connectivity
Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand.
White-label Options
Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
Uses domain allowlisting to ensure the chatbot appears only on approved sites.
No- Code Interface & Usability
Visual builder: Three-step bot creation process - (1) add data to knowledge base, (2) define bot purpose/personality, (3) test and share; no drag-and-drop interface, but prompt engineering UI with visual prompt builder including variables and template sharing
Setup complexity: 15-minute bot deployment from account creation to live widget (verified from marketing materials and user reviews); no technical expertise required for basic deployment
Learning curve: User reviews on G2 note "easy to set up" with "intuitive interface," but some users report learning curve for customizing bots to specific business needs despite no-code design; Capterra reviews highlight quick adoption for non-technical teams
Pre-built templates: 11+ templates including Marketing Assistant, HR Chatbot, IT Support, Customer Support, Sales Assistant, Training Bot, Translator AI, Hiring Assistant; each template includes sample prompts, recommended knowledge base content, and example queries
No-code workflows: Model switching (GPT-3.5/GPT-4/Claude/Gemini) without technical reconfiguration; conversation sharing and scratchpad feature for response refinement; testing simulator for pre-launch validation
User experience: G2 rating 4.7/5 (150+ reviews), Capterra 4.8/5 (50+ reviews); users praise ease of deployment and source attribution, note occasional need for prompt engineering expertise to optimize bot behavior
LIMITATION: No drag-and-drop conversation flow builder or visual automation designer like Botpress/Voiceflow; focuses on prompt-based configuration rather than graphical flow design
Visual Studio: Drag-and-drop conversation flow builder positioned as "no-code" platform
Dynamic AI Agent: Zero-training deployment with automatic model routing reduces manual configuration
Multi-Intent Detection: Automatic handling of complex queries without manual flow definition
Pre-Built Templates: Industry-specific conversation templates for faster deployment
Channel Configuration: Guided setup for 35+ messaging and voice channel integrations
Knowledge Management UI: Manual document upload and external system connection configuration
Policy Builder: Visual configuration for multi-checkpoint validation rules and guardrails
RBAC Management: Six permission levels with team access control configuration
Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing.
User Experience Review
Uses role-based access so business users and devs can collaborate smoothly.
Security & Privacy
CRITICAL LIMITATION: No CODY itself NOT SOC 2 certified - Help Center explicitly states "As an early stage startup, we are diligently working towards earning SOC 2 compliance"
Infrastructure compliance: Pinecone vector database (SOC 2 Type II certified), AWS S3 (PCI-DSS, HIPAA/HITECH, FedRAMP, FISMA compliant via AWS certification)
GDPR Compliant: Via AWS infrastructure in EU regions for European data residency and privacy requirements
Document storage: Amazon S3 with SSE-S3 encryption protocol for data at rest, TLS for transit
AI training policy: Customer data explicitly NOT used for training - "Your data will not be used to train any existing or new language model"
OpenAI data retention: API policy ensures data retained maximum 30 days for abuse monitoring only (not for model training)
Access controls: Per-chatbot permissions with real-time updates, API key management, role-based team member access
Enterprise security: Isolated Kubernetes containers on AWS with role-based security and custom infrastructure options
Procurement concern: Lack of direct SOC 2 certification may block enterprise adoption in regulated industries requiring vendor compliance attestations
SOC 2 Type II: Independently audited security controls and compliance certification
ISO Certifications: ISO 27001 (Information Security), ISO 27018 (Cloud Privacy), ISO 27701 (Privacy Management)
HIPAA Compliant: Suitable for healthcare use cases requiring protected health information handling
GDPR Compliant: Data protection and privacy rights for European users
PCI DSS Certified: Payment card industry data security standard compliance for financial transactions
FedRAMP Authorized: Federal Risk and Authorization Management Program for US government deployments
Encryption: AES-256 at rest, TLS 1.3 in transit for maximum data protection
Regional Data Centers: US, EU, Singapore, India, Indonesia, UAE with customer-selected data residency
SSO/SAML: Integration with Google, Microsoft, Azure AD, LDAP for enterprise identity management
RBAC: Six permission levels for granular access control across teams
IP Whitelisting: Network-level access restrictions for enhanced security
Audit Logs: 15-day retention for API activity tracking and compliance reporting
On-Premise Options: Private cloud and on-premise deployment for complete data sovereignty
15-minute bot deployment: Three-step process - (1) add data to knowledge base, (2) define bot purpose/personality, (3) test and share
11+ pre-built templates: Marketing Assistant, HR Chatbot, IT Support, Customer Support, Sales Assistant, Training Bot, Translator AI, Hiring Assistant
Template components: Sample prompts, recommended knowledge base content, example queries for rapid deployment
Model-agnostic interface: Switch between GPT-3.5, GPT-4, Claude, Gemini without technical reconfiguration
Prompt engineering UI: Visual prompt builder with variables, template sharing across team members, version control
Testing simulator: Test bot responses before publishing with conversation preview and refinement loops
Role-based access: Team member limits (3/10/30 by tier), per-chatbot permission enforcement, real-time permission updates
Target audience advantage: Business teams deploy knowledge assistants without developer resources vs API-centric platforms requiring technical expertise (9/10 rated differentiator for non-technical users)
N/A
N/A
Proprietary R A G Optimizations ( Differentiator)
Scratchpad: Save, refine, and use derivatives of AI-generated responses to improve specificity through micro-management and iterative enhancement
Template Mode: Pre-defined prompts with variables for consistent behavior patterns across conversations and use cases
Reverse Vector Search: Proprietary technique merging AI responses and user inputs for improved relevance matching and context awareness
Dynamic chunking: Algorithm adjusts chunk size based on token distribution rather than fixed-size chunks (adaptive optimization)
Persist Prompt: Continuous re-emphasis of system prompt throughout conversation preventing instruction drift in long conversations
Creativity Settings: Granular control over "creative," "balanced," or "factual" outputs for use-case-specific tone adjustment
Competitive positioning: Proprietary optimizations differentiate from standard RAG implementations but lack published performance benchmarks (7/10 rated differentiator)
N/A
N/A
Pricing & Scalability
Free plan: $0/month - 100 credits, 100 documents, 1 team member, 1 widget, NO API access, NO crawler, monthly query limit 250
Basic plan: $29/month - 2,500 credits, 1,000 documents, 3 team members, 14-day conversation logs, API access, GPT-3.5 only
Enterprise considerations: Lack of direct SOC 2 certification (infrastructure-partner-only compliance) may block regulated industry adoption requiring vendor attestations
Developer experience: Comprehensive REST API with SSE streaming but NO official SDKs requiring direct HTTP calls vs SDK-equipped platforms
Competitive positioning: Business-focused RAG platform emphasizing no-code deployment and source transparency vs developer-centric platforms with enterprise compliance (rated 7.5/10 as RAG platform)
Platform Type: NOT A RAG-AS-A-SERVICE PLATFORM - Full-stack enterprise conversational AI with embedded RAG
Critical Distinction: RAG functions as embedded feature, not exposed API service - cannot use Yellow.ai purely as knowledge/RAG backend
Document Cognition: 75-85% accuracy with T5 model fine-tuned on SQuAD/TriviaQA for Q&A extraction
Knowledge Architecture: Closed system - no direct RAG query endpoints, embedding access, or vector store API
API Limitations: No programmatic document upload, knowledge base management, or direct retrieval capabilities
Query Flow: Queries must flow through platform conversation flows vs direct API calls to knowledge backend
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Competitive Positioning
vs CustomGPT: CODY excels in no-code deployment and source attribution; CustomGPT excels in enterprise compliance (direct SOC 2) and official SDKs
vs Vectara: CODY offers simpler pricing and no-code interface; Vectara provides enterprise-grade accuracy benchmarks and HHEM hallucination detection
vs Pinecone Assistant: Both use Pinecone vector database; CODY differentiates with Focus Mode and business templates; Pinecone Assistant offers deeper infrastructure control
vs ChatBase/SiteGPT: CODY provides TRUE RAG architecture vs simpler chatbot platforms; Focus Mode and multi-LLM support vs single-model implementations
Market niche: Business-focused RAG platform for teams needing no-code deployment with source transparency, NOT developer tool requiring technical implementation
Primary Advantage: Complete enterprise conversational AI platform with unmatched 35+ channel coverage and 135+ language support
Compliance Leadership: SOC 2, ISO 27001/27018/27701, HIPAA, GDPR, PCI DSS, FedRAMP exceeds most AI platform competitors
Proprietary Innovation: YellowG LLM claims <1% hallucination rate, Komodo-7B for Indonesia, 0.6s response times (vendor benchmarks)
Proven Scale: 16 billion+ conversations annually, customers include Sony, Domino's, Hyundai, Volkswagen across 85+ countries
Regional Strength: Multi-region data centers (US, EU, Singapore, India, Indonesia, UAE) with Komodo-7B for Southeast Asia
Primary Challenge: NOT a RAG-as-a-Service platform - embedded RAG within closed conversational system blocks API-first use cases
Developer Friction: No Python SDK, no knowledge base API, no dedicated RAG endpoints, web SDK documentation gaps
Pricing Barrier: ~$10K-$25K annual minimum with 4-month implementation vs competitors with sub-$100/month self-service tiers
Learning Curve: G2 reviews cite steep complexity - "setup felt akin to solving a Rubik's cube blindfolded"
Market Position: Competes with enterprise CX platforms (Genesys, Twilio, LivePerson) vs RAG API services (CustomGPT.ai, Pinecone Assistant)
Use Case Fit: Exceptional for enterprises needing omnichannel CX automation at scale; poor fit for developers seeking programmable RAG capabilities
Architectural Mismatch: Platform-first vs API-first design makes direct RAG platform comparison fundamentally misleading
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
Customer Base & Case Studies
Scale claim: 100,000+ businesses served (unverified, company-provided claim)
Acquisition: Acquired by Just Build It in May 2024 demonstrating market validation and growth trajectory
Use case examples: Customer support automation, HR policy Q&A, IT support documentation, sales enablement, internal knowledge management, training assistants
Target market: SMBs and mid-market companies seeking knowledge base automation without dedicated AI/ML engineering resources
User feedback themes: Ease of deployment praised, source attribution valued for trust, accuracy concerns noted for complex document sets
Common use cases: "AI virtual employee" positioning for customer support, HR, IT support, sales assistance, marketing, training, and hiring workflows
N/A
N/A
Company Background
Acquisition: Acquired by Just Build It in May 2024 (acquisition terms undisclosed)
Credit-Based Consumption: GPT-3.5 Turbo (1 credit), GPT-3.5 16K (5 credits), GPT-4 (10 credits) per query with transparent per-model costs
Model-Agnostic Architecture: Users stay current with latest LLM updates without retraining bots; bring your own API key for supported LLMs (Claude, Mistral, GPT, Gemini)
Claude 3 Default: Defaults to Claude 3 from Anthropic for code generation, autocomplete, and chat features vs competitors relying solely on GPT models
LIMITATION: No automatic model routing based on query complexity or cost optimization - users must manually select models
Proprietary YellowG LLM: Custom-trained model with vendor-claimed <1% hallucination rate vs GPT-3's 22.7%, 0.6-second average response time
Komodo-7B: Specialized Indonesia-focused model supporting 11+ regional language variants for Southeast Asian market dominance
Orchestrator LLM: Context switching and multi-intent detection engine with zero-training deployment capability
T5 Fine-Tuned: SQuAD/TriviaQA trained model for Document Cognition with 75-85% accuracy depending on complexity
GPT-3 & GPT-3.5: Integration documented for supplemental processing and model routing
15+ LLM Models: Multi-model architecture combining proprietary and third-party models for optimal task routing
Dynamic Model Routing: Automatic selection based on query complexity, language requirements, and performance optimization
Note: GPT-4/Claude support not explicitly confirmed - availability unclear in documentation
Enterprise Training: Models trained on 16 billion+ anonymized customer conversations with PII masking at data layer
Limited Flexibility: Users cannot manually select models - system handles routing automatically without direct control
Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request
Model Selection Details
Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
TRUE RAG Architecture: Pinecone vector database (SOC 2 Type II certified) with Amazon S3 document storage using SSE-S3 encryption protocol
Dynamic Chunking Algorithm: Adjusts chunk size based on token distribution for optimal retrieval performance (specific parameters not publicly documented)
Relevance Score Configuration: Adjustable trade-off between accuracy and completeness for retrieval tuning
Token Distribution Control: Split configuration between context, history, and response (e.g., 70% context, 10% history, 20% response)
Reverse Vector Search: Proprietary technique merging AI and user responses for improved relevance matching
Context Window: Claude 2 integration provides up to 100K context windows for comprehensive codebase analysis
Advanced Chunking: Comprehensive data segmentation including metadata for superior data management across various file formats
LIMITATION: No published benchmark results or quantitative accuracy metrics for RAG performance validation
Agentic RAG Architecture: Multi-checkpoint validation combining intelligent retrieval with reasoning and action - Yellow.ai's AI Agents don't just retrieve, they think, act, and learn
Document Cognition (DocCog): T5 model-based Q&A extraction with 75-85% accuracy depending on document complexity
Hallucination Prevention: Proprietary YellowG LLM approach with vendor-claimed <1% rate vs industry averages through training optimization
Automatic Guardrails: Policy compliance and response filtering from deployment without manual configuration requirements
Knowledge Synchronization: Configurable intervals (hourly, daily, weekly) for external sources including Salesforce, ServiceNow, Confluence, SharePoint
Website Crawling: URL ingestion and sitemap.xml parsing for structured site content extraction and Q&A generation
Enterprise Integrations: Bi-directional sync with AWS S3, Prismic, and major enterprise knowledge bases
Note: Closed Architecture: RAG embedded within platform - no direct endpoints, embedding customization, or vector store API access for developers
Note: No API Upload: Document upload requires manual platform UI interaction - cannot programmatically manage knowledge base
Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks
RAG Performance
Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content
Benchmark Details
Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
Source verification: Always cites sources so users can verify facts on the spot
Use Cases
Primary Departments: Marketing teams (creative strategies, campaign insights), HR departments (employee communication, query management), IT support (technical troubleshooting), Sales departments (AI-driven assistance)
Internal Operations: Answering internal or customer FAQs automatically, training new team members with AI support, generating reports/email replies/summaries using company data, searching thousands of documents instantly
Code Assistance: Engineers saving 5-6 hours per week, writing code 2x faster with AI-powered context-aware code generation and autocomplete
Industries: Financial services (trusted by 4/6 top US banks), technology companies (7/10 top public tech companies), healthcare, professional service firms, government agencies (15+ US agencies)
Team Sizes: Startups managing internal documentation to enterprises coordinating teams across regions; 100,000+ businesses served globally
Educational Use Cases: Educational institutions training students in AI applications, legal firms organizing and retrieving case documents
Customer Service Automation: 90% query automation across 35+ channels with 60% operational cost reduction - handles 16 billion+ conversations annually
Employee Experience (EX): IT support automation (password resets, hardware requests), HR policy FAQs, leave applications, pay slip access, conference room bookings with rapid response delivery even in low bandwidth environments
24/7 Support Operations: Minimal human involvement for routine queries, autonomous account issue resolution, transaction execution, multi-department coordination with full context preservation
E-commerce & Retail: Personal shopping assistance (inventory browsing, price comparison, order placement, returns handling), real-time transaction monitoring with suspicious activity blocking
Travel & Hospitality: Booking management for travel, hotels, restaurants with automatic rebooking during disruptions and 24/7 availability
Financial Services: Fraud detection workflows with automated investigation initiation and PCI DSS compliance for payment transactions
Healthcare: HIPAA-compliant patient engagement and support with protected health information handling capabilities
Government & Federal: FedRAMP authorized platform for US federal deployments with complete compliance and security requirements
Real-World Results: Lulu Hypermarket 3M+ unique users in 4 weeks, Sony 21,000+ voice calls in 2 months, Lion Parcel 85% automation rate, AirAsia employee experience transformation
Enterprise Scale: Customers include Sony, Domino's, Hyundai, Volkswagen, Ferrellgas across 85+ countries with billion+ conversation processing
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
CRITICAL LIMITATION: Cody itself NOT SOC 2 certified - "As an early stage startup, we are diligently working towards earning SOC 2 compliance"
Infrastructure Compliance: Pinecone vector database (SOC 2 Type II certified), AWS S3 (PCI-DSS, HIPAA/HITECH, FedRAMP, FISMA compliant via AWS certification)
GDPR Compliant: Via AWS infrastructure in EU regions for European data residency and privacy requirements; Data Processing Addendums available
Document Encryption: Amazon S3 with SSE-S3 encryption protocol for data at rest, TLS for transit
AI Training Policy: Customer data explicitly NOT used for training - "Your data will not be used to train any existing or new language model"
OpenAI Data Retention: API policy ensures data retained maximum 30 days for abuse monitoring only (not for model training)
Access Controls: Per-chatbot permissions with real-time updates, API key management, role-based team member access
Enterprise Security: Isolated Kubernetes containers on AWS with role-based security and custom infrastructure options
Procurement Concern: Lack of direct SOC 2 certification may block enterprise adoption in regulated industries requiring vendor compliance attestations
SOC 2 Type II: Independently audited security controls and compliance certification with annual penetration testing validation
ISO Certifications: ISO 27001 (Information Security Management), ISO 27018 (Cloud Privacy Controls), ISO 27701 (Privacy Information Management)
HIPAA Compliant: Healthcare industry ready for protected health information (PHI) handling with Business Associate Agreement support
GDPR Compliant: European data protection and privacy rights with regional data centers in EU for data residency requirements
PCI DSS Certified: Payment Card Industry Data Security Standard Level 1 compliance for financial transaction security
FedRAMP Authorized: Federal Risk and Authorization Management Program certification for US government cloud deployments
Encryption Standards: AES-256 encryption at rest, TLS 1.3 for data in transit exceeding industry baseline requirements
Regional Data Centers: 6 global regions (US, EU, Singapore, India, Indonesia, UAE) with customer-selected data residency for compliance and latency optimization
Enterprise Identity Management: SSO/SAML integration with Google, Microsoft, Azure AD, LDAP for unified access control
RBAC Controls: Six permission levels for granular team access control with IP whitelisting for network-level security
Audit Logs: 15-day API activity retention for compliance reporting and security monitoring
On-Premise Options: Private cloud and complete on-premise deployment available for air-gapped environments and complete data sovereignty
AI Training Privacy: Models trained on anonymized customer interactions with PII masking at data layer before processing
Basic Plan (AWS Marketplace): ~$10,000/year minimum for single use case implementation with limited channel access
Standard Plan: ~$25,000/year for up to 4 use cases with expanded capabilities and additional channels
Enterprise Plan: Custom pricing requiring sales engagement - unlimited bots, channels, integrations with dedicated support and SLA guarantees
Implementation Timeline: Typically 4 months from contract to full deployment with professional services included (G2 user data)
Additional Costs: Voice AI features and advanced generative AI capabilities incur separate charges beyond base platform subscription
Sales-Led Process: All paid plans beyond free tier require sales contact - no self-service purchasing or transparent public pricing
Payment Terms: Annual contracts standard for commercial plans with monthly billing unavailable for most tiers
Entry Barrier: $10K minimum annual spend creates significant barrier for small businesses, startups, and individual developers
On-Premise Pricing: Custom enterprise pricing for private cloud and on-premise deployments with additional implementation costs
Regional Variations: Pricing may vary by selected data center region and compliance requirements
Scale Justification: 16 billion+ conversations annually and enterprise customer base (Sony, Domino's, Hyundai) validates high-end positioning
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
API Documentation: developers.meetcody.ai with endpoint reference, curl examples, response schemas, API changelog with breaking change labels
Help Center: intercom.help/cody/en/ with getting started guides, compliance information, security bulletins
Community Support: Active Discord community for peer support, troubleshooting, and best practices; GitHub discussions for developer engagement
Email Support: support@meetcody.ai available for all users across all plans
Response Times: Generally praised for responsiveness; Advanced plan includes dedicated account manager for onboarding and optimization guidance
Learning Resources: Blog with tutorials and guides for use case implementation and platform features
Enterprise SLA: Guaranteed response times and uptime commitments (specifics require sales engagement, not publicly documented)
LIMITATION: NO phone support or live chat on any tier (email and community only)
Documentation Quality: Functional but limited - clear endpoint docs with response schemas but lacking tutorials, cookbooks, comprehensive code samples for advanced implementations
Multi-Channel Support: Email, live chat, phone support with tier-based response time guarantees
Enterprise Support: Dedicated customer success managers, priority support queues, SLA guarantees with 1-hour response times on critical issues
Professional Services: Implementation services included in enterprise packages with typical 4-month deployment timeline and project management
Documentation Portal: Available at docs.yellow.ai with API references, integration guides, mobile SDK documentation with code examples
Mobile SDK Resources: Comprehensive Android, iOS, React Native, Flutter, Cordova documentation with complete code examples, Postman collections, demo applications
Training & Onboarding: Included in enterprise packages with dedicated training resources and guided implementation support
Community Forums: Available for peer support, knowledge sharing, and best practices discussion among Yellow.ai users
Gartner Recognition: Magic Quadrant 'Challenger' status (2023/2025) provides third-party analyst validation and market positioning
Customer Base: Enterprise brands including Sony, Domino's, Hyundai, Volkswagen, Ferrellgas deployed across 85+ countries
G2 Feedback: 4.4/5 overall (106 reviews) with 9.3/10 customization, 9.2/10 proactive engagement - mixed post-onboarding support quality noted
Documentation Gaps: Web SDK documentation criticized as "hit and miss" by reviewers - mobile SDKs better documented than web integration
Learning Curve: Steep complexity curve noted by users - G2 reviewer: "Setup felt akin to solving a Rubik's cube blindfolded"
Developer Resources: Strong mobile SDK documentation, weak Python SDK (doesn't exist), limited API cookbook/advanced tutorial content
Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding
Developer Docs
Email and in-app support: Quick support via email and in-app chat for all users
Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
Code samples: Cookbooks, step-by-step guides, and examples for every skill level
API Documentation
Real-Time Knowledge Updates: Always available manual retraining for immediate knowledge base updates across all plans
Automatic Syncing: Limited to website sources only with recurring re-imports - not available for uploaded documents
Bot Personality Customization: Create custom conversation starters tailored to specific tasks, adjust behavior, tone, and focus to suit each use case
Focus Mode: Generate highly specialized responses based on selected documents for targeted tasks with up to 1,000 specific documents injected into conversation context
Scratchpad for Fine-Tuning: Fine-tune bot responses and knowledge base interactions improving accuracy and relevance of future responses
Custom Prompts: Define bot purpose and personality during creation with shareable prompt templates across team members
Configurable Token Distribution: Adjust split between context, history, and response (e.g., 70% context, 10% history, 20% response)
LIMITATION: No NO programmatic personality management - tone/behavior settings dashboard-only, cannot modify per-user or via API (global configuration only)
LIMITATION: Knowledge base updates require manual intervention - no real-time sync from cloud sources (Google Drive, Dropbox, Notion) except website crawling
Agent Profile & Persona: Configure name, role, scope, tone (formal/friendly/witty), communication style, expertise areas defining core agent identity
Conversation Rules: Define custom rules guiding agent behavior in specific situations ensuring consistent interactions and brand voice compliance
Welcome Messages & Greetings: Personalized welcome messages for different channels, user segments, and conversation contexts with dynamic variable substitution
Fallback Behaviors: Configurable responses for knowledge gaps, API failures, validation errors, low-confidence scenarios with escalation path options
Multi-KB Support: Multiple knowledge bases per organization with role-based access, departmental segregation, and cross-KB search capabilities
Auto-Reindexing: Automatic knowledge base refresh when source content changes in connected systems ensuring always-current information
Dynamic Prompt Engineering: Custom system prompts, temperature controls, response length limits, creativity settings configurable per use case
Channel-Specific Customization: Different agent behaviors, response formats, media handling per channel (WhatsApp, voice, web, email)
CRITICAL LIMITATION - Opaque RAG Implementation: Retrieval mechanisms, embedding models, chunking strategies, similarity thresholds not exposed for developer configuration
CRITICAL LIMITATION - NO Programmatic Knowledge API: Knowledge base management requires UI interaction - no API for document upload, embedding updates, or retrieval tuning
Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus.
Learn How to Update Sources
Supports multiple agents per account, so different teams can have their own bots.
Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Additional Considerations
Accuracy Heavily Data-Dependent: Response quality relies on quality and comprehensiveness of uploaded knowledge base - "accuracy relies heavily on quality of uploaded documents"
Learning Curve Exists: Initial setup and customization can be complex for new users despite "easy to set up" reputation - learning curve for customizing bots to specific business needs
Limited Complex Coding: Performs well for simple tasks but struggles with deeper logic, scalability issues, or nuanced multi-step coding challenges
Data Quality Critical: Occasional struggles with document facts - difficulty counting references, performing word counts, handling complex document sets
Cost for Small Businesses: Advanced features and Enterprise-only access (Claude 3.5, Gemini 1.5, Llama 3.1) expensive for smaller businesses
White-Label Minimum: Complete Cody branding removal requires Premium ($99/month) or Advanced ($249/month) - not available on Free/Basic tiers
Performance with Large Data: Speed may slow with large datasets or complex codebases on less powerful systems; requires stable internet (cloud-based)
Compliance Gap: Cody itself NOT SOC 2 certified as early-stage startup "diligently working towards earning SOC 2 compliance" - may block enterprise procurement
Infrastructure Compliance Only: Pinecone (SOC 2 Type II), AWS S3 (PCI-DSS, HIPAA/HITECH, FedRAMP) certified but Cody platform not directly certified
Best For: Business teams needing no-code deployment with 15-minute bot creation and source transparency for internal knowledge management
NOT Ideal For: Enterprises requiring direct SOC 2 vendor certification, native cloud storage sync, YouTube content ingestion, or deep technical problem-solving
Platform Classification: ENTERPRISE CONVERSATIONAL AI PLATFORM with RAG capabilities, NOT a pure RAG-as-a-Service API platform - emphasis on multi-channel automation and workflow orchestration
Target Audience: Mid-market to enterprise organizations (1,000+ employees) with complex conversational workflows vs individual developers or SMBs requiring simple knowledge retrieval
Primary Strength: Exceptional for enterprise-grade conversational AI across 35+ channels (WhatsApp, voice, web, social) with 150+ language support and 60%+ automation rates in regulated industries
Vertical Expertise: 50% customer concentration in financial services with deep BFSI (Banking, Financial Services, Insurance) domain knowledge and compliance capabilities (PCI DSS, SOC 2, ISO 27001, GDPR, HIPAA)
Voice AI Excellence: Real-time voice agents in 50+ languages with sentiment analysis, IVR integration, call center deflection capabilities differentiate from text-only RAG platforms
CRITICAL LIMITATION - Enterprise Sales Motion: Custom pricing requires sales engagement (2-6 week cycle) with no self-serve option - unsuitable for quick testing or developer experimentation
CRITICAL LIMITATION - Pricing Opacity: No published pricing, user reviews report costs 'much higher than competitors', estimated $1,500-$3,500/month minimum vs $99-$299 in RAG platforms
CRITICAL LIMITATION - Implementation Complexity: 8-12 week implementation timelines common with mandatory professional services vs instant deployment in self-serve platforms
Developer API Limitations: APIs oriented toward conversation orchestration vs programmatic RAG operations (semantic search, embedding controls, retrieval configuration)
Lock-In Concerns: Heavy professional services dependency and complex multi-system integrations create significant switching costs vs API-first RAG platforms
Use Case Mismatch: Exceptional for large-scale enterprise conversational AI deployments across multiple channels; inappropriate for simple document Q&A or developer-centric RAG use cases
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
Limitations & Considerations
Learning Curve: Initial setup and customization complex for new users; G2 users note "easy to set up" but learning curve exists for customizing bots to specific business needs despite no-code design
Accuracy Dependencies: Response quality heavily relies on quality and comprehensiveness of uploaded knowledge base; user reviews note "accuracy relies heavily on quality of uploaded documents" with occasional struggles on complex queries
Complex Coding Challenges: Limited ability to handle complex, multi-step coding challenges; performs well for simple tasks but struggles with deeper logic, scalability issues, or nuanced coding questions
Data Quality Critical: Occasional struggles with facts about documents - difficulty counting references, performing word counts, handling complex document sets
NO YouTube Transcripts: Cannot ingest video content from YouTube for training
NO Native Cloud Integrations: Google Drive, Dropbox, Notion connections only via Zapier (adds friction vs direct OAuth)
Performance Issues: Performance speed may slow with large datasets or complex codebases on less powerful systems; requires stable internet connection (cloud-based)
Cost Considerations: Advanced features and Enterprise-only access (Claude 3.5, Gemini 1.5, Llama 3.1) can be expensive for smaller businesses; white-labeling requires Premium ($99/month) minimum
NOT Ideal For: Enterprises requiring direct SOC 2 certification (infrastructure-only compliance may block procurement), teams needing deep technical problem-solving for critical systems without traditional development practices, organizations needing native cloud storage sync or YouTube content ingestion
NOT a RAG-as-a-Service Platform: Full-stack enterprise conversational AI with embedded RAG - cannot use Yellow.ai purely as knowledge/RAG backend for custom applications
No API-First Development: Cannot programmatically create bots/agents, upload documents, manage knowledge bases, or directly query RAG endpoints - platform-centric architecture
Missing Developer Tools: No Python SDK (major gap for backend developers), no npm package for web SDK (script tag injection only), no OpenAPI specification published
Knowledge Ingestion Gaps: No Google Drive, Dropbox, Notion integration support - significant gap vs competitors like CustomGPT and YourGPT
YouTube & Audio Limitations: No YouTube transcript ingestion, no native audio/video file processing support
High Entry Barrier: $10K-$25K annual minimum with 4-month implementation timeline vs competitors offering $19-99/month self-service tiers
Use Case Mismatch: Excellent for enterprises needing omnichannel CX automation; poor fit for developers seeking programmable RAG APIs or simple chatbot embedding
Vendor Lock-In Risk: Proprietary platform with limited portability - difficult to migrate conversation flows, knowledge bases, and integrations to alternative solutions
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
N/A
Massive Scale: 16 billion+ conversations processed annually across enterprise deployments
Multi-Lingual: 135+ languages supported with regional variants (Komodo-7B for 11+ Indonesian languages)
Hallucination Prevention: YellowG LLM claims <1% hallucination rate vs GPT-3's 22.7% in vendor benchmarks
Dynamic AI Agent: Zero-training deployment with automatic model routing and next-action determination
Multi-Intent Detection: Handles complex user queries with context-aware orchestration across conversation turns
Response Speed: 0.6-second average response time (YellowG LLM performance claim)
Automatic Guardrails: Policy compliance and response relevance filtering from deployment without manual configuration
Case Study Performance: Lulu Hypermarket 3M+ unique users in 4 weeks, Sony 21,000+ voice calls in 2 months
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
Customization & Flexibility
N/A
Knowledge Updates: Manual via UI only - no API for programmatic document upload or management
After analyzing features, pricing, performance, and user feedback, both CODY AI and Yellow.ai are capable platforms that serve different market segments and use cases effectively.
When to Choose CODY AI
You value true rag architecture with pinecone vector database and configurable retrieval parameters (relevance score, token distribution, focus mode)
Source attribution with every response - click-through to exact documents used for generation (transparency and trust differentiator)
Focus Mode unique capability: inject up to 1,000 specific documents into conversation context for targeted responses vs full knowledge base
Best For: TRUE RAG architecture with Pinecone vector database and configurable retrieval parameters (relevance score, token distribution, Focus Mode)
When to Choose Yellow.ai
You value genuinely comprehensive 35+ channel coverage: whatsapp bsp, messenger, instagram, telegram, slack, teams, voice, sms
Switching between CODY AI and Yellow.ai requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
CODY AI starts at $29/month, while Yellow.ai begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between CODY AI and Yellow.ai comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 11, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...