In this comprehensive guide, we compare Protecto and SimplyRetrieve across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
Welcome to the comparison between Protecto and SimplyRetrieve!
Here are some unique insights on Protecto:
Protecto injects a privacy layer into your AI stack, scanning and masking sensitive data (PII/PHI) before it hits the LLM. It plugs into massive data stores and scales with Kubernetes—impressive, but integration can be complex.
And here's more information on SimplyRetrieve:
SimplyRetrieve is an open-source RAG stack you run on your own hardware. It keeps data in-house and pairs with open-source LLMs, giving developers full visibility into the pipeline.
Expect hands-on setup—GPU drivers, Python deps, scripts—before you’re up and running.
Enjoy reading and exploring the differences between
Protecto and SimplyRetrieve.
Detailed Feature Comparison
Features
Protecto
SimplyRetrieve
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
Plugs straight into enterprise data stacks—think databases, data lakes, and SaaS platforms like Snowflake, Databricks, or Salesforce—using APIs.
Built for huge volumes: asynchronous APIs and queuing handle millions (even billions) of records with ease.
Focuses on scanning and flagging sensitive info (PII/PHI) across structured and unstructured data, not classic file uploads.
Uses a hands-on, file-based flow: drop PDFs, text, DOCX, PPTX, HTML, etc. into a folder and run a script to embed them.
A new GUI Knowledge-Base editor lets you add docs on the fly, but there’s no web crawler or auto-refresh yet.
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
No end-user chat widgets here—Protecto slots in as a security layer inside your AI app.
Acts as middleware: its APIs sanitize data before it ever hits an LLM, whether you’re running a web chatbot, mobile app, or enterprise search tool.
Integrates with data-flow heavyweights like Snowflake, Kafka, and Databricks to keep every AI data path clean and compliant.
Ships with a local Gradio GUI and Python scripts for queries—no out-of-the-box Slack or site widget.
Want other channels? Write a small wrapper that forwards messages to your local chatbot.
Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
Offers ready-made hooks for Slack, Microsoft Teams, WhatsApp, Telegram, and Facebook Messenger.
Explore API Integrations
Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
Core Chatbot Features
Doesn’t generate responses—it detects and masks sensitive data going into and out of your AI agents.
Combines advanced NER with custom regex / pattern matching to spot PII/PHI, anonymizing without killing context.
Adds content-moderation and safety checks to keep everything compliant and exposure-free.
Runs a retrieval-augmented chatbot on open-source LLMs, streaming tokens live in the Gradio UI.
Primarily single-turn Q&A; long-term memory is limited in this release.
Includes a “Retrieval Tuning Module” so you can see—and tweak—how answers are built from the data.
Powers retrieval-augmented Q&A with GPT-4 and GPT-3.5 Turbo, keeping answers anchored to your own content.
Reduces hallucinations by grounding replies in your data and adding source citations for transparency.
Benchmark Details
Handles multi-turn, context-aware chats with persistent history and solid conversation management.
Speaks 90+ languages, making global rollouts straightforward.
Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Customization & Branding
No visual branding needed—Protecto works behind the curtain, guarding data rather than showing UI.
You can tailor masking rules and policies via a web dashboard or config files to match your exact regulations.
It’s all about policy customization over look-and-feel, ensuring every output passes compliance checks.
Default Gradio interface is pretty plain, with minimal theming.
For a branded UI you’ll tweak source code or build your own front end.
Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand.
White-label Options
Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
Uses domain allowlisting to ensure the chatbot appears only on approved sites.
L L M Model Options
Model-agnostic: works with any LLM—GPT, Claude, LLaMA, you name it—by masking data first.
Plays nicely with orchestration frameworks like LangChain for multi-model workflows.
Uses context-preserving techniques so accuracy stays high even after sensitive bits are masked.
Defaults to WizardVicuna-13B, but you can swap in any Hugging Face model if you have the GPUs.
Full control over model choice, though smaller open models won’t match GPT-4 for depth.
Taps into top models—OpenAI’s GPT-4, GPT-3.5 Turbo, and even Anthropic’s Claude for enterprise needs.
Automatically balances cost and performance by picking the right model for each request.
Model Selection Details
Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Developer Experience ( A P I & S D Ks)
REST APIs and a Python SDK make scanning, masking, and tokenizing straightforward.
Docs are detailed, with step-by-step guides for slipping Protecto into data pipelines or AI apps.
Supports real-time and batch modes, complete with examples for ETL and CI/CD pipelines.
Interaction happens via Python scripts—there’s no formal REST API or SDK.
Integrations usually call those scripts as subprocesses or add your own wrapper.
Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat.
APIÂ Documentation
Offers open-source SDKs—like the Python customgpt-client—plus Postman collections to speed integration.
Open-Source SDK
Backs you up with cookbooks, code samples, and step-by-step guides for every skill level.
Integration & Workflow
Drops into your data flow—pipe user queries and retrieved docs through Protecto before they hit the LLM.
Handles real-time masking for prompts/responses or bulk sanitizing for massive datasets.
Deploy on-prem or in private cloud with Kubernetes auto-scaling to respect residency rules.
Run it locally: prep a GPU box, drop data, run prepare.py to embed, then chat.py for the Gradio UI.
Updating content means re-running scripts or using the new Knowledge tab; scaling is a manual process.
Gets you live fast with a low-code dashboard: create a project, add sources, and auto-index content in minutes.
Fits existing systems via API calls, webhooks, and Zapier—handy for automating CRM updates, email triggers, and more.
Auto-sync Feature
Slides into CI/CD pipelines so your knowledge base updates continuously without manual effort.
Performance & Accuracy
Context-preserving masking keeps LLM accuracy almost intact—about 99 % RARI versus 70 % with vanilla masking.
Async APIs and auto-scaling keep latency low, even at high volume.
Masked data still carries enough context so model answers stay on point.
Open-source models run slower than managed clouds—expect a few to 10 + seconds per reply on a single GPU.
Accuracy is fine when the right doc is found, but smaller models can struggle on complex, multi-hop queries.
Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
Independent tests rate median answer accuracy at 5/5—outpacing many alternatives.
Benchmark Results
Always cites sources so users can verify facts on the spot.
Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
We hope you found this comparison of Protecto vs
SimplyRetrieve helpful.
Protecto’s promise of airtight compliance is appealing, yet its API-only model adds development overhead. Its value boils down to whether the security boost outweighs the integration effort for your team.
If local control and privacy outweigh convenience, SimplyRetrieve is a solid DIY route. Just be ready for the ongoing maintenance that comes with a self-hosted system.
Stay tuned for more updates!
Ready to Get Started with CustomGPT?
Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
Join the Discussion