Coveo vs SimplyRetrieve

Make an informed decision with our comprehensive comparison. Discover which RAG solution perfectly fits your needs.

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT.ai

Fact checked and reviewed by Bill Cava

Published: 01.04.2025Updated: 25.04.2025

In this comprehensive guide, we compare Coveo and SimplyRetrieve across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.

Overview

When choosing between Coveo and SimplyRetrieve, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.

Quick Decision Guide

  • Choose Coveo if: you value comprehensive enterprise search capabilities
  • Choose SimplyRetrieve if: you value completely free and open source

About Coveo

Coveo Landing Page Screenshot

Coveo is ai-powered search and personalization for digital experiences. Coveo is an enterprise AI platform that delivers intelligent search, recommendations, and personalization across commerce, customer service, workplace, and website applications using machine learning and behavioral analytics. Founded in 2005, headquartered in Quebec City, Canada, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
82/100
Starting Price
Custom

About SimplyRetrieve

SimplyRetrieve Landing Page Screenshot

SimplyRetrieve is lightweight retrieval-centric generative ai platform. SimplyRetrieve is an open-source tool providing a fully localized, lightweight, and user-friendly GUI and API platform for Retrieval-Centric Generation (RCG). It emphasizes privacy and can run on a single GPU while maintaining clear separation between LLM context interpretation and knowledge memorization. Founded in 2019, headquartered in Tokyo, Japan, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
82/100
Starting Price
Custom

Key Differences at a Glance

In terms of user ratings, both platforms score similarly in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: Enterprise Search versus RAG Platform. These differences make each platform better suited for specific use cases and organizational requirements.

⚠️ What This Comparison Covers

We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.

Detailed Feature Comparison

logo of coveo
Coveo
logo of simplyretrieve
SimplyRetrieve
logo of customGPT logo
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
  • Pulls content from a long list of enterprise sources—SharePoint, Salesforce, ServiceNow, Confluence, databases, file shares, Slack, websites—and merges it all into one index with native connectors.
  • Runs OCR and handles structured data, so it can index scanned docs, intranet pages, knowledge articles, and even multimedia.
  • Keeps the index fresh with incremental crawls, push APIs, and scheduled syncs—new or updated content shows up fast.
  • Uses a hands-on, file-based flow: drop PDFs, text, DOCX, PPTX, HTML, etc. into a folder and run a script to embed them.
  • A new GUI Knowledge-Base editor lets you add docs on the fly, but there’s no web crawler or auto-refresh yet.
  • Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
  • Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
  • Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text. View Transcription Guide
  • Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier. See Zapier Connectors
  • Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
  • Ships Atomic UI components you can drop into search pages, support hubs, or commerce sites to surface generative answers.
  • Connects natively to platforms like Salesforce and Sitecore, letting AI answers appear right inside tools your team already uses.
  • Need a custom channel? Its robust REST APIs let you build bespoke chatbots or virtual assistants on top of Coveo’s retrieval engine.
  • Ships with a local Gradio GUI and Python scripts for queries—no out-of-the-box Slack or site widget.
  • Want other channels? Write a small wrapper that forwards messages to your local chatbot.
  • Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
  • Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more. Explore API Integrations
  • Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
  • Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
  • Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc. Read more here.
  • Supports OpenAI API Endpoint compatibility. Read more here.
Core Chatbot Features
  • Uses Relevance Generative Answering (RGA)—a two-step retrieval plus LLM flow that produces concise, source-cited answers.
  • Respects permissions, showing each user only the content they’re allowed to see.
  • Blends the direct answer with classic search results so people can dig deeper if they want.
  • Runs a retrieval-augmented chatbot on open-source LLMs, streaming tokens live in the Gradio UI.
  • Primarily single-turn Q&A; long-term memory is limited in this release.
  • Includes a “Retrieval Tuning Module” so you can see—and tweak—how answers are built from the data.
  • Reduces hallucinations by grounding replies in your data and adding source citations for transparency. Benchmark Details
  • Handles multi-turn, context-aware chats with persistent history and solid conversation management.
  • Speaks 90+ languages, making global rollouts straightforward.
  • Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Customization & Branding
  • Atomic components are fully styleable with CSS, making it easy to match your brand’s look and feel.
  • You can tweak answer formatting and citation display through configs; deeper personality tweaks mean editing the prompt.
  • Default Gradio interface is pretty plain, with minimal theming.
  • For a branded UI you’ll tweak source code or build your own front end.
  • Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand. White-label Options
  • Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
  • Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
  • Uses domain allowlisting to ensure the chatbot appears only on approved sites.
L L M Model Options
  • Runs primarily on OpenAI GPT models via Azure OpenAI, delivering high-quality text.
  • If you prefer another model, the Relevance-Augmented Passage Retrieval API lets you plug in your own LLM.
  • Handles model tuning and prompt optimization behind the scenes, though you can override via API when needed.
  • Defaults to WizardVicuna-13B, but you can swap in any Hugging Face model if you have the GPUs.
  • Full control over model choice, though smaller open models won’t match GPT-4 for depth.
  • Taps into top models—OpenAI’s GPT-5.1 series, GPT-4 series, and even Anthropic’s Claude for enterprise needs (4.5 opus and sonnet, etc ).
  • Automatically balances cost and performance by picking the right model for each request. Model Selection Details
  • Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
  • Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Developer Experience ( A P I & S D Ks)
  • Provides mature REST APIs and SDKs (Java, .NET, JavaScript) for indexing, connector management, and querying.
  • Ready-made Atomic and Quantic components help you add generative answers to the front end fast.
  • Docs are enterprise-grade, with step-by-step guides for pipelines and index management.
  • Interaction happens via Python scripts—there’s no formal REST API or SDK.
  • Integrations usually call those scripts as subprocesses or add your own wrapper.
  • Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat. API Documentation
  • Offers open-source SDKs—like the Python customgpt-client—plus Postman collections to speed integration. Open-Source SDK
  • Backs you up with cookbooks, code samples, and step-by-step guides for every skill level.
Performance & Accuracy
  • Pairs keyword search with semantic vector search so the LLM gets the best possible context.
  • Reranking plus smart prompts keep hallucinations low and citations precise.
  • Built on a scalable architecture that handles heavy query loads and massive content sets.
  • Open-source models run slower than managed clouds—expect a few to 10 + seconds per reply on a single GPU.
  • Accuracy is fine when the right doc is found, but smaller models can struggle on complex, multi-hop queries.
  • Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
  • Independent tests rate median answer accuracy at 5/5—outpacing many alternatives. Benchmark Results
  • Always cites sources so users can verify facts on the spot.
  • Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
Customization & Flexibility ( Behavior & Knowledge)
  • Fine-tune which sources and metadata the engine uses via query pipelines and filters.
  • Integrates with SSO/LDAP so results are tailored to each user’s permissions.
  • Developers can tweak prompt templates or inject business rules to shape the output.
  • Lets you tweak everything—KnowledgeBase weight, retrieval params, system prompts—for deep control.
  • Encourages devs to swap embedding models or hack the pipeline code as needed.
  • Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
  • Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus. Learn How to Update Sources
  • Supports multiple agents per account, so different teams can have their own bots.
  • Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Pricing & Scalability
  • Sold under enterprise licenses—pricing depends on sources, query volume, and feature set.
  • Scales to millions of queries with 99.999 % uptime and regional data-center options.
  • Usually involves annual contracts with volume tiers and optional premium support.
  • Free, MIT-licensed open source—no fees, but you supply the GPUs or cloud servers.
  • Scaling means spinning up more hardware and managing it yourself.
  • Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
  • Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates. View Pricing
  • Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
  • Holds ISO 27001/27018 and SOC 2 certifications, plus HIPAA-compatible deployments.
  • Granular access controls ensure users only see what they’re authorized to view.
  • Can run in private cloud or on-prem for organizations with strict data-residency needs.
  • Entirely local: all docs and chat data stay on your own machine—great for sensitive use cases.
  • No built-in auth or enterprise security—lock things down in your own deployment setup.
  • Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
  • Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private. Security Certifications
  • Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Observability & Monitoring
  • Built-in analytics dashboard tracks query volume, engagement, and generative-answer performance.
  • Detailed pipeline logs can be exported for deeper analysis.
  • Supports A/B testing in the query pipeline to measure impact and fine-tune relevance.
  • An “Analysis” tab shows which docs were pulled and how the query was built; logs print to the console.
  • No fancy dashboard—add your own logging or monitoring if you need broader stats.
  • Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
  • Lets you export logs and metrics via API to plug into third-party monitoring or BI tools. Analytics API
  • Provides detailed insights for troubleshooting and ongoing optimization.
Support & Ecosystem
  • Comes with enterprise-grade support—account managers, 24/7 help, and extensive training programs.
  • Large partner network and the Coveo Connect community provide docs, forums, and certified integrations.
  • Regular product updates and industry events keep you ahead of the curve.
  • Open-source on GitHub; support is community-driven via issues and lightweight docs.
  • Smaller ecosystem: you’re free to fork or extend, but there’s no paid SLA or enterprise help desk.
  • Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast. Developer Docs
  • Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs. Enterprise Solutions
  • Benefits from an active user community plus integrations through Zapier and GitHub resources.
Additional Considerations
  • Coveo goes beyond Q&A to power search, recommendations, and discovery for large digital experiences.
  • Deep integration with enterprise systems and strong permissioning make it ideal for internal knowledge management.
  • Powerful but best suited for organizations with an established IT team to tune and maintain it.
  • Great for offline / on-prem labs where data never leaves the server—perfect for tinkering.
  • Takes more hands-on upkeep and won’t match proprietary giants in sheer capability out of the box.
  • Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
  • Gets you to value quickly: launch a functional AI assistant in minutes.
  • Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
  • Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No- Code Interface & Usability
  • Admin console and Atomic components let you get started with minimal code.
  • The end-user search UI is polished, but full generative setup usually calls for developer involvement.
  • Great for teams that already have technical resources or use Coveo today; more complex than a pure no-code tool.
  • Basic Gradio UI is developer-focused; non-tech users might find the settings overwhelming.
  • No slick, no-code admin—if you need polish or branding, you'll build your own front end.
  • Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
  • Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing. User Experience Review
  • Uses role-based access so business users and devs can collaborate smoothly.
Competitive Positioning
  • Market position: Enterprise-grade AI-powered search and discovery platform with Relevance Generative Answering (RGA) capabilities for large-scale knowledge management
  • Target customers: Large enterprises with complex content ecosystems (SharePoint, Salesforce, ServiceNow, Confluence), organizations needing permission-aware search, and companies requiring search + recommendations + discovery beyond simple Q&A
  • Key competitors: Azure AI Search, Vectara.ai, Glean, Elastic Enterprise Search, and custom Elasticsearch/OpenSearch implementations
  • Competitive advantages: Mature enterprise connectors to 100+ sources with incremental crawling, hybrid search (keyword + semantic) with semantic ranking, permission-aware results respecting user access controls, Atomic UI components for rapid deployment, native integrations with Salesforce/Sitecore, and 99.999% uptime SLA with regional data centers
  • Pricing advantage: Enterprise licensing with annual contracts typically higher than SaaS chatbot tools but competitive for comprehensive search + RAG + recommendations platform; best value for organizations needing unified search across massive content sets with millions of queries
  • Use case fit: Best for enterprises managing large, distributed content across multiple systems (SharePoint, databases, file shares), organizations requiring permission-aware search that respects existing access controls, and companies wanting to power internal knowledge hubs, support portals, and commerce sites with generative answers
  • Market position: MIT-licensed open-source local RAG solution running entirely on-premises with open-source LLMs (no cloud dependency), designed for developers and tinkerers
  • Target customers: Developers experimenting with RAG locally, organizations with strict data isolation requirements (healthcare, government, defense), and teams wanting complete control without cloud costs or vendor dependencies
  • Key competitors: LangChain/LlamaIndex (frameworks), PrivateGPT, LocalGPT, and cloud RAG platforms for teams needing simplicity
  • Competitive advantages: Completely free and open-source (MIT license) with no fees or subscriptions, 100% local execution keeping all data on-premises, full control over model choice (any Hugging Face model), Python-based with full source code access for customization, "Retrieval Tuning Module" for transparency into answer generation, and zero external dependencies beyond local compute
  • Pricing advantage: Completely free with MIT license; only cost is GPU hardware or cloud compute; best value for teams with existing GPU infrastructure wanting to avoid subscription costs; requires technical expertise and hands-on maintenance
  • Use case fit: Ideal for offline/air-gapped environments requiring complete data isolation (defense, healthcare with strict PHI requirements), developers learning RAG internals and experimenting locally, and organizations with GPU infrastructure wanting zero cloud costs and complete control over LLM stack without vendor dependencies
  • Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
  • Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
  • Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
  • Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
  • Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
  • Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
  • Azure OpenAI GPT Models: Runs primarily on OpenAI GPT models via Azure OpenAI delivering high-quality text generation
  • Model Flexibility: Relevance-Augmented Passage Retrieval API lets customers plug in their own preferred LLM
  • Behind-the-Scenes Tuning: Handles model tuning and prompt optimization automatically without customer intervention
  • API Override Option: Advanced users can override default model configuration via API when needed for specific use cases
  • Integration with Search: LLM generation tightly integrated with Coveo's keyword + semantic search pipeline for context quality
  • Default Model: WizardVicuna-13B-Uncensored (instruction-fine-tuned open-source model)
  • Hugging Face Compatibility: Swap in any Hugging Face model with sufficient GPU resources (Llama 2, Falcon, Mistral, etc.)
  • Full Local Control: Models run entirely on-premises with no external API calls or cloud dependencies
  • Embedding Model: Default multilingual-e5-base for retrieval with option to swap for other embedding models
  • Model Customization: Fine-tune or quantize models for specific use cases and hardware constraints
  • No Vendor Lock-In: Complete flexibility to use any open-source LLM without subscription fees or API limits
  • GPU Requirements: Smaller models may not match GPT-4 depth but enable complete data isolation and zero operational costs
  • Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
  • Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request Model Selection Details
  • Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
  • Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
  • Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
  • Relevance Generative Answering (RGA): Two-step retrieval plus LLM flow producing concise, source-cited answers grounded in enterprise content
  • Hybrid Search Engine: Pairs keyword search with semantic vector search ensuring LLM gets best possible context from content index
  • Reranking + Smart Prompts: Reranking plus smart prompts keep hallucinations low and citations precise for enterprise reliability
  • Permission-Aware Retrieval: Respects permissions showing each user only content they're authorized to see with SSO/LDAP integration
  • Query Pipelines: Fine-tune which sources and metadata the engine uses via query pipelines and filters for control
  • Built-In Indexing: Runs OCR, handles structured data, indexes scanned docs, intranet pages, knowledge articles, multimedia content
  • Incremental Crawls: Keeps index fresh with incremental crawls, push APIs, scheduled syncs - new or updated content shows up fast
  • Scalable Architecture: Built on scalable architecture handling heavy query loads and massive content sets with 99.999% uptime
  • Retrieval-Centric Generation (RCG): Research-backed approach explicitly separating LLM roles from knowledge memorization for more efficient implementation
  • Retrieval Tuning Module: Transparency into answer generation showing which documents were retrieved and how queries were built
  • Mixtures-of-Knowledge-Bases (MoKB): Multiple selectable knowledge bases with intelligent routing between knowledge sources
  • Explicit Prompt-Weighting (EPW): Control over retrieved knowledge base weighting in final answer generation
  • FAISS Vector Search: Fast approximate nearest neighbor search using Facebook's FAISS library for efficient retrieval
  • On-the-Fly Knowledge Base Creation: Drag-and-drop documents in GUI to create knowledge bases without manual preprocessing
  • Analysis Tab: Visual debugging showing document retrieval process and query construction for transparency
  • Multiple Document Support: Handles PDFs, text files, DOCX, PPTX, HTML, and other common formats
  • Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks RAG Performance
  • Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content Benchmark Details
  • Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
  • Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
  • Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
  • Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
  • Source verification: Always cites sources so users can verify facts on the spot
Use Cases
  • Industries Served: Financial Services, Telecommunications, High-Tech, Retail, Healthcare, Manufacturing with enterprise-scale needs
  • Internal Knowledge Management: Deep integration with enterprise systems and strong permissioning for internal documentation and knowledge hubs
  • Customer Support: Support hubs with generative answers from knowledge bases, ticket history, and documentation
  • Commerce Sites: E-commerce platforms with product search, recommendations, and AI-powered discovery features
  • Integration Use Cases: Knowledge-centered support, Salesforce data indexing for search, CRM integration, CMS connectivity
  • Team Sizes: Large enterprises with established IT teams to tune and maintain platform; organizations with millions of queries
  • Content Scale: Organizations managing large, distributed content across SharePoint, databases, file shares, Confluence, ServiceNow
  • Air-Gapped Environments: Defense, classified research, and secure facilities requiring complete offline operation without external connectivity
  • Healthcare PHI Compliance: HIPAA-regulated organizations needing 100% data isolation for protected health information
  • RAG Research & Education: Developers learning RAG internals with full visibility into retrieval and generation processes
  • Local Experimentation: Prototype RAG applications locally before committing to cloud infrastructure and subscription costs
  • Data Sovereignty: Organizations with strict data residency requirements preventing cloud storage or processing
  • Zero-Cost RAG: Teams with existing GPU infrastructure wanting to avoid subscription fees for RAG capabilities
  • Custom Model Development: Research teams fine-tuning and testing custom LLMs and embedding models for specific domains
  • Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
  • Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
  • Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
  • Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
  • Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
  • Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
  • Financial services: Product guides, compliance documentation, customer education with GDPR compliance
  • E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
  • SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
  • ISO 27001/27018 Certified: International security and privacy standards compliance for enterprise requirements
  • SOC 2 Certification: Holds SOC 2 certifications demonstrating robust security controls and operational excellence
  • HIPAA-Compatible Deployments: Can run HIPAA-compatible deployments for healthcare organizations with strict compliance needs
  • Granular Access Controls: Ensures users only see content they're authorized to view with permission-aware search
  • SSO/LDAP Integration: Results tailored to each user's permissions via single sign-on and directory service integration
  • Private Cloud/On-Prem: Can run in private cloud or on-premises for organizations with strict data-residency requirements
  • 99.999% Uptime SLA: Regional data-center options with 99.999% uptime guarantee for mission-critical search infrastructure
  • 100% Local Execution: All data and processing stays on-premises with zero external transmission or cloud dependencies
  • No Third-Party APIs: No external API calls to OpenAI, Anthropic, or other cloud LLM providers
  • Complete Data Isolation: Ideal for classified, PHI, PII, or confidential data requiring air-gapped processing
  • No Built-In Authentication: Security implementation is user responsibility in deployment environment
  • Open-Source Auditing: MIT license with full source code transparency for security reviews and compliance validation
  • Self-Managed Security: Organization controls all security layers (network, authentication, encryption, access control)
  • Compliance Flexibility: Can be configured to meet HIPAA, FedRAMP, GDPR, or other regulatory requirements through deployment architecture
  • Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
  • SOC 2 Type II certification: Industry-leading security standards with regular third-party audits Security Certifications
  • GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
  • Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
  • Data isolation: Customer data stays isolated and private - platform never trains on user data
  • Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
  • Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
  • Enterprise Licensing: Sold under enterprise licenses with pricing from $600 to $1,320 depending on configuration
  • Pro Plan: Entry-level plan with core search and RGA features for smaller enterprise deployments
  • Enterprise Plan: Full-featured plan with advanced capabilities, higher query volumes, and premium support
  • Pricing Factors: Based on number of sources, query volume per month, feature set, and integrations selected
  • Annual Contracts: Usually involves annual contracts with volume tiers and optional premium support packages
  • Consumption-Based: Consumption-based pricing model can make costs hard to predict for enterprise-scale implementations
  • Multiple Sites: Can power multiple sites with one Coveo license as long as they're similar use cases
  • Flexible Usage: Never automatically restricts service; work with customer manager to review and determine right usage level
  • Best Value For: Organizations needing unified search across massive content sets with millions of queries beyond simple chatbot tools
  • Completely Free: MIT open-source license with no subscription fees, API charges, or usage limits
  • Infrastructure Costs Only: GPU hardware or cloud compute (AWS/GCP/Azure GPU instances) are the only expenses
  • No Per-Query Charges: Unlimited queries without per-request pricing or rate limits
  • No Vendor Fees: Zero payments to SaaS providers or LLM API vendors (OpenAI, Anthropic, etc.)
  • GPU Requirements: Single GPU sufficient for development; scale hardware based on throughput needs
  • Open-Source Ecosystem: Leverage free Hugging Face models, FAISS library, and PyTorch without licensing costs
  • Best Value For: Teams with existing GPU infrastructure or ability to provision cloud GPU instances economically
  • Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security View Pricing
  • Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
  • Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs Enterprise Solutions
  • 7-Day Free Trial: Full access to Standard features without charges - available to all users
  • Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
  • Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
  • Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
  • Enterprise-Grade Support: Account managers, 24/7 help, and extensive training programs for successful deployment
  • Large Partner Network: Certified integrations and implementation partners through Coveo Connect community
  • Documentation: Enterprise-grade docs with step-by-step guides for pipelines, index management, connector configuration
  • Forums and Community: Coveo Connect community provides docs, forums for peer support and knowledge sharing
  • Regular Updates: Regular product updates and industry events keep customers ahead of search and AI trends
  • Training Programs: Extensive training programs for admin console, Atomic components, and developer integration
  • Response Times: 24/7 enterprise support with guaranteed response times for critical issues
  • GitHub Repository: Open-source at github.com/RCGAI/SimplyRetrieve with code, documentation, and examples
  • Research Paper: Academic publication on arXiv (2308.03983) explaining RCG approach and architecture
  • Community Support: GitHub Issues for bug reports, feature requests, and community troubleshooting
  • Lightweight Documentation: README and docs directory with setup instructions and usage examples
  • No Paid Support: Community-driven support only; no SLAs or enterprise help desk available
  • Code Examples: Example scripts and Jupyter notebooks demonstrating core functionality
  • Academic Background: Built on established libraries (Hugging Face, Gradio, PyTorch, FAISS) with extensive external documentation
  • Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding Developer Docs
  • Email and in-app support: Quick support via email and in-app chat for all users
  • Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
  • Code samples: Cookbooks, step-by-step guides, and examples for every skill level API Documentation
  • Open-source resources: Python SDK (customgpt-client), Postman collections, GitHub integrations Open-Source SDK
  • Active community: User community plus 5,000+ app integrations through Zapier ecosystem
  • Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
  • Developer Involvement Required: Full generative setup usually calls for developer involvement despite admin console
  • Cost Predictability: Consumption-based pricing model makes it hard to predict costs - especially for enterprise-scale implementations
  • Technical Team Needed: Best suited for organizations with established IT team to tune and maintain platform
  • More Complex Than No-Code: More complex than pure no-code chatbot tools requiring technical resources
  • Enterprise Focus: Powerful platform but optimized for enterprises vs. SMBs or startups
  • Learning Curve: Admin console and Atomic components require learning despite being developer-friendly
  • NOT Ideal For: Small businesses without IT resources, organizations wanting simple plug-and-play chatbot solutions, teams needing immediate deployment without technical configuration
  • Developer-Only Tool: Requires Python expertise, GPU knowledge, and technical setup—not suitable for non-technical users
  • GPU Infrastructure Required: Needs dedicated GPU hardware or cloud GPU instances with associated costs and management overhead
  • Basic UI: Gradio interface is functional but not polished—requires custom front-end development for production use
  • Limited Scalability: Scaling requires manual infrastructure management and load balancing vs auto-scaling cloud platforms
  • No Enterprise Features: Missing multi-tenancy, user management, advanced analytics, and production-grade monitoring
  • Slower Inference: Open-source models on single GPU (few to 10+ seconds per reply) vs sub-second cloud API responses
  • Manual Knowledge Base Updates: No automatic web crawling, syncing, or scheduled reindexing capabilities
  • No Pre-Built Integrations: Requires custom development to integrate with Slack, websites, or support platforms
  • Limited Context Memory: Primarily single-turn Q&A with minimal conversation history retention
  • Maintenance Burden: User responsible for updates, model management, troubleshooting, and infrastructure maintenance
  • Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
  • Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
  • Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
  • Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
  • Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
  • Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
  • Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
  • Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
  • Agentic AI Integration (2024-2025): Brings essential relevance to GenAI and Agentic AI with Coveo for Agentforce, expanded API suite, Agentic AI Design Partner Program
  • Relevance-Augmented Retrieval: Advanced hybrid retrieval and AI ranking vs basic vector databases - enterprises need this for AI, GenAI, and Agentic AI projects
  • API Suite for Agents: Search API (retrieve document links), Passage Retrieval API (grounding agents in contextually relevant enterprise information), Answer API (direct answers from Coveo RGA)
  • Coveo for Agentforce: Native integration with Salesforce Agentforce for customer service, sales, marketing agents with enterprise search capabilities
  • AWS Agentic AI Services: RAG-as-a-Service for AWS through Coveo-hosted MCP Server (December 2024) for Amazon Bedrock AgentCore, Amazon Bedrock Agents, Amazon Quick Suite
  • Four Configurable Tools: Passage Retrieval (grounding LLM prompts), Answer generation (powered by Amazon Nova), Search (ranked results), Fetch (complete document text for complex reasoning)
  • Security-First Design: Inherits document-level and item-level permissions automatically delivering trusted, secure, accurate answers grounded in all enterprise knowledge
  • Answer Optimization: Ground agents and optimize answers with retrieval steering, reasoning effort, and answer synthesis capabilities
  • Query Planning: Leverage knowledge bases and AI models for retrieval steering, query planning and decomposition, reranking, and answer synthesis
  • Early Access Program: Invitation-only early access for developers wanting to accelerate GenAI or AI Agents projects (December 2024)
  • Retrieval-Centric Generation (RCG): Research-backed approach separating LLM reasoning capabilities from knowledge memorization—more efficient than traditional RAG architectures
  • Retrieval Tuning Module: Developer-focused transparency layer showing which documents were retrieved, how queries were constructed, and how answers were generated
  • Knowledge Base Mixing (MoKB): Route queries across multiple selectable knowledge bases with intelligent source selection and weighting
  • Explicit Prompt Weighting (EPW): Fine-grained control over retrieved knowledge base influence in final answer generation
  • Single-Turn Q&A Focus: Primarily designed for single-turn question answering—limited multi-turn conversation and context memory
  • Analysis Tab Transparency: Visual debugging interface showing document retrieval process and query construction for answer inspection
  • Local Agent Execution: All agent processing happens on-premises with zero external API calls—complete control over agent behavior and data
  • LIMITATION - No Chatbot UI: Gradio interface for developers only—no polished conversational interface for end users or production deployment
  • LIMITATION - No Lead Capture: No built-in lead generation, email collection, or CRM integration capabilities—manual implementation required
  • LIMITATION - No Human Handoff: No escalation workflows, live agent transfer, or fallback mechanisms for complex queries—developer must build these features
  • LIMITATION - No Multi-Channel Support: No native integrations with Slack, Teams, WhatsApp, or website widgets—requires custom wrapper development
  • LIMITATION - No Session Management: Stateless interactions without conversation history tracking or multi-turn context retention
  • Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
  • Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
  • Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
  • Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions View Agent Documentation
  • Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
  • Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
  • Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
R A G-as-a- Service Assessment
  • Platform Type: ENTERPRISE SEARCH PLATFORM WITH RAG-AS-A-SERVICE - AI-powered search and discovery with Relevance Generative Answering capabilities
  • RAG-as-a-Service Launch: Announced Retrieval Augmented Generation (RAG)-as-a-Service for AWS agentic AI services December 1, 2024 as cloud-native offering
  • Relevance-Augmented Retrieval: Coveo's approach emphasizing need to rapidly pinpoint contextually relevant insights from vast amounts of structured and unstructured data
  • 40% Accuracy Improvement: Studies demonstrate RAG can increase base model accuracy by 40% according to industry analysis
  • Hybrid Search Foundation: Combines keyword (full-text), vector, and hybrid search with sophisticated relevance tuning for improved retrieval performance
  • Relevance Generative Answering (RGA): Two-step retrieval plus LLM flow producing concise, source-cited answers grounded in enterprise content
  • Permission-Aware Retrieval: Respects permissions showing each user only content they're authorized to see with SSO/LDAP integration
  • Incremental Crawls: Keeps index fresh with incremental crawls, push APIs, scheduled syncs - new or updated content shows up fast
  • Enterprise-Grade Connectors: Mature connectors to 100+ sources (SharePoint, Salesforce, ServiceNow, Confluence, databases, file shares, Slack)
  • Reranking + Smart Prompts: Reranking plus smart prompts keep hallucinations low and citations precise for enterprise reliability
  • Scalable Architecture: Built on scalable architecture handling heavy query loads and massive content sets with 99.999% uptime
  • MCP Server Integration: Coveo-hosted MCP Server designed to bring more precision, security, and scalability to enterprise generative AI
  • Enterprise Assessment Focus: Typically adopted by organizations seeking to unify content and improve digital interactions with comprehensive search and RAG infrastructure
  • Best For: Enterprises managing large, distributed content across multiple systems requiring permission-aware search, unified knowledge hubs, and generative answers
  • Platform Type: NOT A RAG-AS-A-SERVICE PLATFORM - Open-source academic research project for local Retrieval-Centric Generation experimentation and learning
  • Core Mission: Provide localized, lightweight, user-friendly interface to Retrieval-Centric Generation (RCG) approach for machine learning community exploration and research
  • Academic Foundation: Published research tool from RCGAI with arXiv paper (2308.03983) explaining RCG methodology and architectural design decisions
  • Target Market: Researchers, developers, and organizations experimenting with RAG locally without cloud dependencies—NOT commercial service users
  • Self-Hosted Infrastructure: MIT-licensed tool requiring user-managed GPU hardware or cloud compute—no managed infrastructure, APIs, or service-level agreements
  • Developer-First Design: Python-based with Gradio GUI and script execution—intended for technical users comfortable with GPU infrastructure and model management
  • RAG Implementation: Retrieval-Centric Generation (RCG) philosophy emphasizing retrieval over memorization—FAISS vector search with open-source LLMs (WizardVicuna-13B default, any Hugging Face model supported)
  • API Availability: NO formal REST API or SDKs—interaction via Python scripts and local Gradio interface requiring subprocess calls or custom wrappers
  • Data Privacy Advantage: 100% local execution with zero external transmission—ideal for classified, PHI, PII, or confidential data requiring air-gapped processing
  • Pricing Model: Completely free (MIT license) with no subscription fees—only cost is GPU hardware or cloud compute infrastructure
  • Support Model: Community-driven GitHub Issues and lightweight documentation—no paid support, SLAs, or customer success teams
  • LIMITATION vs Managed Services: NO managed infrastructure, automatic scaling, production-grade monitoring, enterprise security controls, or commercial support—users responsible for all operational aspects
  • LIMITATION - No Service Features: NO authentication systems, multi-tenancy, user management, analytics dashboards, or SaaS conveniences—pure research/development tool
  • Comparison Validity: Architectural comparison to commercial RAG-as-a-Service platforms like CustomGPT.ai is MISLEADING—SimplyRetrieve is open-source research tool for on-premises experimentation, not production service
  • Use Case Fit: Perfect for offline/air-gapped RAG research, developers learning RAG internals with full transparency, organizations with strict data isolation requirements (defense, healthcare PHI compliance), and teams wanting zero cloud costs with existing GPU infrastructure
  • Platform Type: TRUE RAG-AS-A-SERVICE PLATFORM - all-in-one managed solution combining developer APIs with no-code deployment capabilities
  • Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
  • API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat API Documentation
  • Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
  • No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
  • Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
  • RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses Benchmark Details
  • Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
  • Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
  • Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
  • Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds

Ready to experience the CustomGPT difference?

Start Free Trial →

Final Thoughts

Final Verdict: Coveo vs SimplyRetrieve

After analyzing features, pricing, performance, and user feedback, both Coveo and SimplyRetrieve are capable platforms that serve different market segments and use cases effectively.

When to Choose Coveo

  • You value comprehensive enterprise search capabilities
  • Strong e-commerce and B2B features
  • Deep Salesforce integration

Best For: Comprehensive enterprise search capabilities

When to Choose SimplyRetrieve

  • You value completely free and open source
  • Strong privacy focus - fully localized
  • Lightweight - runs on single GPU

Best For: Completely free and open source

Migration & Switching Considerations

Switching between Coveo and SimplyRetrieve requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.

Pricing Comparison Summary

Coveo starts at custom pricing, while SimplyRetrieve begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.

Our Recommendation Process

  1. Start with a free trial - Both platforms offer trial periods to test with your actual data
  2. Define success metrics - Response accuracy, latency, user satisfaction, cost per query
  3. Test with real use cases - Don't rely on generic demos; use your production data
  4. Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
  5. Check vendor stability - Review roadmap transparency, update frequency, and support quality

For most organizations, the decision between Coveo and SimplyRetrieve comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.

📚 Next Steps

Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.

  • Review: Check the detailed feature comparison table above
  • Test: Sign up for free trials and test with real queries
  • Calculate: Estimate your monthly costs based on expected usage
  • Decide: Choose the platform that best aligns with your requirements

Last updated: December 9, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.

Ready to Get Started with CustomGPT?

Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.

Why Choose CustomGPT?

97% Accuracy

Industry-leading benchmarks

5-Min Setup

Get started instantly

24/7 Support

Expert help when you need it

Enterprise Ready

Scale with confidence

Trusted by leading companies worldwide

Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us

Join the Discussion

Loading comments...

Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.

Watch: Understanding AI Tool Comparisons