In this comprehensive guide, we compare Contextual AI and Deviniti across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between Contextual AI and Deviniti, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose Contextual AI if: you value invented by the original creator of rag technology
Choose Deviniti if: you value strong compliance and security focus
About Contextual AI
Contextual AI is rag 2.0 platform for enterprise-grade specialized ai agents. Contextual AI is an enterprise platform that pioneered RAG 2.0 technology, enabling organizations to build specialized RAG agents with exceptional accuracy for complex, knowledge-intensive workloads through end-to-end optimized systems. Founded in 2023, headquartered in Mountain View, CA, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
91/100
Starting Price
Custom
About Deviniti
Deviniti is self-hosted genai solutions for compliance-critical industries. Deviniti is an AI development company specializing in secure, self-hosted AI agents and LLM solutions for highly regulated industries like finance, healthcare, and legal, with expertise in RAG architecture and custom AI development. Founded in 2010, headquartered in Kraków, Poland, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
77/100
Starting Price
Custom
Key Differences at a Glance
In terms of user ratings, Contextual AI in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: RAG Platform versus AI Development. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
Contextual AI
Deviniti
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
Easily brings in both unstructured files (PDFs, HTML, images, charts) and structured data (databases, spreadsheets) through ready-made connectors.
Does multimodal retrieval—turns images and charts into embeddings so everything is searchable together. Source
Hooks into popular SaaS tools like Slack, GitHub, and Google Drive for seamless data flow.
Builds custom pipelines to pull in pretty much any source—internal docs, FAQs, websites, databases, even proprietary APIs.
Works with all the usual suspects (PDF, DOCX, etc.) and can tap uncommon sources if the project needs it.
Project case study
Designs scalable setups—hardware, storage, indexing—to handle huge data sets and keep everything fresh with automated pipelines.
Learn more
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
Built for API integration first—no plug-and-play web widget included.
Enterprise-grade endpoints and a Snowflake Native App option make tight data integration straightforward. Source
Plugs the chatbot into any channel you need—web, mobile, Slack, Teams, or even legacy apps—tailored to your stack.
Spins up custom API endpoints or webhooks to hook into CRMs, ERPs, or ITSM tools (dev work included).
Integration approach
Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more.
Explore API Integrations
Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc.
Read more here.
Create multiple datastores and link them to agents by role or permission for fine-grained access.
Tune the LLM on your own data, add guardrails, and embed custom logic as needed. Source
Total control: add new sources with custom pipelines, tweak bot tone, inject live API calls—whatever you dream up.
Everything’s bespoke, so updates usually involve a quick dev sprint.
Case details
Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus.
Learn How to Update Sources
Supports multiple agents per account, so different teams can have their own bots.
Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Pricing & Scalability
Usage-based pricing tailored for enterprises—cost scales with agent capacity, data size, and query load. Source
Standalone component APIs are priced per token, letting you mix and match pieces as you grow.
Project-based pricing plus optional maintenance—great for unique enterprise needs.
Your infra (cloud or on-prem) handles the load; the solution is built to scale to millions of queries.
Client portfolio
Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates.
View Pricing
Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
SOC 2 compliant with encryption in transit and at rest; deploy on-prem or in a VPC for full sovereignty. Source
Implements role-based permissions and query-time access checks to keep data secure.
Deploy on-prem or private cloud for full data control and compliance peace of mind.
Uses strong encryption, access controls, and hooks into your existing security stack.
Security details
Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private.
Security Certifications
Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Observability & Monitoring
Built-in evaluation shows groundedness scores, retrieval metrics, and logs every step. Source
Plugs into external monitoring tools and supports detailed logging for audits and troubleshooting.
Custom monitoring ties into tools like CloudWatch or Prometheus to track everything.
Can add an admin dashboard or SIEM feeds for real-time analytics and alerts.
More info
Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
Lets you export logs and metrics via API to plug into third-party monitoring or BI tools.
Analytics API
Provides detailed insights for troubleshooting and ongoing optimization.
Support & Ecosystem
High-touch enterprise support with solution engineers and technical account managers.
Grows its ecosystem via partnerships (e.g., Snowflake) and industry thought leadership. Source
Hands-on support from Deviniti—from kickoff through post-launch—direct access to the dev team.
Docs, training, and integrations are built around your stack, not one-size-fits-all.
Our services
Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast.
Developer Docs
Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs.
Enterprise Solutions
Benefits from an active user community plus integrations through Zapier and GitHub resources.
Additional Considerations
Great for mission-critical apps that need multimodal retrieval and advanced reasoning.
Requires more up-front setup and technical know-how than no-code tools—best for teams with ML expertise.
Handles complex needs like role-based data access and evolving multimodal content. Source
Can build hybrid agents that run complex, transactional tasks—not just Q&A.
You own the solution end-to-end and can evolve it as AI tech moves forward.
Custom governance
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No- Code Interface & Usability
Web console helps manage agents, but there's no drag-and-drop chatbot builder.
UI integration is a coding project—APIs are powerful, but non-tech users will need developer help.
No out-of-the-box no-code dashboard—IT or bespoke admin panels handle config.
Everyday users chat with the bot; deeper tweaks live with the tech team.
Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing.
User Experience Review
Uses role-based access so business users and devs can collaborate smoothly.
Competitive Positioning
Market position: Enterprise RAG 2.0 platform with proprietary Grounded Language Model (GLM) optimized for factual accuracy and multimodal retrieval capabilities
Target customers: Large enterprises and ML teams requiring mission-critical AI applications with advanced reasoning, multimodal content handling (images, charts), and strict accuracy requirements (88% factual accuracy benchmarked)
Key competitors: OpenAI Enterprise, Azure AI, Deepset, Vectara.ai, and custom-built RAG solutions using LangChain/Haystack
Competitive advantages: Proprietary GLM model with superior RAG performance, multimodal retrieval (images/charts), SOC 2 compliance with VPC/on-prem deployment options, Snowflake Native App integration, groundedness scoring with "Instant Viewer" for source attribution, and multi-hop retrieval with chain-of-thought reasoning
Pricing advantage: Usage-based enterprise pricing with standalone component APIs (reranker, generator) priced per token; flexible for organizations that want to mix and match components; best value for high-accuracy, high-volume use cases
Use case fit: Ideal for mission-critical enterprise applications requiring multimodal retrieval (technical documentation with diagrams), domain-specific AI agents with advanced reasoning, and organizations needing role-based data access with query-time permission checks
Market position: Custom AI development agency (200+ clients served) specializing in self-hosted, enterprise RAG solutions with domain-specific fine-tuning and legacy system integration
Target customers: Large enterprises needing fully custom AI solutions, organizations with legacy systems requiring specialized integration, and companies requiring on-premises deployment with complete data sovereignty and compliance control
Key competitors: Azumo, internal AI development teams, Contextual.ai (enterprise), and other custom AI consulting firms
Competitive advantages: 200+ enterprise clients demonstrating proven track record, model-agnostic approach with fine-tuning on proprietary data, on-prem/private cloud deployment for full data control, custom API/workflow development tailored to exact specifications, white-glove support with direct dev team access, and complete solution ownership with bespoke UI/branding
Pricing advantage: Project-based pricing plus optional maintenance; higher upfront cost than SaaS but provides long-term ownership without subscription fees; best value for unique enterprise needs that can't be met with off-the-shelf solutions and require custom integrations
Use case fit: Ideal for enterprises with legacy systems needing specialized AI integration, organizations requiring domain-tuned models with insider terminology, companies needing hybrid AI agents handling complex transactional tasks beyond Q&A, and businesses demanding on-premises deployment with complete data sovereignty and custom compliance measures
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
Grounded Language Model (GLM): Proprietary model tuned specifically for RAG with ~88% factual accuracy on FACTS benchmark
Industry-Leading Groundedness: GLM achieves 88% vs. Gemini 2.0 Flash (84.6%), Claude 3.5 Sonnet (79.4%), GPT-4o (78.8%) on factuality benchmarks
Inline Attribution: Model provides citations showing exact source documents for each part of response as generated
Standalone APIs: Exposes separate reranker and generator APIs with simple token-based pricing for flexible integration
Model-Agnostic Option: Platform supports integration with other LLMs if needed for specific use cases
Optimized for RAG: GLM specifically designed for retrieval-augmented generation scenarios vs. general-purpose LLMs
Model-agnostic approach: Supports any LLM - GPT-4, Claude, Llama 2, Falcon, Cohere, or custom models based on client needs
Custom model fine-tuning: Fine-tune models on proprietary data for domain-specific terminology and insider jargon
Local LLM deployment: On-premises model hosting for complete data sovereignty and offline operation
Multiple model support: Deploy different models for different use cases within same infrastructure
Model flexibility: Swap models through new build/deploy cycle as requirements evolve
Custom training pipelines: Build specialized training workflows for continuous model improvement
Primary models: GPT-4, GPT-3.5 Turbo from OpenAI, and Anthropic's Claude for enterprise needs
Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request
Model Selection Details
Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
RAG 2.0 Architecture: Advanced approach tops industry benchmarks for document understanding and factuality with multi-hop retrieval
Multimodal Retrieval: Turns images and charts into embeddings for unified search across text and visual content
Groundedness Scoring: Built-in evaluation shows groundedness scores with "Instant Viewer" highlighting exact source text backing each answer part
Reranker + Scoring: Uses reranker plus groundedness scoring for factual answers with precise attribution
Multi-Hop Retrieval: Advanced RAG agents with multi-hop retrieval and chain-of-thought reasoning for tough questions
Handles Noisy Datasets: Robust reranking and retrieval for large, noisy datasets with multiple datastores by role or permission
Query-Time Access Checks: Role-based permissions with query-time access validation for secure data retrieval
Custom RAG architecture: Best-practice retrieval with multi-index strategies and tuned prompts for precise answers
Domain-specific fine-tuning: Train on proprietary data to eliminate hallucinations and improve accuracy for insider terminology
Custom channel deployment: Integrate into any channel - web, mobile, Slack, Teams, or legacy applications
Domain-tuned assistants: Specialized agents with fine-tuned models for technical or medical terminology
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
Data residency: Full control over where data is stored and processed (US, EU, on-prem)
No third-party data sharing: Complete data sovereignty with no cloud vendor dependencies
Custom monitoring: Integrated with CloudWatch, Prometheus, or enterprise monitoring tools
Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
SOC 2 Type II certification: Industry-leading security standards with regular third-party audits
Security Certifications
GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
Data isolation: Customer data stays isolated and private - platform never trains on user data
Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
Free Tier: Credits for first 1M input and 1M output tokens to evaluate platform capabilities
Usage-Based Pricing: Enterprise pricing tailored by agent capacity, data size, and query load for scalability
Token-Based Components: Standalone component APIs (reranker, generator) priced per token for flexible mix-and-match
Enterprise Custom Pricing: Pricing details require sales engagement for production deployments and dedicated instances
Buy Additional Credits: Users can purchase credits as needs grow beyond free tier allocation
Best Value For: High-accuracy, high-volume enterprise use cases requiring multimodal retrieval and advanced reasoning
Project-based pricing: Custom quotes based on scope, complexity, and integration requirements
Typical project range: $50K-$500K+ for initial development depending on complexity
Optional maintenance: Ongoing support and enhancement contracts available post-launch
Infrastructure costs: Client manages cloud or on-prem infrastructure costs separately
No per-seat fees: Own the solution outright without subscription charges
Professional services: Consulting, integration, training, and documentation included in project scope
Long-term value: Higher upfront cost but no recurring SaaS fees - best for permanent enterprise solutions
200+ client portfolio: Proven track record across Fortune 500 and mid-market enterprises
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
High-Touch Enterprise Support: Solution engineers and technical account managers for dedicated customer success
API Documentation: Solid REST APIs and Python SDK documentation for managing agents, ingesting data, and querying
Endpoint Coverage: APIs for tuning, evaluation, standalone components with clear, token-based pricing transparency
Partnership Ecosystem: Grows via partnerships (Snowflake) and industry thought leadership for enterprise integration
Learning Resources: Technical documentation and integration guides for ML teams and developers
Response Times: Enterprise support includes dedicated resources for onboarding and technical assistance
White-glove support: Direct access to development team from kickoff through post-launch
Custom documentation: Tailored documentation for your specific implementation and tech stack
Training programs: Custom training for IT teams and end users on solution usage and maintenance
Dedicated project manager: Single point of contact throughout development lifecycle
Post-launch support: Optional maintenance contracts with SLA guarantees and priority response
Integration support: Hands-on help connecting to existing enterprise systems and workflows
Knowledge transfer: Complete handoff of code, architecture docs, and operational runbooks
Enterprise focus: Proven experience with large-scale deployments and complex requirements
Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding
Developer Docs
Email and in-app support: Quick support via email and in-app chat for all users
Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
Code samples: Cookbooks, step-by-step guides, and examples for every skill level
API Documentation
Active community: User community plus 5,000+ app integrations through Zapier ecosystem
Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
Technical Expertise Required: Best for teams with ML expertise - more up-front setup and technical know-how than no-code tools
NO Drag-and-Drop Builder: Web console helps manage agents, but no drag-and-drop chatbot builder for non-technical users
UI Integration is Coding Project: APIs are powerful, but non-tech users will need developer help for implementation
Learning Curve: Platform requires understanding of RAG concepts, embeddings, and AI agent architecture
NO Pre-Built UI: No out-of-the-box UI builder; customers embed in their own branded front end
API-First Platform: Built for API integration first - no plug-and-play web widget included
Enterprise Focus: Pricing and features target large enterprises vs. SMBs or individual developers
NOT Ideal For: Small teams without ML/AI expertise, organizations wanting no-code deployment, businesses needing immediate plug-and-play solutions
High upfront cost: $50K-$500K+ initial development vs $29-$999/month SaaS solutions
Longer time to value: 2-6 month development cycle vs instant SaaS deployment
Custom maintenance required: Updates and changes require development work, not self-service
No out-of-box features: Everything built from scratch - no pre-built templates or no-code tools
Technical expertise required: IT team needed for ongoing management and infrastructure
Project-based approach: Each enhancement or change may require additional development sprint
Not for budget-constrained SMBs: Best suited for large enterprises with significant AI budgets
Best for unique needs only: Only justified when off-the-shelf solutions cannot meet requirements
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-4, GPT-3.5) and Anthropic (Claude) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
RAG 2.0 Agents: Specialized RAG agents for expert knowledge work with advanced contextual understanding and multi-hop retrieval capabilities
Multi-Hop Retrieval: Advanced RAG agents execute multi-hop retrieval and chain-of-thought reasoning for tough, complex questions
Task-Oriented Assistants: Domain-specific AI agents designed for mission-critical applications requiring high accuracy and minimal hallucinations
Multiple Datastore Support: Create multiple datastores and link them to agents by role or permission for fine-grained access control
Custom Logic Integration: Tune LLM on your own data, add guardrails, and embed custom logic as needed for specialized workflows
Agent APIs: Programmatic agent creation, management, and querying through comprehensive REST APIs and Python SDK
Grounded Generation: Inline citations showing exact document spans that informed each response part with built-in hallucination reduction
Document-Level Security: Enterprise controls for access permissions on sensitive data with query-time access validation
Platform Generally Available (January 2025): Helping enterprises build specialized RAG agents to support expert knowledge work
State-of-the-Art Performance: Each component achieves state-of-the-art benchmarks on BIRD (structured reasoning), RAG-QA Arena (end-to-end RAG), OmniDocBench (document understanding)
Custom AI Agents: Build autonomous agents using advanced LLM architecture with planning modules, memory systems, and RAG pipelines tailored to exact business requirements
Agent Development
Planning Module: Agents break down complex tasks into smaller manageable steps using task decomposition methods - enabling multi-step autonomous workflows
Memory System: Retains past interactions ensuring consistent responses in long-running workflows, maintaining context to improve handling of complex tasks over time
RAG Integration: Agents use specialized RAG pipelines, code interpreters, and external APIs to gather and process data efficiently - enhancing ability to access and use external resources for accurate outcomes
RAG Implementation
Tool & API Integration: Agents execute actions beyond Q&A - integrate with CRMs, ERPs, ITSM tools, proprietary APIs, and legacy systems through custom webhooks and endpoints
Domain-Tuned Behavior: Fine-tune on proprietary data for insider terminology, multi-turn memory with context preservation, and any language support including local LLM deployment
Hybrid Agent Capabilities: Build agents that run complex transactional tasks beyond simple Q&A - handle workflows like IT ticket creation, CRM updates, and approval processes
Hybrid Agents
Real-World Proven: Deployed AI Agent in Credit Agricole bank for customer service automation - routes simple queries automatically, flags complex ones for human support, and drafts personalized replies
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
R A G-as-a- Service Assessment
Platform Type: TRUE ENTERPRISE RAG 2.0 PLATFORM - Proprietary Grounded Language Model (GLM) optimized for factual accuracy and multimodal retrieval
RAG 2.0 Architecture: Advanced approach tops industry benchmarks for document understanding and factuality with multi-hop retrieval (announced general availability January 2025)
Proprietary GLM Model: ~88% factual accuracy on FACTS benchmark outperforming Gemini 2.0 Flash (84.6%), Claude 3.5 Sonnet (79.4%), GPT-4o (78.8%)
Built-in Evaluation Tools: Assess generated responses for equivalence and groundedness with comprehensive evaluation across every critical component
Multimodal Retrieval: Turns images and charts into embeddings for unified search across text and visual content in technical documentation
Groundedness Scoring: Built-in scoring with "Instant Viewer" highlighting exact source text backing each answer part for transparency
Reranker + Scoring: Uses reranker plus groundedness scoring for factual answers with precise attribution and hallucination reduction
Handles Noisy Datasets: Robust reranking and retrieval for large, noisy datasets with multiple datastores by role or permission
Production-Grade Accuracy: Delivers production-grade accuracy for specialized knowledge tasks with enterprise security, audit trails, high availability, scalability, compliance
Joint Tuning Capability: Retrieval and generation components can be jointly tuned by providing sample queries, gold-standard responses, supporting evidence
Comprehensive Assessment: Measures end-to-end RAG performance, multi-modal document understanding, structured data retrieval, and grounded language generation
Target Market: Large enterprises and ML teams requiring mission-critical AI applications with advanced reasoning and strict accuracy requirements
Use Case Fit: Ideal for mission-critical enterprise applications requiring multimodal retrieval, domain-specific AI agents, and role-based data access with query-time permission checks
Platform Type: CUSTOM AI DEVELOPMENT CONSULTANCY - not a platform but professional services firm building bespoke enterprise RAG solutions and AI agents from scratch (200+ clients served)
Core Offering: Project-based custom development of self-hosted AI agents, RAG architectures, and LLM applications tailored to exact specifications - not pre-built software or SaaS
Agent Capabilities: Build fully autonomous AI agents with planning modules, memory systems, RAG pipelines, and tool integration - proven in regulated industries like banking (Credit Agricole deployment)
Agent Services
Developer Experience: White-glove professional services with dedicated dev team, project-specific API development (JSON over HTTP), custom documentation and samples, hands-on support from kickoff through post-launch
No-Code Capabilities: NONE - everything requires custom development work. No dashboard, visual builders, or self-service tools. IT teams or bespoke admin panels handle configuration post-delivery
Target Market: Large enterprises with legacy systems needing specialized AI integration, organizations requiring on-premises deployment with complete data sovereignty, companies with unique needs that can't be met with off-the-shelf solutions
RAG Technology Approach: Best-practice retrieval with multi-index strategies, tuned prompts, fine-tuning on proprietary data to eliminate hallucinations, custom vector DB selection, and hybrid search strategies tailored to data characteristics
RAG Approach
Deployment Model: On-prem or private cloud only - complete data control with no cloud vendor dependencies, custom infrastructure managed by client, strong encryption and access controls integrated with existing security stack
Enterprise Readiness: ISO 27001 certification, GDPR and CCPA compliance, custom compliance measures for HIPAA or industry-specific requirements, AES-256 encryption, RBAC integrated with existing identity management
Pricing Model: Project-based $50K-$500K+ initial development plus optional ongoing maintenance contracts - higher upfront cost but no recurring SaaS fees, full solution ownership
Use Case Fit: Enterprises with legacy systems needing specialized AI integration, domain-tuned models with insider terminology, hybrid AI agents handling complex transactional tasks, on-premises deployment with complete data sovereignty
NOT A PLATFORM: Does not offer self-service software, API-as-a-service, or turnkey solutions - exclusively custom development consultancy requiring sales engagement and multi-month build cycles
Competitive Positioning: Competes with other AI consultancies (Azumo, internal AI teams) and enterprise RAG platforms - differentiates through 200+ client track record, regulated industry expertise (banking, legal), and complete customization
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
After analyzing features, pricing, performance, and user feedback, both Contextual AI and Deviniti are capable platforms that serve different market segments and use cases effectively.
When to Choose Contextual AI
You value invented by the original creator of rag technology
Best-in-class accuracy on RAG benchmarks
End-to-end optimized system vs cobbled together solutions
Best For: Invented by the original creator of RAG technology
When to Choose Deviniti
You value strong compliance and security focus
Self-hosted solutions for data privacy
Domain expertise in regulated industries
Best For: Strong compliance and security focus
Migration & Switching Considerations
Switching between Contextual AI and Deviniti requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
Contextual AI starts at custom pricing, while Deviniti begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between Contextual AI and Deviniti comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 7, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...