In this comprehensive guide, we compare Supavec and Vertex AI across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between Supavec and Vertex AI, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose Supavec if: you value 100% open source with no vendor lock-in
Choose Vertex AI if: you value industry-leading 2m token context window with gemini models
About Supavec
Supavec is the open source rag as a service platform. SupaVec is an open-source RAG platform that serves as an alternative to Carbon.ai. Built on transparency and data sovereignty, it allows developers to build powerful RAG applications with complete control over their infrastructure, supporting any data source at any scale. Founded in 2024, headquartered in Remote, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
84/100
Starting Price
Custom
About Vertex AI
Vertex AI is google's unified ml platform with gemini models and automl. Vertex AI is Google Cloud's comprehensive machine learning platform that unifies data engineering, data science, and ML engineering workflows. It offers state-of-the-art Gemini models with industry-leading context windows up to 2 million tokens, AutoML capabilities, and enterprise-grade infrastructure for building, deploying, and scaling AI applications. Founded in 2008, headquartered in Mountain View, CA, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
88/100
Starting Price
Custom
Key Differences at a Glance
In terms of user ratings, both platforms score similarly in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: RAG Platform versus AI Chatbot. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
No one-click Google Drive or Notion connectors—you’ll script the fetch and hit the API yourself.
Because it’s open source, you can build connectors to anything—Postgres, Mongo, S3, you name it.
Runs on Supabase and scales sideways, chunking millions of docs for fast retrieval.
Pulls in both structured and unstructured data straight from Google Cloud Storage, handling files like PDF, HTML, and CSV (Vertex AI Search Overview).
Taps into Google’s own web-crawling muscle to fold relevant public website content into your index with minimal fuss (Towards AI Vertex AI Search).
Keeps everything current with continuous ingestion and auto-indexing, so your knowledge base never falls out of date.
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
Pure REST for retrieval and generation—no built-in widget or Slack bot.
You code the chat UI or Slack bridge, calling Supavec for answers.
No Zapier—webhooks and automations are DIY inside your app.
If it speaks HTTP, it can talk to Supavec—you just handle the front-end.
Ships solid REST APIs and client libraries for weaving Vertex AI into web apps, mobile apps, or enterprise portals (Google Cloud Vertex AI API Docs).
Plays nicely with other Google Cloud staples—BigQuery, Dataflow, and more—and even supports low-code connectors via Logic Apps and PowerApps (Google Cloud Connectors).
Lets you deploy conversational agents wherever you need them, whether that’s a bespoke front-end or an embedded widget.
Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more.
Explore API Integrations
Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc.
Read more here.
Need more calls? Negotiate or self-host to ditch caps.
Storage isn’t metered—only query volume counts toward the plan.
Uses pay-as-you-go pricing—charges for storage, query volume, and model compute—with a free tier to experiment (Google Cloud Pricing).
Scales effortlessly on Google’s global backbone, with autoscaling baked in.
Add partitions or replicas as traffic grows to keep performance rock-solid.
Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates.
View Pricing
Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
Self-hosting keeps everything on your servers—great for tight compliance.
[Privacy note]
Hosted Supavec runs on Supabase with row-level security—each team’s data is fenced off.
No training on your docs—data stays yours.
Enterprises can go dedicated or on-prem for HIPAA/GDPR peace of mind.
Builds on Google Cloud’s security stack—encryption in transit and at rest, plus fine-grained IAM (Google Cloud Compliance).
Holds a long list of certifications (SOC, ISO, HIPAA, GDPR) and supports customer-managed encryption keys.
Offers options like Private Link and detailed audit logs to satisfy strict enterprise requirements.
Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private.
Security Certifications
Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Observability & Monitoring
No dashboard baked in—log requests yourself or use Supabase metrics when self-hosting.
Hosted plan shows basic call counts; no transcript analytics out of the box.
Need deep insights? Wire up your own monitoring layer.
Designed to play nicely with external logging tools, not ship its own.
Hooks into Google Cloud Operations Suite for real-time monitoring, logging, and alerting (Google Cloud Monitoring).
Includes dashboards for query latency, index health, and resource usage, plus APIs for custom analytics.
Lets you export logs and metrics to meet compliance or deep-dive analysis needs.
Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
Lets you export logs and metrics via API to plug into third-party monitoring or BI tools.
Analytics API
Provides detailed insights for troubleshooting and ongoing optimization.
Support & Ecosystem
Community help via GitHub/Discord; paid plans unlock email or priority support.
[Docs]
Open-source means forks, PRs, and home-grown connectors are welcome.
Docs are lean—mostly endpoint references rather than big tutorials.
Code samples pop up in the community, but it’s not a huge library yet.
Backed by Google’s enterprise support programs and detailed docs across the Cloud platform (Google Cloud Support).
Provides community forums, sample projects, and training via Google Cloud’s dev channels.
Benefits from a robust ecosystem of partners and ready-made integrations inside GCP.
Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast.
Developer Docs
Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs.
Enterprise Solutions
Benefits from an active user community plus integrations through Zapier and GitHub resources.
Additional Considerations
No vendor lock-in: transparent code, offline option, host wherever you like.
Focuses on core RAG—no SSO, dashboards, or fancy UI included.
Great for devs who want full control or must keep data in-house.
Conversation flow, advanced prompts, fancy UI—all yours to build.
Packs hybrid search and reranking that return a factual-consistency score with every answer.
Supports public cloud, VPC, or on-prem deployments if you have strict data-residency rules.
Gets regular updates as Google pours R&D into RAG and generative AI capabilities.
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No- Code Interface & Usability
No drag-and-drop dashboard—everything's via API or CLI.
Meant for code-first teams who'll bolt it into their own chat or workflow.
Self-hosters can craft custom GUIs on top, but Supavec keeps the slate blank.
If you want a business-user UI like CustomGPT, you'll layer that yourself.
Offers a Cloud console to manage indexes and search settings, though there's no full drag-and-drop chatbot builder yet.
Low-code connectors (PowerApps, Logic Apps) make basic integrations straightforward for non-devs.
The overall experience is solid, but deeper customization still calls for some technical know-how.
Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing.
User Experience Review
Uses role-based access so business users and devs can collaborate smoothly.
Competitive Positioning
Market position: MIT-licensed open-source RAG API built on Supabase, offering lightweight alternative to Carbon.ai with self-hosting capability and minimal API surface
Target customers: Developers building custom RAG applications on budget, startups wanting to avoid RAG platform costs, and organizations requiring self-hosted solutions with Supabase infrastructure for data sovereignty
Key competitors: Carbon.ai, LangChain, SimplyRetrieve, and hosted RAG APIs like CustomGPT/Pinecone Assistant
Competitive advantages: MIT open-source license with no vendor lock-in, Supabase foundation for familiar infrastructure, model-agnostic with easy LLM swapping (GPT-3.5, GPT-4, self-hosted), REST API simplicity with straightforward endpoints, privacy-focused with self-hosting option keeping data on your servers, and minimal abstraction enabling deep customization
Pricing advantage: Free (MIT license) for self-hosting; hosted plans extremely affordable ($190/year Basic for 750 calls/month, $1,490/year Enterprise for 5K calls/month); best value for low-volume applications or teams with Supabase expertise wanting to avoid expensive RAG platforms; 40-90% cheaper than commercial alternatives
Use case fit: Perfect for developers wanting lightweight RAG backend without heavy frameworks, startups minimizing costs with self-hosting on existing Supabase infrastructure, and teams building custom chatbot front-ends needing simple REST API for retrieval without paying for unused dashboard features
Market position: Enterprise-grade Google Cloud AI platform combining Vertex AI Search with Conversation for production-ready RAG, deeply integrated with GCP ecosystem
Target customers: Organizations already invested in Google Cloud infrastructure, enterprises requiring PaLM 2/Gemini models with Google's search capabilities, and companies needing global scalability with multi-region deployment and GCP service integration
Key competitors: Azure AI Search, AWS Bedrock, OpenAI Enterprise, Coveo, and custom RAG implementations
Competitive advantages: Native Google PaLM 2/Gemini models with external LLM support, Google's web-crawling infrastructure for public content ingestion, seamless GCP integration (BigQuery, Dataflow, Cloud Functions), hybrid search with advanced reranking, SOC/ISO/HIPAA/GDPR compliance with customer-managed keys, global infrastructure for millisecond responses worldwide, and Google Cloud Operations Suite for comprehensive monitoring
Pricing advantage: Pay-as-you-go with free tier for development; competitive for GCP customers leveraging existing enterprise agreements and volume discounts; autoscaling prevents overprovisioning; best value for organizations with GCP infrastructure wanting unified billing and managed services
Use case fit: Best for organizations already using GCP infrastructure (BigQuery, Cloud Functions), enterprises needing Google's proprietary models (PaLM 2, Gemini) with web-crawling capabilities, and companies requiring global scalability with multi-region deployment and tight integration with GCP analytics and data pipelines
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
Model-agnostic architecture: Defaults to GPT-3.5 Turbo for cost-effectiveness, with full support for GPT-4, GPT-4-turbo, and any OpenAI-compatible models
Self-hosted model support: Bring your own LLM - compatible with self-hosted models like Llama, Mistral, or custom fine-tuned models via API endpoints
No model lock-in: Switch between models by changing configuration or prompt path in code without platform restrictions
No markup on AI costs: Users connect their own OpenAI API keys or self-hosted endpoints, paying providers directly without Supavec markup
Note: No built-in model routing: No automatic model selection or load balancing - developers must implement routing logic manually
Note: No prompt optimization layer: Plain RAG implementation without advanced prompt engineering or anti-hallucination guardrails
Quality dependency: Output quality rests entirely on chosen LLM and developer's prompt engineering skills
Google proprietary models: PaLM 2 (Pathways Language Model) and Gemini 2.0/2.5 family (Pro, Flash variants) optimized for enterprise workloads
Gemini 2.5 Pro: $1.25-$2.50 per million input tokens, $10-$15 per million output tokens for advanced reasoning and multimodal understanding
Gemini 2.5 Flash: $0.30 per million input tokens, $2.50 per million output tokens for cost-effective high-speed inference
Gemini 2.0 Flash: $0.15 per million input tokens, $0.60 per million output tokens for ultra-low-cost deployment
External LLM support: Can call external LLMs via API if preferring non-Google models for specific use cases
Model selection flexibility: Choose models based on balance of cost, speed, and quality requirements per use case
Prompt template customization: Configure tone, format, and citation rules through prompt engineering
Temperature and token controls: Adjust generation parameters (temperature, max tokens) for domain-specific response characteristics
Primary models: GPT-4, GPT-3.5 Turbo from OpenAI, and Anthropic's Claude for enterprise needs
Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request
Model Selection Details
Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
Standard RAG architecture: Document chunking with vector embeddings stored in Postgres pgvector extension for semantic search
Embedding generation: Automatic embedding creation during document upload using OpenAI embedding models or custom embedding endpoints
Vector search: Postgres vector search with cosine similarity for retrieval, handling millions of chunks efficiently
Re-indexing speed: Almost instant document re-embedding when updating or overwriting knowledge sources
Metadata support: Custom metadata tagging and filtering capabilities for organized knowledge management
Note: No advanced RAG features: No hybrid search (semantic + keyword), no reranking, no multi-query retrieval, no query expansion
Note: No hallucination detection: No built-in citation validation, factual consistency scoring, or confidence thresholds - developers must implement manually
Note: No retrieval parameter controls: Chunking strategy, similarity thresholds, and top-k configuration require code-level changes
Hybrid search: Combines semantic vector search with keyword (BM25) matching for strong retrieval accuracy across query types
Advanced reranking: Multi-stage reranking pipeline cuts hallucinations and ensures factual consistency in generated responses
Google web-crawling: Taps into Google's web-crawling infrastructure to ingest relevant public website content into indexes automatically
Continuous ingestion: Keeps knowledge base current with automatic indexing and auto-refresh preventing stale data
Fine-grained indexing control: Set chunk sizes, metadata tags, and retrieval parameters to shape semantic search behavior
Semantic/lexical weighting: Adjust balance between semantic and keyword search per query type for optimal retrieval
Structured/unstructured data: Handles both structured data (BigQuery, Cloud SQL) and unstructured documents (PDF, HTML, CSV) from Google Cloud Storage
Factual consistency scoring: Hybrid search + reranking returns factual-consistency score with every answer for reliability assessment
Custom cognitive skills: Slot in custom processing or open-source models for specialized domain requirements
Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks
RAG Performance
Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content
Benchmark Details
Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
Source verification: Always cites sources so users can verify facts on the spot
Use Cases
Custom chatbot backends: Ideal for developers building custom chat interfaces needing simple RAG API without heavy platform overhead
Self-hosted knowledge retrieval: Perfect for organizations requiring data sovereignty with Supabase infrastructure for compliance (GDPR, HIPAA when self-hosted)
Budget-conscious RAG applications: Startups and small teams minimizing costs with MIT open-source license and affordable hosted plans ($190-$1,490/year)
Supabase-native projects: Teams already using Supabase can integrate Supavec seamlessly without additional infrastructure complexity
Developer-first RAG: Code-first teams wanting full control over RAG implementation, eschewing GUI dashboards for API-driven workflows
Not ideal for: Non-technical users requiring no-code interfaces, enterprises needing advanced RAG features (hybrid search, reranking), or teams requiring built-in analytics/monitoring
Not ideal for: Production applications requiring hallucination detection, citation validation, or confidence scoring without custom development
GCP-native organizations: Perfect for companies already using BigQuery, Cloud Functions, Dataflow wanting unified AI infrastructure
Global enterprise deployments: Multi-region deployment with Google's global infrastructure for millisecond responses worldwide
Public content ingestion: Leverage Google's web-crawling muscle to automatically fold relevant public web content into knowledge bases
Multimodal understanding: Gemini models process and reason over text, images, videos, and code for rich content analysis
Google Workspace integration: Seamless integration with Gmail, Docs, Sheets for content-heavy workflows within Workspace ecosystem
BigQuery analytics integration: Tight coupling with BigQuery for analytics on conversation data, user behavior, and system performance
Enterprise conversational AI: Build customer service bots, internal knowledge assistants, and autonomous agents grounded in company data
Regulated industries: Healthcare, finance, government with SOC/ISO/HIPAA/GDPR compliance and customer-managed encryption keys
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
Self-hosting advantage: MIT license enables complete data sovereignty - all data stays on your servers for strict compliance requirements
[Privacy note]
Supabase security foundation: Row-level security (RLS) fences off each team's data when using hosted Supavec on Supabase infrastructure
No model training: Your documents never used for LLM training - data remains yours with zero retention by OpenAI or other providers
GDPR/HIPAA ready: Self-hosting enables GDPR and HIPAA compliance when deployed on compliant infrastructure - enterprises can go dedicated or on-premises
Encryption: Standard HTTPS encryption for API calls; at-rest encryption depends on hosting infrastructure (Supabase provides AES-256)
Note: No SOC 2 certification: Open-source project lacks formal SOC 2 Type II, ISO 27001, or other enterprise compliance certifications for hosted plans
Note: No built-in access controls: Authentication, authorization, and RBAC must be implemented by developers in their application layer
Note: Limited hosted security features: Hosted plans lack SSO/SAML, IP whitelisting, or advanced security controls without custom configuration
Google Cloud security stack: Encryption in transit (TLS 1.3) and at rest (AES-256) with fine-grained IAM for access control
ISO 27001/27017/27018 certified: International information security management standards for cloud services and data protection
HIPAA compliant: Healthcare data handling with Business Associate Agreements (BAA) for protected health information (PHI)
GDPR compliant: EU General Data Protection Regulation compliance with data subject rights and EU data residency options
Customer-managed encryption keys (CMEK): Bring your own encryption keys for full cryptographic control over data
Private Link: Private network connectivity between on-premise infrastructure and GCP for network isolation
Detailed audit logs: Cloud Audit Logs track all API calls, resource access, and configuration changes for compliance
VPC and on-prem deployment: Deploy in public cloud, Virtual Private Cloud (VPC), or on-premise for strict data-residency rules
Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
SOC 2 Type II certification: Industry-leading security standards with regular third-party audits
Security Certifications
GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
Data isolation: Customer data stays isolated and private - platform never trains on user data
Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
Open-source (Free): MIT-licensed for self-hosting - pay only your infrastructure costs (Supabase, server, storage) with unlimited API calls and no vendor fees
Hosted Free tier: 100 API calls per month for development and testing
[Pricing]
Basic Plan: $190/year ($15.83/month equivalent) - 750 API calls per month, hosted infrastructure, automatic backups, email support
Enterprise Plan: $1,490/year ($124.17/month equivalent) - 5,000 API calls per month, priority support, SLA guarantees, dedicated resources
No per-document charges: Storage not metered separately - only query volume counts toward plan limits
No user seat fees: Pricing based purely on API call volume, not team size or number of developers
Need more calls? Negotiate custom limits with hosted provider or self-host to eliminate caps entirely
Value proposition: 40-90% cheaper than commercial RAG platforms - Basic plan costs less than 1 month of competing platforms while providing annual service
Pay-as-you-go: Charges for storage, query volume, and model compute with no upfront commitments or minimum spend
Free tier: New customers get up to $300 in free credits to experiment with Vertex AI and other Google Cloud products
Gemini 2.0 Flash: $0.15/M input tokens, $0.60/M output tokens for ultra-low-cost deployment at scale
Imagen pricing: $0.0001 per image for specific endpoints enabling visual content generation
Autoscaling: Scales effortlessly on Google's global backbone with automatic resource adjustment preventing overprovisioning
Enterprise agreements: Volume discounts and committed use discounts for GCP customers with existing enterprise agreements
Unified billing: Single GCP bill for Vertex AI, BigQuery, Cloud Functions, and all Google Cloud services
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
Documentation: Lean API reference docs focusing on endpoint usage with JavaScript code snippets - mostly technical rather than tutorial-heavy
[Docs]
Community support: GitHub Discussions and Discord for free tier and self-hosted users - community-driven help and troubleshooting
Email support: Paid plan users (Basic/Enterprise) get email support with priority levels based on tier
No dedicated CSM: No Customer Success Manager or account management even on Enterprise tier - support ticket-based
GitHub repository: Open-source code welcomes PRs, issues, and community contributions - active maintainer responses
Postman collection: API documentation includes Postman collection for quick testing and integration
Code samples: Community-contributed examples and integrations appearing in GitHub issues and Discord, but not extensive official library
Learning curve: Requires developer skills - no video tutorials, webinars, or certification programs like commercial platforms
Google Cloud enterprise support: Multiple support tiers (Basic, Standard, Enhanced, Premium) with SLAs and dedicated technical account managers
24/7 global support: Premium support includes 24/7 phone, email, and chat with 15-minute response time for P1 issues
Comprehensive documentation: Detailed guides at cloud.google.com/vertex-ai/docs covering APIs, SDKs, best practices, and tutorials
Community forums: Google Cloud Community for peer support, knowledge sharing, and best practice discussions
Sample projects and notebooks: Pre-built examples, Jupyter notebooks, and quick-start guides on GitHub for rapid integration
Training and certification: Google Cloud training programs, hands-on labs, and certification paths for Vertex AI and machine learning
Partner ecosystem: Robust ecosystem of Google Cloud partners offering consulting, implementation, and managed services
Regular updates: Continuous R&D investment from Google pouring resources into RAG and generative AI capabilities
Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding
Developer Docs
Email and in-app support: Quick support via email and in-app chat for all users
Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
Code samples: Cookbooks, step-by-step guides, and examples for every skill level
API Documentation
Active community: User community plus 5,000+ app integrations through Zapier ecosystem
Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
No GUI/dashboard: Everything via API or CLI - no business-user interface for content management, analytics, or configuration
Developer-only tool: Requires coding skills for setup, integration, and maintenance - non-technical teams cannot use without developer support
Basic RAG only: Standard retrieval-augmented generation without advanced features like hybrid search, query reranking, multi-query fusion, or query expansion
No observability built-in: No metrics dashboard, conversation analytics, or performance monitoring - must wire up your own logging layer
Manual hallucination handling: No built-in citation validation, confidence scoring, or factual consistency checks - developers must implement safeguards
Limited connectors: No one-click Google Drive, Notion, or cloud storage integrations - must script data fetching and API uploads manually
No conversation management: Stateless API calls without chat history, multi-turn context, or session management - build conversation layer yourself
Infrastructure knowledge required: Self-hosting requires Supabase, Postgres, and vector database expertise - not plug-and-play for non-DevOps teams
Minimal abstraction: Intentionally low-level API design provides control but requires more integration work than higher-level RAG platforms
GCP ecosystem dependency: Strongest value for organizations already using Google Cloud - less compelling for AWS/Azure-native companies
No full drag-and-drop chatbot builder: Cloud console manages indexes and search settings, but not a complete no-code GUI like Tidio or WonderChat
Learning curve for non-GCP users: Teams unfamiliar with Google Cloud face steeper learning curve vs platform-agnostic alternatives
Model selection limited to Google: PaLM 2 and Gemini family only - no native Claude, GPT-4, or Llama support compared to multi-model platforms
Requires technical expertise: Deeper customization calls for developer skills - not suitable for non-technical teams without GCP experience
Pricing complexity: Pay-as-you-go model requires careful monitoring to prevent unexpected costs at scale
Overkill for simple use cases: Enterprise RAG capabilities and GCP integration unnecessary for basic FAQ bots or simple customer service
Vendor lock-in considerations: Deep GCP integration creates switching costs if migrating to alternative cloud providers in future
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-4, GPT-3.5) and Anthropic (Claude) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
Stateless RAG Architecture: Pure retrieval and generation without built-in conversation state—developers implement multi-turn context and session management in application layer
Model-Agnostic Generation: Defaults to GPT-3.5 but supports GPT-4, self-hosted LLMs (Llama, Mistral), and any OpenAI-compatible models—no vendor lock-in for generation
Postgres Vector Search: Fast approximate nearest neighbor search using pgvector extension with cosine similarity—handles millions of chunks efficiently at enterprise scale
Metadata Filtering: Custom metadata tagging and filtering capabilities enabling organized knowledge management and multi-tenant architectures
Real-Time Re-Indexing: Almost instant document re-embedding when updating or overwriting knowledge sources—no lengthy reprocessing delays
REST API Foundation: Straightforward endpoints for file uploads, text uploads, and search with plain-JSON responses—easy integration from any programming language
Supabase Integration: Built on Supabase infrastructure leveraging PostgreSQL, Row-Level Security (RLS), and battle-tested backend for familiar deployment
LIMITATION - No Built-In Chat UI: API-only platform requiring developers to build custom chat interfaces—not a turnkey chatbot solution with widgets
LIMITATION - No Lead Capture: No built-in lead generation, email collection, or CRM integration capabilities—must be implemented at application layer
LIMITATION - No Human Handoff: No escalation workflows, live agent transfer, or fallback mechanisms—conversational features are developer responsibility
LIMITATION - No Multi-Channel Integrations: No native Slack, Teams, WhatsApp, or messaging platform connectors—developers build integration layer
LIMITATION - No Session Management: Stateless API design without conversation history tracking or multi-turn context retention—application must manage state
LIMITATION - No Advanced RAG: Missing hybrid search, reranking, knowledge graphs, multi-query retrieval, query expansion found in enterprise platforms
LIMITATION - No Observability Dashboard: No analytics, conversation metrics, or performance monitoring UI—must integrate external logging tools
Vertex AI Agent Engine: Build autonomous agents with short-term and long-term memory for managing sessions and recalling past conversations and preferences
Agent Builder (April 2024): Visual drag-and-drop interface to create AI agents without code, with advanced integrations to LlamaIndex, LangChain, and RAG capabilities combining LLM-generated responses with real-time data retrieval
Multi-turn conversation context: Agent Engine Sessions store individual user-agent interactions as definitive sources for conversation context, enabling coherent multi-turn interactions
Memory Bank: Stores and retrieves information from sessions to personalize agent interactions and maintain context across conversations
Agent orchestration: Agents can maintain context across systems, discover each other's capabilities dynamically, and negotiate interaction formats
Human handoff capabilities: Generate interaction summaries, citations, and other data to facilitate handoffs between AI apps and human agents with full conversation history
Observability tools: Google Cloud Trace, Cloud Monitoring, and Cloud Logging provide comprehensive understanding of agent behavior and performance
Action-based agents: Take actions based on conversations and interact with back-end transactional systems in an automated manner
Data source tuning: Tune chats with various data sources including conversation histories to enable smooth transitions and continuous improvement
LIMITATION: Technical expertise required: Agent Builder introduced visual interface in 2024, but deeper customization and orchestration still require GCP/developer skills
LIMITATION: No native lead capture: Unlike specialized chatbot platforms, Vertex AI focuses on enterprise conversational AI rather than marketing automation features
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
R A G-as-a- Service Assessment
Platform Type: TRUE RAG-AS-A-SERVICE API - Lightweight MIT-licensed open-source RAG backend built on Supabase with self-hosting capability and minimal API surface
Core Mission: Provide transparent, open-source alternative to proprietary RAG services (Carbon.ai shutdown response) with full cost control and no vendor lock-in
Target Market: Developers building custom RAG applications on budget, startups minimizing costs with self-hosting, organizations requiring data sovereignty with Supabase infrastructure
RAG Implementation: Standard RAG architecture with document chunking, OpenAI embeddings, Postgres pgvector semantic search—focused on simplicity over advanced techniques
API-First Design: Pure REST API for retrieval and generation without GUI, widgets, or conversational features—intentionally minimal abstraction for developer control
Self-Hosting Advantage: MIT license enables complete on-premises deployment keeping all data on your servers—ideal for GDPR, HIPAA, data residency compliance
Managed Service Option: Cloud-hosted plans (Free: 100 calls/month, Basic: $190/year for 750 calls/month, Enterprise: $1,490/year for 5K calls/month) eliminate infrastructure management
Pricing Model: Free self-hosting (MIT license) or extremely affordable hosted plans—40-90% cheaper than commercial RAG platforms with no per-document charges or user seat fees
Data Sources: File uploads (PDF, Markdown, TXT) via REST API or raw text ingestion—NO pre-built Google Drive, Notion, or cloud storage connectors (manual scripting required)
Model Flexibility: Model-agnostic with GPT-3.5 default, GPT-4, or self-hosted LLM support—users connect own OpenAI API keys without Supavec markup on AI costs
Security Foundation: Supabase Row-Level Security (RLS) for multi-tenant data isolation, HTTPS encryption, AES-256 at-rest encryption—self-hosting enables GDPR/HIPAA compliance
Support Model: Community GitHub/Discord support for free tier, email support for paid plans—no dedicated CSMs, SLAs, or enterprise account management
Open-Source Ecosystem: Transparent code on GitHub welcoming PRs, forks, and community contributions—no proprietary components or vendor lock-in
LIMITATION - Developer-Only Platform: Requires coding skills for setup, integration, and maintenance—non-technical teams cannot use without developer support
LIMITATION - Basic RAG Features: Standard retrieval without hybrid search, reranking, knowledge graphs, multi-query fusion, or hallucination detection—advanced features require custom development
LIMITATION - No Turnkey Features: No GUI dashboard, conversation management, lead capture, analytics, or multi-channel integrations—pure RAG API requiring application layer development
Comparison Validity: Architectural comparison to full-featured chatbot platforms like CustomGPT.ai requires context—Supavec is lightweight RAG backend API vs complete no-code chatbot builder
Use Case Fit: Perfect for developers wanting lightweight RAG backend without heavy frameworks, startups minimizing costs with Supabase self-hosting, teams building custom chatbots needing simple REST API for retrieval without paying for unused dashboard features
Platform Type: TRUE ENTERPRISE RAG-AS-A-SERVICE PLATFORM - fully managed orchestration service for production-ready RAG implementations with developer-first APIs
Core Architecture: Vertex AI RAG Engine (GA 2024) streamlines complex process of retrieving relevant information and feeding it to LLMs, with managed infrastructure handling data retrieval and LLM integration
API-First Design: Comprehensive easy-to-use API enabling rapid prototyping with VPC-SC security controls and CMEK support (data residency and AXT not supported)
Managed Orchestration: Developers focus on building applications rather than managing infrastructure - handles complexities of vector search, chunking, embedding, and retrieval automatically
Customization Depth: Various parsing, chunking, annotation, embedding, vector storage options with open-source model integration for specialized domain requirements
Developer Experience: "Sweet spot" for developers using Vertex AI to implement RAG-based LLMs - balances ease of use of Vertex AI Search with power of custom RAG pipeline
Target Market: Enterprise developers already using GCP infrastructure wanting managed RAG without building from scratch, organizations needing PaLM 2/Gemini models with Google's search capabilities
RAG Technology Leadership: Hybrid search with advanced reranking, factual-consistency scoring, Google web-crawling infrastructure for public content ingestion, sub-millisecond responses globally
Deployment Flexibility: Public cloud, VPC, or on-premise deployments with multi-region scalability, seamless GCP integration (BigQuery, Dataflow, Cloud Functions), and unified billing
Enterprise Readiness: SOC 2/ISO/HIPAA/GDPR compliance, customer-managed encryption keys, Private Link, detailed audit logs, Google Cloud Operations Suite monitoring
Use Case Fit: Ideal for personalized investment advice and risk assessment, accelerated drug discovery and personalized treatment plans, enhanced due diligence and contract review, GCP-native organizations wanting unified AI infrastructure
Competitive Positioning: Positioned between no-code platforms (WonderChat, Chatbase) and custom implementations (LangChain) - offers managed RAG with enterprise-grade capabilities for GCP ecosystem
LIMITATION: GCP lock-in: Strongest value for GCP customers - less compelling for AWS/Azure-native organizations vs platform-agnostic alternatives like CustomGPT or Cohere
LIMITATION: Google models only: PaLM 2/Gemini family exclusively - no native support for Claude, GPT-4, or open-source models compared to multi-model platforms
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
After analyzing features, pricing, performance, and user feedback, both Supavec and Vertex AI are capable platforms that serve different market segments and use cases effectively.
When to Choose Supavec
You value 100% open source with no vendor lock-in
Complete control over data and infrastructure
Strong privacy with Supabase RLS integration
Best For: 100% open source with no vendor lock-in
When to Choose Vertex AI
You value industry-leading 2m token context window with gemini models
Comprehensive ML platform covering entire AI lifecycle
Deep integration with Google Cloud ecosystem
Best For: Industry-leading 2M token context window with Gemini models
Migration & Switching Considerations
Switching between Supavec and Vertex AI requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
Supavec starts at custom pricing, while Vertex AI begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between Supavec and Vertex AI comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 6, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...