Deepset vs Vertex AI

Make an informed decision with our comprehensive comparison. Discover which RAG solution perfectly fits your needs.

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT.ai

Fact checked and reviewed by Bill Cava

Published: 01.04.2025Updated: 25.04.2025

In this comprehensive guide, we compare Deepset and Vertex AI across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.

Overview

When choosing between Deepset and Vertex AI, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.

Quick Decision Guide

  • Choose Deepset if: you value mature open-source framework (since 2020)
  • Choose Vertex AI if: you value industry-leading 2m token context window with gemini models

About Deepset

Deepset Landing Page Screenshot

Deepset is open-source framework and enterprise platform for llm orchestration. Deepset is the creator of Haystack, the leading open-source framework for building production-ready LLM applications, and offers an enterprise AI platform for developing and deploying custom AI agents and applications. Founded in 2018, headquartered in Berlin, Germany, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
83/100
Starting Price
Custom

About Vertex AI

Vertex AI Landing Page Screenshot

Vertex AI is google's unified ml platform with gemini models and automl. Vertex AI is Google Cloud's comprehensive machine learning platform that unifies data engineering, data science, and ML engineering workflows. It offers state-of-the-art Gemini models with industry-leading context windows up to 2 million tokens, AutoML capabilities, and enterprise-grade infrastructure for building, deploying, and scaling AI applications. Founded in 2008, headquartered in Mountain View, CA, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
88/100
Starting Price
Custom

Key Differences at a Glance

In terms of user ratings, both platforms score similarly in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: AI Development Platform versus AI Chatbot. These differences make each platform better suited for specific use cases and organizational requirements.

⚠️ What This Comparison Covers

We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.

Detailed Feature Comparison

logo of deepset
Deepset
logo of vertexai
Vertex AI
logo of customGPT logo
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
  • Gives developers a flexible framework to wire up connectors and process nearly any file type or data source with libraries like Unstructured.
  • Lets you push content into vector stores such as OpenSearch, Pinecone, Weaviate, or Snowflake—pick the backend that fits best. Learn more
  • Setup is hands-on, but the payoff is deep, domain-specific customization of your ingestion pipelines.
  • Pulls in both structured and unstructured data straight from Google Cloud Storage, handling files like PDF, HTML, and CSV (Vertex AI Search Overview).
  • Taps into Google’s own web-crawling muscle to fold relevant public website content into your index with minimal fuss (Towards AI Vertex AI Search).
  • Keeps everything current with continuous ingestion and auto-indexing, so your knowledge base never falls out of date.
  • Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
  • Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
  • Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text. View Transcription Guide
  • Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier. See Zapier Connectors
  • Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
  • API-first approach—drop the RAG system into your own app through REST endpoints or the Haystack SDK.
  • Shareable pipeline prototypes are great for demos, but production channels (Slack bots, web chat, etc.) need a bit of custom code. See prototype feature
  • Ships solid REST APIs and client libraries for weaving Vertex AI into web apps, mobile apps, or enterprise portals (Google Cloud Vertex AI API Docs).
  • Plays nicely with other Google Cloud staples—BigQuery, Dataflow, and more—and even supports low-code connectors via Logic Apps and PowerApps (Google Cloud Connectors).
  • Lets you deploy conversational agents wherever you need them, whether that’s a bespoke front-end or an embedded widget.
  • Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
  • Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more. Explore API Integrations
  • Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
  • Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
  • Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc. Read more here.
  • Supports OpenAI API Endpoint compatibility. Read more here.
Core Chatbot Features
  • Builds RAG agents as modular pipelines—retriever + reader, plus optional rerankers or multi-step logic.
  • Multi-turn chat? Source attributions? Fine-grained retrieval tweaks? All possible with the right config. Pipeline overview
  • Advanced users can layer in tool use and external API calls for richer agent behavior.
  • Pairs Vertex AI Search with Vertex AI Conversation to craft answers grounded in your indexed data (Google Developers Blog Vertex AI RAG).
  • Draws on Google’s PaLM 2 or Gemini models for rich, context-aware responses.
  • Handles multi-turn dialogue and keeps track of context so chats stay coherent.
  • Reduces hallucinations by grounding replies in your data and adding source citations for transparency. Benchmark Details
  • Handles multi-turn, context-aware chats with persistent history and solid conversation management.
  • Speaks 90+ languages, making global rollouts straightforward.
  • Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Customization & Branding
  • No drag-and-drop theming here—you’ll craft your own front end if you need branded UI.
  • That also means full freedom to shape the visuals and conversational tone any way you like. Custom components
  • Lets you tweak UI elements in the Cloud console so your chatbot matches your brand style.
  • Includes settings for custom themes, logos, and domain restrictions when you embed search or chat (Google Cloud Console).
  • Makes it easy to keep branding consistent by tying into your existing design system.
  • Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand. White-label Options
  • Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
  • Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
  • Uses domain allowlisting to ensure the chatbot appears only on approved sites.
L L M Model Options
  • Model-agnostic: plug in GPT-4, Llama 2, Claude, Cohere, and more—whatever works for you.
  • Switch models or embeddings through the “Connections” UI with just a few clicks. View supported models
  • Connects to Google’s own generative models—PaLM 2, Gemini—and can call external LLMs via API if you prefer (Google Cloud Vertex AI Models).
  • Lets you pick models based on your balance of cost, speed, and quality.
  • Supports prompt-template tweaks so you can steer tone, format, and citation rules.
  • Taps into top models—OpenAI’s GPT-4, GPT-3.5 Turbo, and even Anthropic’s Claude for enterprise needs.
  • Automatically balances cost and performance by picking the right model for each request. Model Selection Details
  • Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
  • Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Developer Experience ( A P I & S D Ks)
  • Comprehensive REST API plus the open-source Haystack SDK for building, running, and querying pipelines.
  • Deepset Studio’s visual editor lets you drag-and-drop components, then export YAML for version control. Studio overview
  • Offers full REST APIs plus client libraries for Python, Java, JavaScript, and more (Google Cloud Vertex AI SDK).
  • Backs you up with rich docs, sample notebooks, and quick-start guides.
  • Uses Google Cloud IAM for secure API calls and supports CLI tooling for local dev work.
  • Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat. API Documentation
  • Offers open-source SDKs—like the Python customgpt-client—plus Postman collections to speed integration. Open-Source SDK
  • Backs you up with cookbooks, code samples, and step-by-step guides for every skill level.
Performance & Accuracy
  • Tune for max accuracy with multi-step retrieval, hybrid search, and custom rerankers.
  • Mix and match components to hit your latency targets—even at large scale. Benchmark insights
  • Serves answers in milliseconds thanks to Google’s global infrastructure (Google Cloud Vertex AI RAG).
  • Combines semantic and keyword search for strong retrieval accuracy.
  • Adds advanced reranking to cut hallucinations and keep facts straight.
  • Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
  • Independent tests rate median answer accuracy at 5/5—outpacing many alternatives. Benchmark Results
  • Always cites sources so users can verify facts on the spot.
  • Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
Customization & Flexibility ( Behavior & Knowledge)
  • Build anything: multi-hop retrieval, custom logic, bespoke prompts—your pipeline, your rules.
  • Create multiple datastores, add role-based filters, or pipe in external APIs as extra tools. Component templates
  • Gives fine-grained control over indexing—set chunk sizes, metadata tags, and more to shape retrieval (Google Cloud Vertex AI Search).
  • Lets you adjust generation knobs (temperature, max tokens) and craft prompt templates for domain-specific flair.
  • Can slot in custom cognitive skills or open-source models when you need specialized processing.
  • Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
  • Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus. Learn How to Update Sources
  • Supports multiple agents per account, so different teams can have their own bots.
  • Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Pricing & Scalability
  • Start free in Deepset Studio, then move to usage-based Enterprise plans as you scale.
  • Deploy in cloud, hybrid, or on-prem setups to handle huge corpora and heavy traffic. Pricing overview
  • Uses pay-as-you-go pricing—charges for storage, query volume, and model compute—with a free tier to experiment (Google Cloud Pricing).
  • Scales effortlessly on Google’s global backbone, with autoscaling baked in.
  • Add partitions or replicas as traffic grows to keep performance rock-solid.
  • Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
  • Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates. View Pricing
  • Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
  • SOC 2 Type II, ISO 27001, GDPR, HIPAA—you’re covered for enterprise compliance.
  • Choose cloud, VPC, or on-prem to keep data exactly where you need it. Security compliance
  • Builds on Google Cloud’s security stack—encryption in transit and at rest, plus fine-grained IAM (Google Cloud Compliance).
  • Holds a long list of certifications (SOC, ISO, HIPAA, GDPR) and supports customer-managed encryption keys.
  • Offers options like Private Link and detailed audit logs to satisfy strict enterprise requirements.
  • Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
  • Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private. Security Certifications
  • Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Observability & Monitoring
  • Deepset Studio dashboard shows latency, error rates, resource use—everything you’d expect.
  • Detailed logs integrate with Prometheus, Splunk, and more for deep observability. Monitoring features
  • Hooks into Google Cloud Operations Suite for real-time monitoring, logging, and alerting (Google Cloud Monitoring).
  • Includes dashboards for query latency, index health, and resource usage, plus APIs for custom analytics.
  • Lets you export logs and metrics to meet compliance or deep-dive analysis needs.
  • Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
  • Lets you export logs and metrics via API to plug into third-party monitoring or BI tools. Analytics API
  • Provides detailed insights for troubleshooting and ongoing optimization.
Support & Ecosystem
  • Lean on the Haystack open-source community (Discord, GitHub) or paid enterprise support. Community insights
  • Wide ecosystem of vector DBs, model providers, and ML tools means plenty of plug-ins and extensions.
  • Backed by Google’s enterprise support programs and detailed docs across the Cloud platform (Google Cloud Support).
  • Provides community forums, sample projects, and training via Google Cloud’s dev channels.
  • Benefits from a robust ecosystem of partners and ready-made integrations inside GCP.
  • Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast. Developer Docs
  • Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs. Enterprise Solutions
  • Benefits from an active user community plus integrations through Zapier and GitHub resources.
Additional Considerations
  • Perfect for teams that need heavily customized, domain-specific RAG solutions.
  • Full control and future portability—but expect a steeper learning curve and more dev effort. More details
  • Packs hybrid search and reranking that return a factual-consistency score with every answer.
  • Supports public cloud, VPC, or on-prem deployments if you have strict data-residency rules.
  • Gets regular updates as Google pours R&D into RAG and generative AI capabilities.
  • Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
  • Gets you to value quickly: launch a functional AI assistant in minutes.
  • Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
  • Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No- Code Interface & Usability
  • Deepset Studio offers low-code drag-and-drop, yet it's still aimed at developers and ML engineers.
  • Non-tech users may need help, and production UIs will be custom-built.
  • Offers a Cloud console to manage indexes and search settings, though there's no full drag-and-drop chatbot builder yet.
  • Low-code connectors (PowerApps, Logic Apps) make basic integrations straightforward for non-devs.
  • The overall experience is solid, but deeper customization still calls for some technical know-how.
  • Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
  • Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing. User Experience Review
  • Uses role-based access so business users and devs can collaborate smoothly.
Competitive Positioning
  • Market position: Developer-first RAG framework (Haystack) with enterprise cloud offering (Deepset Cloud) for heavily customized, domain-specific RAG solutions
  • Target customers: ML engineers and development teams needing deep RAG customization, enterprises requiring domain-specific solutions with modular pipeline architecture, and organizations wanting future portability with open-source foundation
  • Key competitors: LangChain/LangSmith, Contextual.ai, Dataworkz, Vectara.ai, and custom implementations using Pinecone/Weaviate
  • Competitive advantages: Open-source Haystack framework for full portability, model-agnostic with easy model switching via Connections UI, Deepset Studio visual pipeline editor with YAML export for version control, modular components (retriever, reader, reranker) for maximum flexibility, wide ecosystem of vector DB integrations (OpenSearch, Pinecone, Weaviate, Snowflake), and SOC 2/ISO 27001/GDPR/HIPAA compliance with cloud/VPC/on-prem deployment
  • Pricing advantage: Free Deepset Studio for development, then usage-based Enterprise plans; competitive for teams wanting deep customization without vendor lock-in; best value comes from open-source foundation enabling future migration if needed
  • Use case fit: Perfect for teams needing heavily customized, domain-specific RAG with multi-hop retrieval and custom rerankers, organizations requiring modular pipeline architecture for complex workflows, and ML engineers wanting developer-friendly APIs with future portability through open-source Haystack foundation
  • Market position: Enterprise-grade Google Cloud AI platform combining Vertex AI Search with Conversation for production-ready RAG, deeply integrated with GCP ecosystem
  • Target customers: Organizations already invested in Google Cloud infrastructure, enterprises requiring PaLM 2/Gemini models with Google's search capabilities, and companies needing global scalability with multi-region deployment and GCP service integration
  • Key competitors: Azure AI Search, AWS Bedrock, OpenAI Enterprise, Coveo, and custom RAG implementations
  • Competitive advantages: Native Google PaLM 2/Gemini models with external LLM support, Google's web-crawling infrastructure for public content ingestion, seamless GCP integration (BigQuery, Dataflow, Cloud Functions), hybrid search with advanced reranking, SOC/ISO/HIPAA/GDPR compliance with customer-managed keys, global infrastructure for millisecond responses worldwide, and Google Cloud Operations Suite for comprehensive monitoring
  • Pricing advantage: Pay-as-you-go with free tier for development; competitive for GCP customers leveraging existing enterprise agreements and volume discounts; autoscaling prevents overprovisioning; best value for organizations with GCP infrastructure wanting unified billing and managed services
  • Use case fit: Best for organizations already using GCP infrastructure (BigQuery, Cloud Functions), enterprises needing Google's proprietary models (PaLM 2, Gemini) with web-crawling capabilities, and companies requiring global scalability with multi-region deployment and tight integration with GCP analytics and data pipelines
  • Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
  • Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
  • Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
  • Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
  • Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
  • Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
  • Model-agnostic architecture: Supports GPT-4, GPT-3.5, Claude (Anthropic), Llama 2, Cohere, and 80+ model providers through unified interface
  • Easy model switching: Change models via Connections UI with just a few clicks without code changes
  • Embedding models: OpenAI, Cohere, Sentence Transformers, and custom embedding models supported
  • Multiple LLMs per pipeline: Use different models for different pipeline components (retrieval vs generation)
  • Custom model fine-tuning: Fine-tune on proprietary data for domain-specific terminology and accuracy
  • Baseline models available: Pre-configured with common models for quick prototyping
  • Google proprietary models: PaLM 2 (Pathways Language Model) and Gemini 2.0/2.5 family (Pro, Flash variants) optimized for enterprise workloads
  • Gemini 2.5 Pro: $1.25-$2.50 per million input tokens, $10-$15 per million output tokens for advanced reasoning and multimodal understanding
  • Gemini 2.5 Flash: $0.30 per million input tokens, $2.50 per million output tokens for cost-effective high-speed inference
  • Gemini 2.0 Flash: $0.15 per million input tokens, $0.60 per million output tokens for ultra-low-cost deployment
  • External LLM support: Can call external LLMs via API if preferring non-Google models for specific use cases
  • Model selection flexibility: Choose models based on balance of cost, speed, and quality requirements per use case
  • Prompt template customization: Configure tone, format, and citation rules through prompt engineering
  • Temperature and token controls: Adjust generation parameters (temperature, max tokens) for domain-specific response characteristics
  • Primary models: GPT-4, GPT-3.5 Turbo from OpenAI, and Anthropic's Claude for enterprise needs
  • Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request Model Selection Details
  • Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
  • Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
  • Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
  • Advanced RAG architecture: Multi-step retrieval, hybrid search (semantic + keyword), and custom rerankers for maximum accuracy
  • Modular pipeline design: Flexible retriever + reader + optional reranker components for customized workflows
  • Multi-hop retrieval: Chain multiple retrieval steps for complex queries requiring deep context
  • Vector database flexibility: OpenSearch, Pinecone, Weaviate, Snowflake, Qdrant, and more - choose your preferred backend
  • Benchmark-proven performance: Published performance metrics on MTEB and domain-specific benchmarks
  • Source attribution: Full citation tracking with document references and confidence scores
  • Haystack framework: Open-source foundation enables complete RAG customization and future portability
  • Hybrid search: Combines semantic vector search with keyword (BM25) matching for strong retrieval accuracy across query types
  • Advanced reranking: Multi-stage reranking pipeline cuts hallucinations and ensures factual consistency in generated responses
  • Google web-crawling: Taps into Google's web-crawling infrastructure to ingest relevant public website content into indexes automatically
  • Continuous ingestion: Keeps knowledge base current with automatic indexing and auto-refresh preventing stale data
  • Fine-grained indexing control: Set chunk sizes, metadata tags, and retrieval parameters to shape semantic search behavior
  • Semantic/lexical weighting: Adjust balance between semantic and keyword search per query type for optimal retrieval
  • Structured/unstructured data: Handles both structured data (BigQuery, Cloud SQL) and unstructured documents (PDF, HTML, CSV) from Google Cloud Storage
  • Factual consistency scoring: Hybrid search + reranking returns factual-consistency score with every answer for reliability assessment
  • Custom cognitive skills: Slot in custom processing or open-source models for specialized domain requirements
  • Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks RAG Performance
  • Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content Benchmark Details
  • Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
  • Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
  • Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
  • Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
  • Source verification: Always cites sources so users can verify facts on the spot
Use Cases
  • Domain-specific Q&A: Enterprise knowledge bases with specialized terminology requiring fine-tuned models
  • Research and analysis: Multi-hop retrieval for complex research questions across large document corpora
  • Technical documentation: Developer-focused RAG for code documentation, API references, and technical guides
  • Compliance and legal: HIPAA/GDPR-compliant RAG systems for regulated industries requiring on-prem deployment
  • Custom AI agents: Build specialized agents with external API calls, tool use, and multi-step reasoning
  • Enterprise search: Large-scale search across millions of documents with hybrid retrieval and reranking
  • Future-proof AI: Migrate between LLM providers, vector databases, and hosting options without vendor lock-in
  • GCP-native organizations: Perfect for companies already using BigQuery, Cloud Functions, Dataflow wanting unified AI infrastructure
  • Global enterprise deployments: Multi-region deployment with Google's global infrastructure for millisecond responses worldwide
  • Public content ingestion: Leverage Google's web-crawling muscle to automatically fold relevant public web content into knowledge bases
  • Multimodal understanding: Gemini models process and reason over text, images, videos, and code for rich content analysis
  • Google Workspace integration: Seamless integration with Gmail, Docs, Sheets for content-heavy workflows within Workspace ecosystem
  • BigQuery analytics integration: Tight coupling with BigQuery for analytics on conversation data, user behavior, and system performance
  • Enterprise conversational AI: Build customer service bots, internal knowledge assistants, and autonomous agents grounded in company data
  • Regulated industries: Healthcare, finance, government with SOC/ISO/HIPAA/GDPR compliance and customer-managed encryption keys
  • Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
  • Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
  • Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
  • Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
  • Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
  • Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
  • Financial services: Product guides, compliance documentation, customer education with GDPR compliance
  • E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
  • SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
  • SOC 2 Type II certification: Annual audits ensuring enterprise security standards
  • ISO 27001 certification: International information security management compliance
  • GDPR compliance: European data protection regulation adherence with data sovereignty options
  • HIPAA compliance: Healthcare data protection standards for sensitive medical information
  • Flexible deployment: Cloud, hybrid, VPC, or on-premises deployment for complete data control
  • Data residency options: Choose where data is stored and processed (US, EU, on-prem)
  • No model training on customer data: Customer data never used to train third-party models
  • Audit trails: Comprehensive logging of all queries, retrievals, and system access
  • Google Cloud security stack: Encryption in transit (TLS 1.3) and at rest (AES-256) with fine-grained IAM for access control
  • SOC 2/SOC 3 certified: Comprehensive security controls audited demonstrating enterprise-grade operational security
  • ISO 27001/27017/27018 certified: International information security management standards for cloud services and data protection
  • HIPAA compliant: Healthcare data handling with Business Associate Agreements (BAA) for protected health information (PHI)
  • GDPR compliant: EU General Data Protection Regulation compliance with data subject rights and EU data residency options
  • Customer-managed encryption keys (CMEK): Bring your own encryption keys for full cryptographic control over data
  • Private Link: Private network connectivity between on-premise infrastructure and GCP for network isolation
  • Detailed audit logs: Cloud Audit Logs track all API calls, resource access, and configuration changes for compliance
  • VPC and on-prem deployment: Deploy in public cloud, Virtual Private Cloud (VPC), or on-premise for strict data-residency rules
  • Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
  • SOC 2 Type II certification: Industry-leading security standards with regular third-party audits Security Certifications
  • GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
  • Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
  • Data isolation: Customer data stays isolated and private - platform never trains on user data
  • Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
  • Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
  • Deepset Studio (Free): Development environment with unlimited files and core features for prototyping
  • Enterprise pricing: Custom usage-based pricing based on queries, documents indexed, and compute resources
  • Deployment options pricing: Cloud (managed SaaS), hybrid, or on-premises with separate pricing tiers
  • No per-seat charges: Usage-based model scales with actual platform usage, not team size
  • Professional services: Optional consulting, integration support, and custom pipeline development available
  • Scaling flexibility: Enterprise plans handle huge corpora (millions of documents) and heavy traffic loads
  • Open-source advantage: Haystack framework free forever - only pay for managed cloud services if needed
  • Pay-as-you-go: Charges for storage, query volume, and model compute with no upfront commitments or minimum spend
  • Free tier: New customers get up to $300 in free credits to experiment with Vertex AI and other Google Cloud products
  • Gemini 2.5 Pro: $1.25-$2.50/M input tokens, $10-$15/M output tokens (context-dependent) for advanced reasoning
  • Gemini 2.5 Flash: $0.30/M input tokens, $2.50/M output tokens for cost-effective high-speed inference
  • Gemini 2.0 Flash: $0.15/M input tokens, $0.60/M output tokens for ultra-low-cost deployment at scale
  • Imagen pricing: $0.0001 per image for specific endpoints enabling visual content generation
  • Autoscaling: Scales effortlessly on Google's global backbone with automatic resource adjustment preventing overprovisioning
  • Enterprise agreements: Volume discounts and committed use discounts for GCP customers with existing enterprise agreements
  • Unified billing: Single GCP bill for Vertex AI, BigQuery, Cloud Functions, and all Google Cloud services
  • Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security View Pricing
  • Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
  • Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs Enterprise Solutions
  • 7-Day Free Trial: Full access to Standard features without charges - available to all users
  • Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
  • Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
  • Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
  • Haystack community: Active Discord server and GitHub community (14,000+ stars) with responsive maintainers
  • Enterprise support tiers: Email, Slack Connect channels, and dedicated support engineers for paid customers
  • Comprehensive documentation: docs.cloud.deepset.ai with tutorials, API references, and integration guides
  • Video tutorials: YouTube channel with pipeline building guides and best practices
  • GitHub examples: Open-source example projects and starter templates for common use cases
  • Integration ecosystem: Wide community of vector DB providers, model vendors, and tool developers
  • Professional services: Custom development, architecture consulting, and hands-on implementation support available
  • Google Cloud enterprise support: Multiple support tiers (Basic, Standard, Enhanced, Premium) with SLAs and dedicated technical account managers
  • 24/7 global support: Premium support includes 24/7 phone, email, and chat with 15-minute response time for P1 issues
  • Comprehensive documentation: Detailed guides at cloud.google.com/vertex-ai/docs covering APIs, SDKs, best practices, and tutorials
  • Community forums: Google Cloud Community for peer support, knowledge sharing, and best practice discussions
  • Sample projects and notebooks: Pre-built examples, Jupyter notebooks, and quick-start guides on GitHub for rapid integration
  • Training and certification: Google Cloud training programs, hands-on labs, and certification paths for Vertex AI and machine learning
  • Partner ecosystem: Robust ecosystem of Google Cloud partners offering consulting, implementation, and managed services
  • Regular updates: Continuous R&D investment from Google pouring resources into RAG and generative AI capabilities
  • Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding Developer Docs
  • Email and in-app support: Quick support via email and in-app chat for all users
  • Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
  • Code samples: Cookbooks, step-by-step guides, and examples for every skill level API Documentation
  • Open-source resources: Python SDK (customgpt-client), Postman collections, GitHub integrations Open-Source SDK
  • Active community: User community plus 5,000+ app integrations through Zapier ecosystem
  • Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
  • Steeper learning curve: Developer-first platform requires ML/engineering skills - not ideal for non-technical users
  • Custom UI required: No drag-and-drop chat widget - must build production interfaces from scratch
  • Hands-on setup: More initial configuration effort compared to plug-and-play SaaS platforms
  • Deepset Studio limitations: Visual editor still aimed at technical users - requires understanding of RAG concepts
  • Production readiness: Moving from Studio prototype to production deployment requires additional DevOps work
  • Enterprise costs: Usage-based pricing can become expensive at high query volumes without careful optimization
  • Best for technical teams: Maximum value requires ML engineers and developers - not suited for business users seeking no-code solutions
  • Integration effort: Native integrations like Slack bots require custom code vs turnkey options from competitors
  • GCP ecosystem dependency: Strongest value for organizations already using Google Cloud - less compelling for AWS/Azure-native companies
  • No full drag-and-drop chatbot builder: Cloud console manages indexes and search settings, but not a complete no-code GUI like Tidio or WonderChat
  • Learning curve for non-GCP users: Teams unfamiliar with Google Cloud face steeper learning curve vs platform-agnostic alternatives
  • Model selection limited to Google: PaLM 2 and Gemini family only - no native Claude, GPT-4, or Llama support compared to multi-model platforms
  • Requires technical expertise: Deeper customization calls for developer skills - not suitable for non-technical teams without GCP experience
  • Pricing complexity: Pay-as-you-go model requires careful monitoring to prevent unexpected costs at scale
  • Overkill for simple use cases: Enterprise RAG capabilities and GCP integration unnecessary for basic FAQ bots or simple customer service
  • Vendor lock-in considerations: Deep GCP integration creates switching costs if migrating to alternative cloud providers in future
  • Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
  • Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
  • Model selection: Limited to OpenAI (GPT-4, GPT-3.5) and Anthropic (Claude) - no support for other LLM providers (Cohere, AI21, open-source models)
  • Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
  • Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
  • Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
  • Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
  • Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
  • AI Agents with Haystack: Build LLM-powered autonomous agents that can reason, reflect, and act using tools, data, and critical introspection into their own decision-making processes Building Agents
  • Spectrum Approach: Combines structured workflows with autonomous capabilities - AI systems exist on a spectrum between linearity and autonomy based on decision-making capability needs Agentic Spectrum
  • Planning Mechanisms: Agents break tasks into steps using chain-of-thought or tree-of-thought planning, enabling complex multi-step reasoning and execution
  • Dynamic Routing: LLMs serve as "brains" of decision systems, using reasoning capabilities to evaluate and choose among multiple tools, courses of action, databases, and resources based on context and goals
  • Reflection & Self-Correction: Agents analyze intermediate results through reflection mechanisms, improving accuracy and adapting strategies based on outcomes
  • Tool Integration: Modular pipeline design allows agents to use retriever, reader, reranker components, external API calls, and custom tools for richer autonomous behavior
  • Agentic RAG Enhancement: Build agentic RAG pipelines in Deepset Studio that combine graphs, agentic properties, multimodal capabilities, and innovations to significantly reduce inaccurate or misleading information Agentic RAG Guide
  • Custom Workflows: Create anything from multi-hop retrieval to custom logic to bespoke prompts - modular components enable building specialized agents for domain-specific autonomous workflows
  • Vertex AI Agent Engine: Build autonomous agents with short-term and long-term memory for managing sessions and recalling past conversations and preferences
  • Agent Builder (April 2024): Visual drag-and-drop interface to create AI agents without code, with advanced integrations to LlamaIndex, LangChain, and RAG capabilities combining LLM-generated responses with real-time data retrieval
  • Multi-turn conversation context: Agent Engine Sessions store individual user-agent interactions as definitive sources for conversation context, enabling coherent multi-turn interactions
  • Memory Bank: Stores and retrieves information from sessions to personalize agent interactions and maintain context across conversations
  • Agent orchestration: Agents can maintain context across systems, discover each other's capabilities dynamically, and negotiate interaction formats
  • Human handoff capabilities: Generate interaction summaries, citations, and other data to facilitate handoffs between AI apps and human agents with full conversation history
  • Observability tools: Google Cloud Trace, Cloud Monitoring, and Cloud Logging provide comprehensive understanding of agent behavior and performance
  • Action-based agents: Take actions based on conversations and interact with back-end transactional systems in an automated manner
  • Data source tuning: Tune chats with various data sources including conversation histories to enable smooth transitions and continuous improvement
  • LIMITATION: Technical expertise required: Agent Builder introduced visual interface in 2024, but deeper customization and orchestration still require GCP/developer skills
  • LIMITATION: No native lead capture: Unlike specialized chatbot platforms, Vertex AI focuses on enterprise conversational AI rather than marketing automation features
  • Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
  • Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
  • Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
  • Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions View Agent Documentation
  • Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
  • Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
  • Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
R A G-as-a- Service Assessment
  • Platform Type: HYBRID RAG FRAMEWORK + CLOUD SERVICE - open-source Haystack foundation with enterprise Deepset Cloud offering for heavily customized, domain-specific RAG solutions
  • Core Architecture: Modular pipeline architecture with retriever + reader + optional reranker components, full control over embedding models, vector databases (OpenSearch, Pinecone, Weaviate, Snowflake), and chunking strategies
  • Agentic Capabilities: Build autonomous AI agents with planning, routing, reflection mechanisms using Haystack framework - supports agentic RAG pipelines with graphs and multimodal capabilities Agent Development
  • Developer Experience: Comprehensive REST API, open-source Haystack SDK, Deepset Studio visual pipeline editor with YAML export for version control - targets ML engineers and development teams Studio Overview
  • No-Code Capabilities: Deepset Studio offers drag-and-drop visual editor for pipeline building, but still aimed at developers and ML engineers - not accessible to non-technical users
  • Target Market: ML engineers and development teams needing deep RAG customization, enterprises requiring domain-specific solutions with modular pipeline architecture, organizations wanting future portability with open-source foundation
  • RAG Technology Leadership: Advanced RAG with multi-step retrieval, hybrid search (semantic + keyword), custom rerankers for maximum accuracy, model-agnostic support (GPT-4, Llama 2, Claude, Cohere, 80+ providers), and benchmark-proven performance on MTEB Benchmark Insights
  • Deployment Flexibility: Free Deepset Studio for development, usage-based Enterprise plans, cloud/VPC/on-prem deployment options, and SOC 2/ISO 27001/GDPR/HIPAA compliance with flexible data residency
  • Enterprise Readiness: SOC 2 Type II, ISO 27001, GDPR, HIPAA compliance, cloud/hybrid/on-prem deployment, no model training on customer data, and comprehensive audit trails
  • Use Case Fit: Perfect for teams needing heavily customized domain-specific RAG with multi-hop retrieval and custom rerankers, organizations requiring modular pipeline architecture for complex workflows, ML engineers wanting developer-friendly APIs with future portability
  • Open-Source Advantage: Haystack framework (14,000+ GitHub stars) free forever with full portability - only pay for managed Deepset Cloud services if needed, avoiding vendor lock-in
  • NOT Suitable For: Non-technical teams seeking turnkey chatbots, business users wanting no-code deployment, organizations needing pre-built chat widgets or Slack/WhatsApp integrations
  • Competitive Positioning: Competes with LangChain/LangSmith, Contextual.ai, Dataworkz - differentiates through open-source Haystack foundation, model-agnostic flexibility, visual pipeline editor, and wide vector DB ecosystem
  • Platform Type: TRUE ENTERPRISE RAG-AS-A-SERVICE PLATFORM - fully managed orchestration service for production-ready RAG implementations with developer-first APIs
  • Core Architecture: Vertex AI RAG Engine (GA 2024) streamlines complex process of retrieving relevant information and feeding it to LLMs, with managed infrastructure handling data retrieval and LLM integration
  • API-First Design: Comprehensive easy-to-use API enabling rapid prototyping with VPC-SC security controls and CMEK support (data residency and AXT not supported)
  • Managed Orchestration: Developers focus on building applications rather than managing infrastructure - handles complexities of vector search, chunking, embedding, and retrieval automatically
  • Customization Depth: Various parsing, chunking, annotation, embedding, vector storage options with open-source model integration for specialized domain requirements
  • Developer Experience: "Sweet spot" for developers using Vertex AI to implement RAG-based LLMs - balances ease of use of Vertex AI Search with power of custom RAG pipeline
  • Target Market: Enterprise developers already using GCP infrastructure wanting managed RAG without building from scratch, organizations needing PaLM 2/Gemini models with Google's search capabilities
  • RAG Technology Leadership: Hybrid search with advanced reranking, factual-consistency scoring, Google web-crawling infrastructure for public content ingestion, sub-millisecond responses globally
  • Deployment Flexibility: Public cloud, VPC, or on-premise deployments with multi-region scalability, seamless GCP integration (BigQuery, Dataflow, Cloud Functions), and unified billing
  • Enterprise Readiness: SOC 2/ISO/HIPAA/GDPR compliance, customer-managed encryption keys, Private Link, detailed audit logs, Google Cloud Operations Suite monitoring
  • Use Case Fit: Ideal for personalized investment advice and risk assessment, accelerated drug discovery and personalized treatment plans, enhanced due diligence and contract review, GCP-native organizations wanting unified AI infrastructure
  • Competitive Positioning: Positioned between no-code platforms (WonderChat, Chatbase) and custom implementations (LangChain) - offers managed RAG with enterprise-grade capabilities for GCP ecosystem
  • LIMITATION: GCP lock-in: Strongest value for GCP customers - less compelling for AWS/Azure-native organizations vs platform-agnostic alternatives like CustomGPT or Cohere
  • LIMITATION: Google models only: PaLM 2/Gemini family exclusively - no native support for Claude, GPT-4, or open-source models compared to multi-model platforms
  • Platform Type: TRUE RAG-AS-A-SERVICE PLATFORM - all-in-one managed solution combining developer APIs with no-code deployment capabilities
  • Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
  • API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat API Documentation
  • Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
  • No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
  • Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
  • RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses Benchmark Details
  • Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
  • Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
  • Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
  • Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds

Ready to experience the CustomGPT difference?

Start Free Trial →

Final Thoughts

Final Verdict: Deepset vs Vertex AI

After analyzing features, pricing, performance, and user feedback, both Deepset and Vertex AI are capable platforms that serve different market segments and use cases effectively.

When to Choose Deepset

  • You value mature open-source framework (since 2020)
  • Production-ready from day one
  • Highly modular and customizable

Best For: Mature open-source framework (since 2020)

When to Choose Vertex AI

  • You value industry-leading 2m token context window with gemini models
  • Comprehensive ML platform covering entire AI lifecycle
  • Deep integration with Google Cloud ecosystem

Best For: Industry-leading 2M token context window with Gemini models

Migration & Switching Considerations

Switching between Deepset and Vertex AI requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.

Pricing Comparison Summary

Deepset starts at custom pricing, while Vertex AI begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.

Our Recommendation Process

  1. Start with a free trial - Both platforms offer trial periods to test with your actual data
  2. Define success metrics - Response accuracy, latency, user satisfaction, cost per query
  3. Test with real use cases - Don't rely on generic demos; use your production data
  4. Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
  5. Check vendor stability - Review roadmap transparency, update frequency, and support quality

For most organizations, the decision between Deepset and Vertex AI comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.

📚 Next Steps

Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.

  • Review: Check the detailed feature comparison table above
  • Test: Sign up for free trials and test with real queries
  • Calculate: Estimate your monthly costs based on expected usage
  • Decide: Choose the platform that best aligns with your requirements

Last updated: December 7, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.

Ready to Get Started with CustomGPT?

Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.

Why Choose CustomGPT?

97% Accuracy

Industry-leading benchmarks

5-Min Setup

Get started instantly

24/7 Support

Expert help when you need it

Enterprise Ready

Scale with confidence

Trusted by leading companies worldwide

Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us

Join the Discussion

Loading comments...

Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.

Watch: Understanding AI Tool Comparisons