Azumo vs Dataworkz

Make an informed decision with our comprehensive comparison. Discover which RAG solution perfectly fits your needs.

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT.ai

Fact checked and reviewed by Bill Cava

Published: 01.04.2025Updated: 25.04.2025

In this comprehensive guide, we compare Azumo and Dataworkz across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.

Overview

When choosing between Azumo and Dataworkz, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.

Quick Decision Guide

  • Choose Azumo if: you value highly skilled nearshore developers in same timezone
  • Choose Dataworkz if: you value free tier available for testing

About Azumo

Azumo Landing Page Screenshot

Azumo is top-rated nearshore ai development services for custom solutions. Azumo is a leading nearshore software development company specializing in custom AI and machine learning solutions, offering dedicated teams and enterprise-grade development services for businesses looking to build intelligent applications. Founded in 2016, headquartered in San Francisco, CA, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
92/100
Starting Price
$100000/mo

About Dataworkz

Dataworkz Landing Page Screenshot

Dataworkz is rag-as-a-service platform for rapid genai development. Dataworkz is a managed RAG platform that enables businesses to build, deploy, and scale GenAI applications using proprietary data with pre-built tools for data discovery, transformation, and monitoring. Founded in 2020, headquartered in Milpitas, CA, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
79/100
Starting Price
Custom

Key Differences at a Glance

In terms of user ratings, Azumo in overall satisfaction. From a cost perspective, Dataworkz offers more competitive entry pricing. The platforms also differ in their primary focus: AI Development versus RAG Platform. These differences make each platform better suited for specific use cases and organizational requirements.

⚠️ What This Comparison Covers

We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.

Detailed Feature Comparison

logo of azumo
Azumo
logo of dataworkz
Dataworkz
logo of customGPT logo
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
  • Custom ETL Pipelines – Pulls from proprietary systems, SharePoint, wikis, cloud storage into single index
  • Unstructured + Structured – PDFs, HTML, multimedia, databases, spreadsheets unified knowledge base Learn more
  • Vector Databases – Pinecone, Weaviate integration for domain-specific data indexing and retrieval
  • ✅ Point-and-click RAG builder – Mix SharePoint, Confluence, databases via visual pipeline [MongoDB Reference]
  • ✅ Fine-grained control – Configure chunk sizes, embedding strategies, multiple sources simultaneously
  • ✅ Multi-source blending – Combine documents and live database queries in same pipeline
  • 1,400+ file formats – PDF, DOCX, Excel, PowerPoint, Markdown, HTML + auto-extraction from ZIP/RAR/7Z archives
  • Website crawling – Sitemap indexing with configurable depth for help docs, FAQs, and public content
  • Multimedia transcription – AI Vision, OCR, YouTube/Vimeo/podcast speech-to-text built-in
  • Cloud integrations – Google Drive, SharePoint, OneDrive, Dropbox, Notion with auto-sync
  • Knowledge platforms – Zendesk, Freshdesk, HubSpot, Confluence, Shopify connectors
  • Massive scale – 60M words (Standard) / 300M words (Premium) per bot with no performance degradation
Integrations & Channels
  • Bespoke Connectors – Custom integrations for CRM, ERP, internal intranets, legacy systems
  • Multi-Channel Deployment – Web, mobile, Slack, Microsoft Teams via custom interfaces Integration services
  • ✅ API-first architecture – Surface agents via REST or GraphQL endpoints [MongoDB: API Approach]
  • ⚠️ No prefab UI – Bring or build your own front-end chat widget
  • ✅ Universal integration – Drop into any environment that makes HTTP calls
  • Website embedding – Lightweight JS widget or iframe with customizable positioning
  • CMS plugins – WordPress, WIX, Webflow, Framer, SquareSpace native support
  • 5,000+ app ecosystem – Zapier connects CRMs, marketing, e-commerce tools
  • MCP Server – Integrate with Claude Desktop, Cursor, ChatGPT, Windsurf
  • OpenAI SDK compatible – Drop-in replacement for OpenAI API endpoints
  • LiveChat + Slack – Native chat widgets with human handoff capabilities
Core Chatbot Features
  • RAG Agents – Context-rich answers via advanced relevancy search and prompt engineering
  • Multi-Turn Conversations – Context retention with source attribution for trust See approach
  • Multi-Agent Systems – Complex agent orchestration and multi-step reasoning for business workflows
  • ✅ Agentic architecture – Multi-step reasoning, tool use, dynamic decision-making [Agentic RAG]
  • ✅ Intelligent routing – Agents decide knowledge base vs live DB vs API
  • ✅ Complex workflows – Fetch structured data, retrieve docs, blend answers automatically
  • ✅ #1 accuracy – Median 5/5 in independent benchmarks, 10% lower hallucination than OpenAI
  • ✅ Source citations – Every response includes clickable links to original documents
  • ✅ 93% resolution rate – Handles queries autonomously, reducing human workload
  • ✅ 92 languages – Native multilingual support without per-language config
  • ✅ Lead capture – Built-in email collection, custom forms, real-time notifications
  • ✅ Human handoff – Escalation with full conversation context preserved
Customization & Branding
  • ✅ Unlimited Customization – Persona, tone, fully branded UI through bespoke development
  • Brand Voice Matching – Voice, greetings, fonts, colors, layouts tailored collaboratively Learn more
  • ✅ 100% front-end control – No built-in UI means complete look and feel ownership
  • ✅ Deep behavior tweaks – Customize prompt templates and scenario configs extensively
  • ✅ Multiple personas – Create unlimited agent personas with different rule sets
  • Full white-labeling included – Colors, logos, CSS, custom domains at no extra cost
  • 2-minute setup – No-code wizard with drag-and-drop interface
  • Persona customization – Control AI personality, tone, response style via pre-prompts
  • Visual theme editor – Real-time preview of branding changes
  • Domain allowlisting – Restrict embedding to approved sites only
L L M Model Options
  • ✅ Model-Agnostic – GPT-4, Claude, LLaMA, Gemini, Cohere, open-source alternatives supported
  • Domain Fine-Tuning – Custom model tuning on business data for performance boost Learn more
  • ✅ Model-agnostic – Plug in GPT-4, Claude, open-source models freely
  • ✅ Full stack control – Choose embedding model, vector DB, orchestration logic
  • ⚠️ More setup required – Power and flexibility trade-off vs turnkey solutions
  • GPT-5.1 models – Latest thinking models (Optimal & Smart variants)
  • GPT-4 series – GPT-4, GPT-4 Turbo, GPT-4o available
  • Claude 4.5 – Anthropic's Opus available for Enterprise
  • Auto model routing – Balances cost/performance automatically
  • Zero API key management – All models managed behind the scenes
Developer Experience ( A P I & S D Ks)
  • ⚠️ Custom APIs Only – Tailor-made microservices, no off-the-shelf SDKs or self-service
  • LangChain/Haystack – Internal frameworks with docs and code reviews on delivery See process
  • ✅ No-code pipeline builder – Design pipelines visually, deploy to single API endpoint
  • ✅ Sandbox testing – Rapid iteration and tweaking before production launch
  • ⚠️ No official SDK – REST/GraphQL integration straightforward but no client libraries
  • REST API – Full-featured for agents, projects, data ingestion, chat queries
  • Python SDK – Open-source customgpt-client with full API coverage
  • Postman collections – Pre-built requests for rapid prototyping
  • Webhooks – Real-time event notifications for conversations and leads
  • OpenAI compatible – Use existing OpenAI SDK code with minimal changes
Performance & Accuracy
  • ✅ High Accuracy – Fine-tuned retrieval, advanced reranking for relevant context only
  • Scalable Infrastructure – Efficient vector search, low latency on complex queries Benchmarks
  • ✅ Hybrid retrieval – Mix semantic, lexical, or graph search for sharper context
  • ✅ Threshold tuning – Balance precision vs recall for your domain requirements
  • ✅ Enterprise scaling – Vector DBs and stores handle high-volume workloads efficiently
  • Sub-second responses – Optimized RAG with vector search and multi-layer caching
  • Benchmark-proven – 13% higher accuracy, 34% faster than OpenAI Assistants API
  • Anti-hallucination tech – Responses grounded only in your provided content
  • OpenGraph citations – Rich visual cards with titles, descriptions, images
  • 99.9% uptime – Auto-scaling infrastructure handles traffic spikes
Customization & Flexibility ( Behavior & Knowledge)
  • ✅ Complete Control – Multiple datastores, role-based access, custom system prompt tuning
  • Continuous Refinement – Add training data, tune prompts, custom logic integration Learn more
  • ✅ Multi-step reasoning – Scenario logic, tool calls, unified agent workflows
  • ✅ Data blending – Combine structured APIs/DBs with unstructured docs seamlessly
  • ✅ Full retrieval control – Customize chunking, metadata, and retrieval algorithms completely
  • Live content updates – Add/remove content with automatic re-indexing
  • System prompts – Shape agent behavior and voice through instructions
  • Multi-agent support – Different bots for different teams
  • Smart defaults – No ML expertise required for custom behavior
Pricing & Scalability
  • ⚠️ Project-Based Pricing – $10K+ minimum, higher upfront than SaaS subscriptions Pricing
  • ✅ Enterprise Scale – Infrastructure scales with query volume and data growth automatically
  • ⚠️ Custom contracts only – No public tiers, typically usage-based enterprise pricing
  • ✅ Massive scalability – Leverage your own infrastructure for huge data and concurrency
  • ✅ Best for large orgs – Ideal for flexible architecture and pricing at scale
  • Standard: $99/mo – 60M words, 10 bots
  • Premium: $449/mo – 300M words, 100 bots
  • Auto-scaling – Managed cloud scales with demand
  • Flat rates – No per-query charges
Security & Privacy
  • ✅ Data Sovereignty – On-prem or VPC deployments for complete data control
  • Enterprise Compliance – HIPAA, FINRA, GDPR with encryption and granular access Security
  • ✅ Enterprise-grade security – Encryption, compliance, access controls included [MongoDB: Enterprise Security]
  • ✅ Data sovereignty – Keep data in your environment with bring-your-own infrastructure
  • ✅ Single-tenant VPC – Supports strict isolation for regulatory compliance requirements
  • SOC 2 Type II + GDPR – Third-party audited compliance
  • Encryption – 256-bit AES at rest, SSL/TLS in transit
  • Access controls – RBAC, 2FA, SSO, domain allowlisting
  • Data isolation – Never trains on your data
Observability & Monitoring
  • Comprehensive Logging – Query performance, retrieval success, response times tracked out-of-box
  • Stack Integration – Splunk, CloudWatch integration for real-time alerts and analytics Learn more
  • ✅ Pipeline-stage monitoring – Track chunking, embeddings, queries with detailed visibility [MongoDB: Lifecycle Tools]
  • ✅ Step-by-step debugging – See which tools agent used and why decisions made
  • ✅ External logging integration – Hooks for logging systems and A/B testing capabilities
  • Real-time dashboard – Query volumes, token usage, response times
  • Customer Intelligence – User behavior patterns, popular queries, knowledge gaps
  • Conversation analytics – Full transcripts, resolution rates, common questions
  • Export capabilities – API export to BI tools and data warehouses
Support & Ecosystem
  • ✅ White-Glove Support – Dedicated manager, direct dev team access during and post-deployment Details
  • Technology Partnerships – Snowflake partnership, deep expertise across multiple AI platforms
  • ✅ Tailored onboarding – Enterprise-focused with solution engineering for large customers
  • ✅ MongoDB partnership – Tight integrations with Atlas Vector Search and enterprise support [Case Study]
  • ⚠️ Limited public forums – Direct engineer-to-engineer support vs broad community resources
  • Comprehensive docs – Tutorials, cookbooks, API references
  • Email + in-app support – Under 24hr response time
  • Premium support – Dedicated account managers for Premium/Enterprise
  • Open-source SDK – Python SDK, Postman, GitHub examples
  • 5,000+ Zapier apps – CRMs, e-commerce, marketing integrations
Core Agent Features
  • Custom RAG – Context-rich answers via relevancy search and prompt engineering Approach
  • Multi-Agent Systems – Orchestration and multi-step reasoning for complex workflows
  • Voice & Text – Voice agents, text chatbots, hybrid solutions per channel
  • CRM Integration – Salesforce, HubSpot, Dynamics integration for lead capture and management
  • Human Handoff – Context transfer when AI confidence drops or queries complex
  • ✅ Bespoke Development – No off-the-shelf limits on functionality or integration capabilities
  • ✅ Agentic RAG – Multi-step reasoning, external tools, adaptive context-based operation [Agentic Capabilities]
  • ✅ Agent memory – Conversational history, user preferences, business context via RAG pipelines
  • ✅ DAG task execution – Complex tasks decomposed into interdependent sub-tasks with parallelization [Multi-Step Reasoning]
  • ✅ LLM Compiler – Identifies optimal sub-task sequence with parallel execution when possible
  • ✅ External API integration – Create CRM leads, support tickets, trigger actions dynamically [Agent Builder]
  • ✅ Continuous learning – Agent frameworks support context switching and adaptation over time
  • Custom AI Agents – Autonomous GPT-4/Claude agents for business tasks
  • Multi-Agent Systems – Specialized agents for support, sales, knowledge
  • Memory & Context – Persistent conversation history across sessions
  • Tool Integration – Webhooks + 5,000 Zapier apps for automation
  • Continuous Learning – Auto re-indexing without manual retraining
R A G-as-a- Service Assessment
  • ⚠️ Custom Agency NOT SaaS – Bespoke RAG solutions, not self-service platform
  • Target Audience – Enterprises with $10K+ budgets, complex needs, not rapid prototyping
  • ✅ Complete Pipeline – Chunking, embeddings, vector DBs, retrieval, reranking customized
  • Agentic RAG – Multi-agent reasoning, self-validation, real-time orchestration Approach
  • ✅ Code Ownership – Clients own code and infrastructure for complete control
  • ⚠️ Timeline – Weeks to months delivery, not instant API access
  • Platform type – TRUE RAG-AS-A-SERVICE: Enterprise agentic orchestration layer for custom agents
  • Core architecture – Model-agnostic with full control over LLM, embeddings, vector DB, chunking
  • Agentic focus – Autonomous agents with multi-step reasoning, not simple Q&A chatbots [Agentic RAG]
  • Developer experience – Point-and-click builder, sandbox testing, REST/GraphQL API, agent builder UI
  • Target market – Large enterprises with data teams building sophisticated agents requiring deep customization
  • RAG differentiation – Graph retrieval, hybrid search, threshold tuning, agentic DAG execution
  • Platform type – TRUE RAG-AS-A-SERVICE with managed infrastructure
  • API-first – REST API, Python SDK, OpenAI compatibility, MCP Server
  • No-code option – 2-minute wizard deployment for non-developers
  • Hybrid positioning – Serves both dev teams (APIs) and business users (no-code)
  • Enterprise ready – SOC 2 Type II, GDPR, WCAG 2.0, flat-rate pricing
Additional Considerations
  • ✅ Best For – Mission-critical AI, legacy system integration, complex multi-step workflows
  • ✅ Code Ownership – Ultimate flexibility to maintain or extend post-delivery Approach
  • ⚠️ Investment – Higher upfront cost, longer rollout than SaaS tools
  • ✅ Graph-optimized retrieval – Specialized for interlinked docs with relationships [MongoDB Reference]
  • ✅ AI orchestration layer – Call APIs or trigger actions as part of answers
  • ⚠️ Requires LLMOps expertise – Best for teams wanting deep customization, not prefab chatbots
  • ✅ Tailor-made agents – Focuses on custom AI agents vs out-of-box chat tool
  • Time-to-value – 2-minute deployment vs weeks with DIY
  • Always current – Auto-updates to latest GPT models
  • Proven scale – 6,000+ organizations, millions of queries
  • Multi-LLM – OpenAI + Claude reduces vendor lock-in
No- Code Interface & Usability
  • ⚠️ No Pre-Built UI – Admin/user interfaces built as part of custom solution
  • Developer Required – Non-developers need developer help for changes despite polished UI
  • ✅ Low-code builder – Set up pipelines, chunking, data sources without heavy coding
  • ⚠️ Technical knowledge needed – Understanding embeddings and prompts helps significantly
  • ⚠️ No end-user UI – You build front-end while Dataworkz handles back-end logic
  • 2-minute deployment – Fastest time-to-value in the industry
  • Wizard interface – Step-by-step with visual previews
  • Drag-and-drop – Upload files, paste URLs, connect cloud storage
  • In-browser testing – Test before deploying to production
  • Zero learning curve – Productive on day one
Competitive Positioning
  • Market Position – Premium custom AI agency for mission-critical enterprise RAG solutions
  • Target Customers – Large enterprises, regulated industries (HIPAA, FINRA) with legacy integration needs
  • Key Competitors – Deviniti, Contextual.ai, Azure AI, OpenAI enterprise, internal dev teams
  • ✅ Advantages – Model-agnostic, white-glove support, code ownership, on-prem/VPC deployment, Snowflake partnerships
  • Pricing Value – Higher upfront, no recurring costs; best for complex unique requirements
  • Ideal Use Cases – Legacy integration, specialized workflows, fine-tuning, compliance needing on-prem control
  • Market position – Enterprise agentic RAG platform with point-and-click pipeline builder
  • Target customers – Large enterprises with LLMOps expertise building complex AI agents
  • Key competitors – Deepset Cloud, LangChain/LangSmith, Haystack, Vectara.ai, custom RAG solutions
  • Core advantages – Model-agnostic, agentic architecture, graph retrieval, no-code builder, MongoDB partnership
  • Best for – High-volume complex use cases with existing infrastructure and orchestration needs
  • Market position – Leading RAG platform balancing enterprise accuracy with no-code usability. Trusted by 6,000+ orgs including Adobe, MIT, Dropbox.
  • Key differentiators – #1 benchmarked accuracy • 1,400+ formats • Full white-labeling included • Flat-rate pricing
  • vs OpenAI – 10% lower hallucination, 13% higher accuracy, 34% faster
  • vs Botsonic/Chatbase – More file formats, source citations, no hidden costs
  • vs LangChain – Production-ready in 2 min vs weeks of development
A I Models
  • ✅ Model-Agnostic – GPT-4, Claude 3.5, Gemini, LLaMA 3.3, Qwen, Cohere, open-source
  • ⚠️ Selection Process – Azumo team determines during discovery, not self-service configuration
  • Fine-Tuning – Domain-specific tuning on curated datasets reflecting real business environments
  • Provider Relationships – OpenAI, Anthropic, Google, Meta, DeepSeek, xAI, Mistral partnerships
  • ✅ Model-agnostic – GPT-4, Claude, Llama, open-source models fully supported
  • ✅ Public APIs – AWS Bedrock and OpenAI API integration for managed access
  • ✅ Private hosting – Host open-source models in your VPC for sovereignty
  • ✅ Composable stack – Choose embedding, vector DB, chunking, LLM independently
  • ✅ No lock-in – Switch models without platform migration for cost or compliance
  • OpenAI – GPT-5.1 (Optimal/Smart), GPT-4 series
  • Anthropic – Claude 4.5 Opus/Sonnet (Enterprise)
  • Auto-routing – Intelligent model selection for cost/performance
  • Managed – No API keys or fine-tuning required
R A G Capabilities
  • Vector Databases – Pinecone, Weaviate, Qdrant integration for domain-specific data handling
  • Semantic Chunking – Breaks docs by topic/intent, sizes vary by content type
  • Advanced Retrieval – Relevancy search with reranking for high accuracy context
  • 128K Context Window – Large document processing and complex queries supported
  • ✅ Complete Pipeline – Chunking, embedding, vector search, reranking, answer generation with citations
  • ✅ Advanced pipeline builder – Point-and-click RAG configuration with fine-grained control RAG-as-a-Service
  • ✅ Agentic architecture – Multi-step tasks, external tool calls, adaptive reasoning [Agentic RAG]
  • ✅ Hybrid retrieval – Semantic, lexical, graph search for accuracy and context
  • ✅ Graph-optimized – Relationship-aware context for interlinked documents [Graph Capabilities]
  • ✅ Dynamic tool selection – Agents choose knowledge base, DB, or API automatically
  • GPT-4 + RAG – Outperforms OpenAI in independent benchmarks
  • Anti-hallucination – Responses grounded in your content only
  • Automatic citations – Clickable source links in every response
  • Sub-second latency – Optimized vector search and caching
  • Scale to 300M words – No performance degradation at scale
Use Cases
  • Primary Industries – E-commerce, healthcare, finance, manufacturing/logistics with complex AI needs
  • Enterprise Apps – Custom ETL, wiki integration, SharePoint connectors, multi-agent systems
  • Team Sizes – Large enterprises, 1-15 Azumo members working alongside client teams
  • Common Projects – Legacy modernization, Azure migrations, health screening, CRM integration with AI
  • ⚠️ Timeline – 12-18 month pilots typical before company-wide rollout, slower than SaaS
  • Retail – Product recommendations, inventory queries with structured/unstructured data blending [Retail Case Study]
  • Banking – Regulatory compliance, risk assessment with enterprise security and auditability
  • Healthcare – Clinical decision support, medical knowledge bases with HIPAA compliance
  • Enterprise knowledge – Documentation, policy queries with multi-source integration (SharePoint, Confluence, databases)
  • Customer support – Multi-step troubleshooting, automated responses with tool calling and APIs
  • Legal – Contract analysis, regulatory research with audit trails and traceability
  • Customer support – 24/7 AI handling common queries with citations
  • Internal knowledge – HR policies, onboarding, technical docs
  • Sales enablement – Product info, lead qualification, education
  • Documentation – Help centers, FAQs with auto-crawling
  • E-commerce – Product recommendations, order assistance
Security & Compliance
  • ✅ Certifications – HIPAA with BAA, FINRA, GDPR compliance for regulated industries
  • ✅ Deployment Options – On-premise or VPC for data sovereignty, cloud-agnostic architecture
  • Encryption – Enterprise-grade at rest/transit, granular access controls, role-based permissions
  • Custom Retention – Data retention policies tailored to industry compliance mandates
  • Monitoring – Logging tied to Splunk, CloudWatch for real-time alerts and analytics
  • Vulnerability Management – Continuous security scanning and threat detection for production systems
  • ✅ Enterprise-grade – Encryption, compliance, access controls for large organizations [Security Features]
  • ✅ Audit trails – Every interaction, tool call, data access audited for transparency
  • ✅ Data sovereignty – Bring-your-own-infrastructure keeps data in your environment completely
  • ✅ Compliance ready – Architecture supports GDPR, HIPAA, SOC 2 through flexible deployment
  • SOC 2 Type II + GDPR – Regular third-party audits, full EU compliance
  • 256-bit AES encryption – Data at rest; SSL/TLS in transit
  • SSO + 2FA + RBAC – Enterprise access controls with role-based permissions
  • Data isolation – Never trains on customer data
  • Domain allowlisting – Restrict chatbot to approved domains
Pricing & Plans
  • ⚠️ Project-Based – $10K+ minimum, $4,200-$70K+ range, higher upfront than SaaS
  • Hourly Rate – Average $25-49/hour, costs scale by scope and complexity
  • Billing Flexibility – Week-by-week exploratory pricing, custom enterprise agreements (average 3.2+ years)
  • Team Size – 1-15 members ensuring quality service and timely delivery
  • ✅ Value – Full code ownership, no recurring costs, long-term investment payoff
  • ⚠️ Custom contracts – Tailored pricing, no public tiers, requires sales engagement
  • ✅ Credit-based usage – 2M rows per credit for data movement, usage-based model
  • ✅ AWS Marketplace – Available for streamlined enterprise procurement [AWS Marketplace]
  • ✅ BYOI savings – Use existing infrastructure (databases, vector stores) to reduce costs
  • Standard: $99/mo – 10 chatbots, 60M words, 5K items/bot
  • Premium: $449/mo – 100 chatbots, 300M words, 20K items/bot
  • Enterprise: Custom – SSO, dedicated support, custom SLAs
  • 7-day free trial – Full Standard access, no charges
  • Flat-rate pricing – No per-query charges, no hidden costs
Support & Documentation
  • ✅ White-Glove – Dedicated manager, direct dev team access during and post-deployment
  • Project Management – Weekly meetings, backlog system, continuous engagement beyond original scope
  • Custom Docs – Endpoint design, architecture diagrams, implementation guides delivered with code
  • Training – In-person knowledge transfer sessions with client teams, clear docs
  • ⚠️ No SLAs – Direct communication, high responsiveness reported but no formal SLAs
  • ⚠️ No Community – Professional services model only, no public forums
  • ✅ Enterprise onboarding – Tailored solution engineering for large organizations with complex needs
  • ✅ Direct engineering support – Engineer-to-engineer technical implementation and optimization assistance
  • ✅ Product documentation – Platform setup, pipeline config, agentic workflows covered [Product Docs]
  • ✅ MongoDB partnership – Joint support for Atlas Vector Search and enterprise deployments
  • Documentation hub – Docs, tutorials, API references
  • Support channels – Email, in-app chat, dedicated managers (Premium+)
  • Open-source – Python SDK, Postman, GitHub examples
  • Community – User community + 5,000 Zapier integrations
Limitations & Considerations
  • ⚠️ High Initial Cost – $10K+ minimum, not suitable for small businesses
  • ⚠️ Long Timeline – 12-18 month pilots, weeks to months vs. hours for SaaS
  • ⚠️ Requires Dev Teams – Need internal developers to maintain and extend post-delivery
  • ⚠️ Services-Driven – Azumo determines config, not self-service dashboard controls
  • Learning Curve – Significant onboarding and training needed for client teams
  • Not Ideal For – Simple use cases, rapid deployment needs, budget-constrained startups
  • ⚠️ No built-in UI – API-first platform requires you to build front-end interface
  • ⚠️ Technical expertise required – Best for LLMOps teams understanding embeddings, prompts, RAG architecture
  • ⚠️ Custom pricing only – No transparent public tiers, requires sales engagement for quotes
  • ⚠️ Enterprise focus – May be overkill for small teams or simple chatbot cases
  • ⚠️ Infrastructure requirements – BYOI model needs existing cloud infrastructure and data engineering capabilities
  • Managed service – Less control over RAG pipeline vs build-your-own
  • Model selection – OpenAI + Anthropic only; no Cohere, AI21, open-source
  • Real-time data – Requires re-indexing; not ideal for live inventory/prices
  • Enterprise features – Custom SSO only on Enterprise plan

Ready to experience the CustomGPT difference?

Start Free Trial →

Final Thoughts

Final Verdict: Azumo vs Dataworkz

After analyzing features, pricing, performance, and user feedback, both Azumo and Dataworkz are capable platforms that serve different market segments and use cases effectively.

When to Choose Azumo

  • You value highly skilled nearshore developers in same timezone
  • Extensive AI/ML expertise since 2016
  • Flexible engagement models (staff aug or project-based)

Best For: Highly skilled nearshore developers in same timezone

When to Choose Dataworkz

  • You value free tier available for testing
  • No-code approach simplifies development
  • Flexible LLM and vector database choices

Best For: Free tier available for testing

Migration & Switching Considerations

Switching between Azumo and Dataworkz requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.

Pricing Comparison Summary

Azumo starts at $100000/month, while Dataworkz begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.

Our Recommendation Process

  1. Start with a free trial - Both platforms offer trial periods to test with your actual data
  2. Define success metrics - Response accuracy, latency, user satisfaction, cost per query
  3. Test with real use cases - Don't rely on generic demos; use your production data
  4. Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
  5. Check vendor stability - Review roadmap transparency, update frequency, and support quality

For most organizations, the decision between Azumo and Dataworkz comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.

📚 Next Steps

Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.

  • Review: Check the detailed feature comparison table above
  • Test: Sign up for free trials and test with real queries
  • Calculate: Estimate your monthly costs based on expected usage
  • Decide: Choose the platform that best aligns with your requirements

Last updated: December 28, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.

Ready to Get Started with CustomGPT?

Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.

Why Choose CustomGPT?

97% Accuracy

Industry-leading benchmarks

5-Min Setup

Get started instantly

24/7 Support

Expert help when you need it

Enterprise Ready

Scale with confidence

Trusted by leading companies worldwide

Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us

Join the Discussion

Loading comments...

Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.

Watch: Understanding AI Tool Comparisons