Protecto vs SimplyRetrieve: A Detailed Comparison

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT
Comparison Image cover for the blog Protecto vs SimplyRetrieve

Fact checked and reviewed by Bill. Published: 01.04.2024 | Updated: 25.04.2025

In this article, we compare Protecto and SimplyRetrieve across various parameters to help you make an informed decision.

Welcome to the comparison between Protecto and SimplyRetrieve!

Here are some unique insights on Protecto:

Protecto injects a privacy layer into your AI stack, scanning and masking sensitive data (PII/PHI) before it hits the LLM. It plugs into massive data stores and scales with Kubernetes—impressive, but integration can be complex.

And here's more information on SimplyRetrieve:

SimplyRetrieve is an open-source RAG stack you run on your own hardware. It keeps data in-house and pairs with open-source LLMs, giving developers full visibility into the pipeline.

Expect hands-on setup—GPU drivers, Python deps, scripts—before you’re up and running.

Enjoy reading and exploring the differences between Protecto and SimplyRetrieve.

Comparison Matrix

Feature
logo of protectoProtecto
logo of simplyretrieveSimplyRetrieve
logo of customGPT logoCustomGPT
Data Ingestion & Knowledge Sources
  • Plugs straight into enterprise data stacks—think databases, data lakes, and SaaS platforms like Snowflake, Databricks, or Salesforce—using APIs.
  • Built for huge volumes: asynchronous APIs and queuing handle millions (even billions) of records with ease.
  • Focuses on scanning and flagging sensitive info (PII/PHI) across structured and unstructured data, not classic file uploads.
  • Uses a hands-on, file-based flow: drop PDFs, text, DOCX, PPTX, HTML, etc. into a folder and run a script to embed them.
  • A new GUI Knowledge-Base editor lets you add docs on the fly, but there’s no web crawler or auto-refresh yet.
  • Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
  • Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
  • Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text. View Transcription Guide
  • Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier. See Zapier Connectors
  • Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
  • No end-user chat widgets here—Protecto slots in as a security layer inside your AI app.
  • Acts as middleware: its APIs sanitize data before it ever hits an LLM, whether you’re running a web chatbot, mobile app, or enterprise search tool.
  • Integrates with data-flow heavyweights like Snowflake, Kafka, and Databricks to keep every AI data path clean and compliant.
  • Ships with a local Gradio GUI and Python scripts for queries—no out-of-the-box Slack or site widget.
  • Want other channels? Write a small wrapper that forwards messages to your local chatbot.
  • Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
  • Offers ready-made hooks for Slack, Microsoft Teams, WhatsApp, Telegram, and Facebook Messenger. Explore API Integrations
  • Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
  • Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
Core Chatbot Features
  • Doesn’t generate responses—it detects and masks sensitive data going into and out of your AI agents.
  • Combines advanced NER with custom regex / pattern matching to spot PII/PHI, anonymizing without killing context.
  • Adds content-moderation and safety checks to keep everything compliant and exposure-free.
  • Runs a retrieval-augmented chatbot on open-source LLMs, streaming tokens live in the Gradio UI.
  • Primarily single-turn Q&A; long-term memory is limited in this release.
  • Includes a “Retrieval Tuning Module” so you can see—and tweak—how answers are built from the data.
  • Powers retrieval-augmented Q&A with GPT-4 and GPT-3.5 Turbo, keeping answers anchored to your own content.
  • Reduces hallucinations by grounding replies in your data and adding source citations for transparency. Benchmark Details
  • Handles multi-turn, context-aware chats with persistent history and solid conversation management.
  • Speaks 90+ languages, making global rollouts straightforward.
  • Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Customization & Branding
  • No visual branding needed—Protecto works behind the curtain, guarding data rather than showing UI.
  • You can tailor masking rules and policies via a web dashboard or config files to match your exact regulations.
  • It’s all about policy customization over look-and-feel, ensuring every output passes compliance checks.
  • Default Gradio interface is pretty plain, with minimal theming.
  • For a branded UI you’ll tweak source code or build your own front end.
  • Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand. White-label Options
  • Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
  • Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
  • Uses domain allowlisting to ensure the chatbot appears only on approved sites.
LLM Model Options
  • Model-agnostic: works with any LLM—GPT, Claude, LLaMA, you name it—by masking data first.
  • Plays nicely with orchestration frameworks like LangChain for multi-model workflows.
  • Uses context-preserving techniques so accuracy stays high even after sensitive bits are masked.
  • Defaults to WizardVicuna-13B, but you can swap in any Hugging Face model if you have the GPUs.
  • Full control over model choice, though smaller open models won’t match GPT-4 for depth.
  • Taps into top models—OpenAI’s GPT-4, GPT-3.5 Turbo, and even Anthropic’s Claude for enterprise needs.
  • Automatically balances cost and performance by picking the right model for each request. Model Selection Details
  • Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
  • Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Developer Experience (API & SDKs)
  • REST APIs and a Python SDK make scanning, masking, and tokenizing straightforward.
  • Docs are detailed, with step-by-step guides for slipping Protecto into data pipelines or AI apps.
  • Supports real-time and batch modes, complete with examples for ETL and CI/CD pipelines.
  • Interaction happens via Python scripts—there’s no formal REST API or SDK.
  • Integrations usually call those scripts as subprocesses or add your own wrapper.
  • Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat. API Documentation
  • Offers open-source SDKs—like the Python customgpt-client—plus Postman collections to speed integration. Open-Source SDK
  • Backs you up with cookbooks, code samples, and step-by-step guides for every skill level.
Integration & Workflow
  • Drops into your data flow—pipe user queries and retrieved docs through Protecto before they hit the LLM.
  • Handles real-time masking for prompts/responses or bulk sanitizing for massive datasets.
  • Deploy on-prem or in private cloud with Kubernetes auto-scaling to respect residency rules.
  • Run it locally: prep a GPU box, drop data, run prepare.py to embed, then chat.py for the Gradio UI.
  • Updating content means re-running scripts or using the new Knowledge tab; scaling is a manual process.
  • Gets you live fast with a low-code dashboard: create a project, add sources, and auto-index content in minutes.
  • Fits existing systems via API calls, webhooks, and Zapier—handy for automating CRM updates, email triggers, and more. Auto-sync Feature
  • Slides into CI/CD pipelines so your knowledge base updates continuously without manual effort.
Performance & Accuracy
  • Context-preserving masking keeps LLM accuracy almost intact—about 99 % RARI versus 70 % with vanilla masking.
  • Async APIs and auto-scaling keep latency low, even at high volume.
  • Masked data still carries enough context so model answers stay on point.
  • Open-source models run slower than managed clouds—expect a few to 10 + seconds per reply on a single GPU.
  • Accuracy is fine when the right doc is found, but smaller models can struggle on complex, multi-hop queries.
  • Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
  • Independent tests rate median answer accuracy at 5/5—outpacing many alternatives. Benchmark Results
  • Always cites sources so users can verify facts on the spot.
  • Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
Customization & Flexibility (Behavior & Knowledge)
  • Fine-tune masking with custom regex rules and entity types as granular as you need.
  • Role-based access lets privileged users view unmasked data while others see safe tokens.
  • Update masking policies on the fly—no model retraining required—to keep up with new regs.
  • Lets you tweak everything—KnowledgeBase weight, retrieval params, system prompts—for deep control.
  • Encourages devs to swap embedding models or hack the pipeline code as needed.
  • Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
  • Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus. Learn How to Update Sources
  • Supports multiple agents per account, so different teams can have their own bots.
  • Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Pricing & Scalability
  • Enterprise pricing tailored to data volume and throughput, with a free trial to test the waters.
  • Scales to millions or billions of records—cloud or on-prem—priced around volume and usage.
  • Ideal for large orgs with heavy data-protection needs; volume discounts and custom contracts keep costs sane.
  • Free, MIT-licensed open source—no fees, but you supply the GPUs or cloud servers.
  • Scaling means spinning up more hardware and managing it yourself.
  • Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
  • Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates. View Pricing
  • Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
  • Privacy-first: spots and masks sensitive data before any LLM sees it, meeting GDPR, HIPAA, and more.
  • End-to-end encryption, tight access controls, and audit logs lock down the pipeline.
  • Deploy wherever you need—public cloud, private cloud, or entirely on-prem—for full residency control.
  • Entirely local: all docs and chat data stay on your own machine—great for sensitive use cases.
  • No built-in auth or enterprise security—lock things down in your own deployment setup.
  • Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
  • Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private. Security Certifications
  • Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Observability & Monitoring
  • Audit logs and dashboards track every masking action and how many sensitive items were caught.
  • Hooks into SIEM and monitoring tools for real-time compliance and performance stats.
  • Reports RARI and other metrics, alerting you if something looks off.
  • An “Analysis” tab shows which docs were pulled and how the query was built; logs print to the console.
  • No fancy dashboard—add your own logging or monitoring if you need broader stats.
  • Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
  • Lets you export logs and metrics via API to plug into third-party monitoring or BI tools. Analytics API
  • Provides detailed insights for troubleshooting and ongoing optimization.
Support & Ecosystem
  • High-touch enterprise support—dedicated managers and SLA-backed help for big deployments.
  • Rich docs, API guides, and whitepapers show best practices for secure AI pipelines.
  • Active in industry partnerships and thought leadership to keep the ecosystem strong.
  • Open-source on GitHub; support is community-driven via issues and lightweight docs.
  • Smaller ecosystem: you’re free to fork or extend, but there’s no paid SLA or enterprise help desk.
  • Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast. Developer Docs
  • Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs. Enterprise Solutions
  • Benefits from an active user community plus integrations through Zapier and GitHub resources.
Additional Considerations
  • Laser-focused on secure RAG—keeps sensitive data out of third-party LLMs while preserving context.
  • On-prem option is a big win for highly regulated sectors needing total isolation.
  • The proprietary RARI metric proves you can mask aggressively without wrecking model accuracy.
  • Great for offline / on-prem labs where data never leaves the server—perfect for tinkering.
  • Takes more hands-on upkeep and won’t match proprietary giants in sheer capability out of the box.
  • Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
  • Gets you to value quickly: launch a functional AI assistant in minutes.
  • Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
  • Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No-Code Interface & Usability
  • No drag-and-drop chatbot builder—Protecto provides a tech dashboard for privacy policy setup and monitoring.
  • UI targets IT and security teams, with forms and config panels rather than wizard-style chatbot tools.
  • Guided presets (e.g., HIPAA Mode) speed up onboarding for enterprises that need quick compliance.
  • Basic Gradio UI is developer-focused; non-tech users might find the settings overwhelming.
  • No slick, no-code admin—if you need polish or branding, you’ll build your own front end.
  • Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
  • Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing. User Experience Review
  • Uses role-based access so business users and devs can collaborate smoothly.

We hope you found this comparison of Protecto vs SimplyRetrieve helpful.

Protecto’s promise of airtight compliance is appealing, yet its API-only model adds development overhead. Its value boils down to whether the security boost outweighs the integration effort for your team.

If local control and privacy outweigh convenience, SimplyRetrieve is a solid DIY route. Just be ready for the ongoing maintenance that comes with a self-hosted system.

Stay tuned for more updates!

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us
Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT. Passionate about AI and its applications. Here to help you navigate the world of AI tools.