Azure AI vs Deviniti

Make an informed decision with our comprehensive comparison. Discover which RAG solution perfectly fits your needs.

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT.ai

Fact checked and reviewed by Bill Cava

Published: 01.04.2025Updated: 25.04.2025

In this comprehensive guide, we compare Azure AI and Deviniti across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.

Overview

When choosing between Azure AI and Deviniti, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.

Quick Decision Guide

  • Choose Azure AI if: you value comprehensive ai platform with 200+ services
  • Choose Deviniti if: you value strong compliance and security focus

About Azure AI

Azure AI Landing Page Screenshot

Azure AI is microsoft's comprehensive ai platform for enterprise solutions. Azure AI is Microsoft's suite of AI services offering pre-built APIs, custom model development, and enterprise-grade infrastructure for building intelligent applications across vision, language, speech, and decision-making domains. Founded in 1975, headquartered in Redmond, WA, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
88/100
Starting Price
Custom

About Deviniti

Deviniti Landing Page Screenshot

Deviniti is self-hosted genai solutions for compliance-critical industries. Deviniti is an AI development company specializing in secure, self-hosted AI agents and LLM solutions for highly regulated industries like finance, healthcare, and legal, with expertise in RAG architecture and custom AI development. Founded in 2010, headquartered in Kraków, Poland, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
77/100
Starting Price
Custom

Key Differences at a Glance

In terms of user ratings, Azure AI in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: AI Platform versus AI Development. These differences make each platform better suited for specific use cases and organizational requirements.

⚠️ What This Comparison Covers

We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.

Detailed Feature Comparison

logo of azureai
Azure AI
logo of deviniti
Deviniti
logo of customGPT logo
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
  • ✅ Multi-Source Support – Databases, blob storage, PDF, DOCX, HTML via Azure pipelines
  • ✅ Auto-Sync – Azure services keep indexed information current automatically
  • Custom pipelines – Ingest any source: docs, APIs, databases, proprietary systems Case study
  • Format support – PDF, DOCX, and uncommon formats as needed
  • Scalable infrastructure – Automated pipelines for huge datasets with fresh indexing Learn more
  • ⚠️ Custom build required – No pre-built connectors or templates
  • 1,400+ file formats – PDF, DOCX, Excel, PowerPoint, Markdown, HTML + auto-extraction from ZIP/RAR/7Z archives
  • Website crawling – Sitemap indexing with configurable depth for help docs, FAQs, and public content
  • Multimedia transcription – AI Vision, OCR, YouTube/Vimeo/podcast speech-to-text built-in
  • Cloud integrations – Google Drive, SharePoint, OneDrive, Dropbox, Notion with auto-sync
  • Knowledge platforms – Zendesk, Freshdesk, HubSpot, Confluence, Shopify connectors
  • Massive scale – 60M words (Standard) / 300M words (Premium) per bot with no performance degradation
Integrations & Channels
  • ✅ Azure Ecosystem – SDKs, REST APIs, Logic Apps, PowerApps (connectors)
  • ✅ Native Channels – Web widgets, Slack, Microsoft Teams integration
  • ✅ Low-Code Options – Custom workflows via low-code tools or full API
  • Multi-channel deployment – Web, mobile, Slack, Teams, or legacy apps
  • Custom APIs – Webhooks for CRMs, ERPs, ITSM with dev work Integration approach
  • Tailored to stack – Fits exact enterprise architecture requirements
  • ⚠️ Dev effort needed – Each integration requires custom development sprint
  • Website embedding – Lightweight JS widget or iframe with customizable positioning
  • CMS plugins – WordPress, WIX, Webflow, Framer, SquareSpace native support
  • 5,000+ app ecosystem – Zapier connects CRMs, marketing, e-commerce tools
  • MCP Server – Integrate with Claude Desktop, Cursor, ChatGPT, Windsurf
  • OpenAI SDK compatible – Drop-in replacement for OpenAI API endpoints
  • LiveChat + Slack – Native chat widgets with human handoff capabilities
Core Chatbot Features
  • ✅ RAG-Powered Answers – Semantic search + LLM generation for grounded responses
  • ✅ Hybrid Search – Keyword + semantic with optional ranking for relevance
  • ✅ Multilingual – Conversation history management from Azure portal
  • Domain-tuned AI – Multi-turn memory, context, any language, local LLMs
  • Workflow automation – Lead capture, human handoff, IT tickets Case study
  • Exact specifications – Built precisely to your requirements
  • ✅ #1 accuracy – Median 5/5 in independent benchmarks, 10% lower hallucination than OpenAI
  • ✅ Source citations – Every response includes clickable links to original documents
  • ✅ 93% resolution rate – Handles queries autonomously, reducing human workload
  • ✅ 92 languages – Native multilingual support without per-language config
  • ✅ Lead capture – Built-in email collection, custom forms, real-time notifications
  • ✅ Human handoff – Escalation with full conversation context preserved
Customization & Branding
  • ✅ Full UI Control – Custom CSS, logos, welcome messages for branding
  • ✅ White-Labeling – Domain restrictions via Azure configuration
  • ✅ Search Behavior – Custom analyzers, synonym maps (config options)
  • Fully bespoke – UI, tone, flows match brand perfectly Custom approach
  • Domain-specific dialogs – Custom styling and terminology for your industry
  • ⚠️ Changes require dev – Updates need development effort, not self-service
  • Full white-labeling included – Colors, logos, CSS, custom domains at no extra cost
  • 2-minute setup – No-code wizard with drag-and-drop interface
  • Persona customization – Control AI personality, tone, response style via pre-prompts
  • Visual theme editor – Real-time preview of branding changes
  • Domain allowlisting – Restrict embedding to approved sites only
L L M Model Options
  • ✅ Azure OpenAI – GPT-4, GPT-3.5 via native Azure integration
  • ✅ Prompt Control – Customizable templates and system prompts
  • ✅ Model Flexibility – Azure-hosted or external LLMs via API
  • Model-agnostic – GPT-4, Claude, Llama 2, Falcon, any model Services
  • Fine-tuning – Train on proprietary data for insider terminology
  • Local deployment – On-prem hosting for complete data sovereignty
  • ⚠️ Model swaps – Require new build/deploy cycle
  • GPT-5.1 models – Latest thinking models (Optimal & Smart variants)
  • GPT-4 series – GPT-4, GPT-4 Turbo, GPT-4o available
  • Claude 4.5 – Anthropic's Opus available for Enterprise
  • Auto model routing – Balances cost/performance automatically
  • Zero API key management – All models managed behind the scenes
Developer Experience ( A P I & S D Ks)
  • ✅ Multi-Language SDKs – C#, Python, Java, JavaScript (Azure SDKs)
  • ✅ Documentation – Tutorials, sample code for index management and queries
  • ✅ Azure AD Auth – Secure API access via Azure portal
  • Project-specific API – JSON over HTTP tailored to endpoints Example
  • Custom docs – Documentation and samples from Deviniti engineers
  • Direct support – Access to dev team, not generic docs
  • ⚠️ No public SDK – Everything custom-built for your project
  • REST API – Full-featured for agents, projects, data ingestion, chat queries
  • Python SDK – Open-source customgpt-client with full API coverage
  • Postman collections – Pre-built requests for rapid prototyping
  • Webhooks – Real-time event notifications for conversations and leads
  • OpenAI compatible – Use existing OpenAI SDK code with minimal changes
Performance & Accuracy
  • ✅ Enterprise Scale – Millisecond responses under heavy load (Microsoft Mechanics)
  • ✅ High Relevance – Hybrid search, semantic ranking, configurable scoring
  • ✅ Global Infrastructure – Low latency, high throughput worldwide
  • Best-practice retrieval – Multi-index, tuned prompts for precision Approach
  • Hallucination reduction – Fine-tune on your data for accuracy
  • ⚠️ Ongoing refinement – Perfecting accuracy needs iterative tweaks
  • Sub-second responses – Optimized RAG with vector search and multi-layer caching
  • Benchmark-proven – 13% higher accuracy, 34% faster than OpenAI Assistants API
  • Anti-hallucination tech – Responses grounded only in your provided content
  • OpenGraph citations – Rich visual cards with titles, descriptions, images
  • 99.9% uptime – Auto-scaling infrastructure handles traffic spikes
Customization & Flexibility ( Behavior & Knowledge)
  • ✅ Index Control – Custom analyzers, tokenizers, synonym maps for domain-specific search
  • ✅ Cognitive Skills – Plugin custom skills during indexing for specialized processing
  • ✅ LLM Tuning – Prompt customization for style and tone control
  • Total control – Add sources, tweak tone, inject APIs Details
  • Unlimited flexibility – Dream it, Deviniti builds it
  • ⚠️ Dev sprints – Updates usually require quick development work
  • Live content updates – Add/remove content with automatic re-indexing
  • System prompts – Shape agent behavior and voice through instructions
  • Multi-agent support – Different bots for different teams
  • Smart defaults – No ML expertise required for custom behavior
Pricing & Scalability
  • ✅ Pay-As-You-Go – Tier, partition, replica based (Pricing Guide)
  • ✅ Free Tier – Development/small projects; production tiers available
  • ✅ On-Demand Scaling – Add replicas/partitions; enterprise discounts available
  • Project-based – $50K-$500K+ initial, optional maintenance Portfolio
  • Scale to millions – Infrastructure handles huge query volumes
  • No subscription fees – Own outright without recurring costs
  • ⚠️ High upfront – Much costlier than $29-$999/mo SaaS solutions
  • Standard: $99/mo – 60M words, 10 bots
  • Premium: $449/mo – 300M words, 100 bots
  • Auto-scaling – Managed cloud scales with demand
  • Flat rates – No per-query charges
Security & Privacy
  • ✅ Enterprise Compliance – SOC, ISO, GDPR, HIPAA, FedRAMP (Azure Compliance)
  • ✅ Data Encryption – Transit/rest, customer-managed keys, Private Link isolation
  • ✅ Azure AD RBAC – Granular role-based access control and authentication
  • On-prem/private cloud – Full data control and compliance Security
  • Strong encryption – AES-256 at rest, TLS 1.3 in transit
  • Security stack integration – Hooks into SIEM, monitoring, access controls
  • Data sovereignty – No third-party sharing or cloud vendor dependencies
  • SOC 2 Type II + GDPR – Third-party audited compliance
  • Encryption – 256-bit AES at rest, SSL/TLS in transit
  • Access controls – RBAC, 2FA, SSO, domain allowlisting
  • Data isolation – Never trains on your data
Observability & Monitoring
  • ✅ Portal Dashboard – Track indexes, query performance, usage at glance
  • ✅ Azure Monitor – Custom alerts, dashboards (Azure Monitor)
  • ✅ Export Logs – API-based log and analytics export for analysis
  • Custom monitoring – CloudWatch, Prometheus integration Info
  • Admin dashboards – Real-time analytics, alerts, SIEM feeds
  • Enterprise tools – Integrates with existing monitoring infrastructure
  • Real-time dashboard – Query volumes, token usage, response times
  • Customer Intelligence – User behavior patterns, popular queries, knowledge gaps
  • Conversation analytics – Full transcripts, resolution rates, common questions
  • Export capabilities – API export to BI tools and data warehouses
Support & Ecosystem
  • ✅ Microsoft Support – Docs, Microsoft Learn modules, active community forums
  • ✅ Enterprise SLAs – Dedicated channels for mission-critical deployments
  • ✅ Developer Community – Large Azure ecosystem sharing best practices
  • White-glove support – Direct dev team access, kickoff through post-launch Services
  • Stack-specific docs – Training and documentation tailored to your infrastructure
  • 200+ clients – Proven track record with Fortune 500 enterprises
  • Comprehensive docs – Tutorials, cookbooks, API references
  • Email + in-app support – Under 24hr response time
  • Premium support – Dedicated account managers for Premium/Enterprise
  • Open-source SDK – Python SDK, Postman, GitHub examples
  • 5,000+ Zapier apps – CRMs, e-commerce, marketing integrations
Additional Considerations
  • ✅ Deep Integration – End-to-end solutions within Azure platform
  • ✅ Enterprise-Grade – Fine-grained tuning with proven reliability
  • ⚠️ Azure-First – Best for organizations already invested in Azure ecosystem
  • Hybrid agents – Complex transactional tasks beyond Q&A Custom governance
  • End-to-end ownership – Own and evolve solution as AI advances
  • Future-proof – Complete control over technology roadmap
  • Time-to-value – 2-minute deployment vs weeks with DIY
  • Always current – Auto-updates to latest GPT models
  • Proven scale – 6,000+ organizations, millions of queries
  • Multi-LLM – OpenAI + Claude reduces vendor lock-in
No- Code Interface & Usability
  • ✅ Azure Portal – Create indexes, tweak analyzers, monitor performance intuitively
  • ✅ Low-Code Tools – Logic Apps, PowerApps for non-developers
  • ⚠️ Learning Curve – Advanced setups require technical expertise vs turnkey solutions
  • ⚠️ No no-code tools – IT or admin panels handle configuration
  • User experience – End users chat; tech team manages tweaks
  • 2-minute deployment – Fastest time-to-value in the industry
  • Wizard interface – Step-by-step with visual previews
  • Drag-and-drop – Upload files, paste URLs, connect cloud storage
  • In-browser testing – Test before deploying to production
  • Zero learning curve – Productive on day one
Competitive Positioning
  • Market Position – Enterprise AI platform with production-ready RAG at global scale
  • Target Customers – Azure-invested orgs needing SOC/ISO/GDPR/HIPAA/FedRAMP compliance, 99.999% SLAs
  • Key Competitors – AWS Bedrock, Google Vertex AI, OpenAI Enterprise, Coveo, Vectara
  • Competitive Advantages – Azure ecosystem integration, hybrid search, native OpenAI, global infrastructure
  • Best Fit – Organizations using Azure/Office 365 requiring enterprise compliance and regional residency
  • Market position – Custom AI agency (200+ clients), enterprise RAG specialist
  • Target customers – Large enterprises needing custom solutions, legacy system integration
  • Key competitors – Azumo, internal AI teams, Contextual.ai, AI consultancies
  • Advantages – Proven track record, model-agnostic, on-prem deployment, solution ownership
  • Pricing advantage – Higher upfront, no subscriptions; best for unique needs
  • Use case fit – Legacy systems, domain-tuned models, hybrid agents, data sovereignty
  • Market position – Leading RAG platform balancing enterprise accuracy with no-code usability. Trusted by 6,000+ orgs including Adobe, MIT, Dropbox.
  • Key differentiators – #1 benchmarked accuracy • 1,400+ formats • Full white-labeling included • Flat-rate pricing
  • vs OpenAI – 10% lower hallucination, 13% higher accuracy, 34% faster
  • vs Botsonic/Chatbase – More file formats, source citations, no hidden costs
  • vs LangChain – Production-ready in 2 min vs weeks of development
A I Models
  • ✅ Azure OpenAI – GPT-4, GPT-4o, GPT-3.5 Turbo native integration
  • ✅ Anthropic Claude – Available via Microsoft Foundry (late 2024/early 2025)
  • ✅ Multi-Model Platform – Only cloud with both Claude and GPT models
  • ✅ Model Flexibility – Azure-hosted or external LLMs via API
  • ✅ Prompt Templates – Customizable prompts for specific use cases
  • ✅ Enterprise Integration – Models integrated with Azure security/compliance/governance
  • Model-agnostic – GPT-4, Claude, Llama 2, Falcon, Cohere, custom models
  • Fine-tuning – Proprietary data training for domain-specific terminology
  • Local LLMs – On-prem hosting for sovereignty and offline operation
  • Multiple models – Different models for different use cases
  • ⚠️ Model swaps – Require build/deploy cycle for changes
  • OpenAI – GPT-5.1 (Optimal/Smart), GPT-4 series
  • Anthropic – Claude 4.5 Opus/Sonnet (Enterprise)
  • Auto-routing – Intelligent model selection for cost/performance
  • Managed – No API keys or fine-tuning required
R A G Capabilities
  • ✅ Agentic Retrieval (2024) – LLM-powered query decomposition into parallel subqueries for chat
  • ✅ Hybrid Search – Vector + keyword + semantic with relevance tuning
  • ✅ Vector Store – Long-term memory, knowledge base for RAG apps
  • ✅ Framework Support – Azure Semantic Kernel, LangChain for RAG workflows
  • ✅ Import Wizard – Automates parsing, chunking, enrichment, embedding pipeline
  • ✅ Query Enhancement – Rewriting, synonyms, paraphrasing, spelling correction
  • Custom RAG – Multi-index strategies, tuned prompts for precision
  • Domain fine-tuning – Eliminate hallucinations with proprietary data training
  • Hybrid search – Semantic and keyword strategies tailored to data
  • Source attribution – Full citations with confidence scores
  • ⚠️ Ongoing tweaks – Perfecting retrieval accuracy takes time
  • GPT-4 + RAG – Outperforms OpenAI in independent benchmarks
  • Anti-hallucination – Responses grounded in your content only
  • Automatic citations – Clickable source links in every response
  • Sub-second latency – Optimized vector search and caching
  • Scale to 300M words – No performance degradation at scale
Use Cases
  • ✅ Enterprise Search – 40% productivity boost (9 hours/week saved per employee)
  • ✅ Customer Service – Self-service chatbots, real-time agent support, coaching, summarization
  • ✅ RAG Applications – 50%+ Fortune 500 companies (OpenAI, Otto, KPMG, PETRONAS)
  • ✅ Knowledge Management – AI-driven insights for organizational knowledge bases
  • ✅ Multi-Industry – Retail, financial, healthcare, manufacturing, government sectors
  • Enterprise knowledge bases – Self-hosted chatbots with custom internal docs
  • Legacy integration – AI agents for ERPs, CRMs, ITSM tools
  • Regulated industries – On-prem for healthcare, finance, government compliance
  • Multi-lingual support – Any language with local LLM deployment
  • Hybrid agents – Transactional workflows: IT tickets, approvals, automation
  • Customer support – 24/7 AI handling common queries with citations
  • Internal knowledge – HR policies, onboarding, technical docs
  • Sales enablement – Product info, lead qualification, education
  • Documentation – Help centers, FAQs with auto-crawling
  • E-commerce – Product recommendations, order assistance
Security & Compliance
  • ✅ Certifications – SOC, ISO, GDPR, HIPAA, FedRAMP (Azure Compliance)
  • ✅ Encryption – Transit (SSL/TLS) and rest with customer-managed keys
  • ✅ Private Link – Enhanced isolation for security
  • ✅ Azure AD RBAC – Granular access control with secure authentication
  • ✅ 99.999% SLA – Enterprise reliability with regional data residency
  • ✅ Security Monitoring – Continuous oversight via Azure Monitor
  • On-prem deployment – Air-gapped environments, complete data control
  • Custom compliance – HIPAA, GDPR, SOC 2, industry-specific measures
  • Encryption – AES-256 at rest, TLS 1.3 in transit
  • RBAC – Integrated with existing identity management systems
  • Data residency – Full control over storage location (US, EU, on-prem)
  • SOC 2 Type II + GDPR – Regular third-party audits, full EU compliance
  • 256-bit AES encryption – Data at rest; SSL/TLS in transit
  • SSO + 2FA + RBAC – Enterprise access controls with role-based permissions
  • Data isolation – Never trains on customer data
  • Domain allowlisting – Restrict chatbot to approved domains
Pricing & Plans
  • ✅ Free Tier – 50 MB storage for dev/small projects
  • ✅ Basic Tier – Entry production with fixed storage (no partition scaling)
  • ✅ Standard Tiers – Scalable throughput via partitions and replicas
  • ✅ Storage Optimized – High-volume data at reduced $/TB
  • ✅ 2024 Capacity Boost – 5-6x storage increase free (Pricing)
  • ✅ Tier Flexibility (2024) – Change tiers without downtime; enterprise discounts available
  • Project pricing – $50K-$500K+ based on scope and complexity
  • No subscriptions – Own solution outright without recurring fees
  • Optional maintenance – Ongoing support contracts available post-launch
  • 200+ clients – Fortune 500 and mid-market proven track record
  • ⚠️ High upfront – Much costlier than $29-$999/mo SaaS platforms
  • Standard: $99/mo – 10 chatbots, 60M words, 5K items/bot
  • Premium: $449/mo – 100 chatbots, 300M words, 20K items/bot
  • Enterprise: Custom – SSO, dedicated support, custom SLAs
  • 7-day free trial – Full Standard access, no charges
  • Flat-rate pricing – No per-query charges, no hidden costs
Support & Documentation
  • ✅ Enterprise Support – Microsoft infrastructure with dedicated mission-critical channels
  • ✅ SLA Plans – Guaranteed response times and uptime commitments
  • ✅ Microsoft Learn – Docs, tutorials, modules (docs)
  • ✅ Community Forums – Active Azure developers sharing best practices
  • ✅ Portal Dashboard – Integrated monitoring for indexes, queries, analytics
  • ✅ Official SDKs – REST APIs, C#, Python, Java, JavaScript (SDKs)
  • White-glove support – Direct dev team access throughout lifecycle
  • Custom documentation – Tailored to your implementation and tech stack
  • Training programs – IT teams and end users trained on solution
  • Knowledge transfer – Complete handoff: code, architecture, runbooks
  • Enterprise focus – Proven with large-scale, complex deployments
  • Documentation hub – Docs, tutorials, API references
  • Support channels – Email, in-app chat, dedicated managers (Premium+)
  • Open-source – Python SDK, Postman, GitHub examples
  • Community – User community + 5,000 Zapier integrations
Limitations & Considerations
  • ⚠️ Free Tier Limits – 50 MB storage, shared resources, no partitions/replicas
  • ⚠️ No Pause/Stop – Pay continuous fixed rate; resources allocated when created
  • ⚠️ Vector Limitations – Index sizes restricted by tier memory; regional infrastructure gaps
  • ⚠️ Learning Curve – Advanced customizations require trial-and-error, technical expertise
  • ⚠️ Cost Structure – Restrictive for small teams; costs scale quickly with usage
  • ⚠️ Azure Lock-In – Less competitive for non-Azure customers; best for Azure ecosystem
  • ⚠️ High upfront cost – $50K-$500K+ vs $29-$999/month SaaS
  • ⚠️ Long time-to-value – 2-6 month build vs instant SaaS deployment
  • ⚠️ Custom maintenance – Updates need dev work, no self-service
  • ⚠️ No templates – Everything built from scratch, no no-code tools
  • ⚠️ IT expertise required – Team needed for infrastructure and management
  • Best for unique needs – Only justified when off-the-shelf fails
  • Managed service – Less control over RAG pipeline vs build-your-own
  • Model selection – OpenAI + Anthropic only; no Cohere, AI21, open-source
  • Real-time data – Requires re-indexing; not ideal for live inventory/prices
  • Enterprise features – Custom SSO only on Enterprise plan
Core Agent Features
  • ✅ Agentic Retrieval (2024) – Multi-query pipeline for complex chat questions (docs)
  • ✅ Query Decomposition – LLM breaks complex queries into focused subqueries
  • ✅ Parallel Execution – Subqueries run simultaneously with semantic reranking
  • ✅ 40% Performance Boost – Improved answer relevance vs traditional RAG
  • ✅ Knowledge Bases – Multi-source grounding without siloed pipelines (Azure AI Foundry)
  • ✅ Chat History – Contextually aware responses from conversation history
  • Autonomous agents – Planning modules, memory, RAG pipelines Agent Development
  • Planning module – Task decomposition for multi-step autonomous workflows
  • Memory system – Retains interactions for consistent long-running workflows
  • Tool integration – CRMs, ERPs, ITSM, APIs, legacy systems RAG Implementation
  • Proven deployment – Credit Agricole bank customer service automation
  • Custom AI Agents – Autonomous GPT-4/Claude agents for business tasks
  • Multi-Agent Systems – Specialized agents for support, sales, knowledge
  • Memory & Context – Persistent conversation history across sessions
  • Tool Integration – Webhooks + 5,000 Zapier apps for automation
  • Continuous Learning – Auto re-indexing without manual retraining
R A G-as-a- Service Assessment
  • ✅ TRUE RAG-AS-A-SERVICE – End-to-end enterprise RAG with native Azure integration
  • ✅ Performance Metrics – Prompt variations, retrieval accuracy, response evaluation
  • ✅ AI-Assisted Metrics – 3 metrics requiring no ground truth for evaluation
  • ✅ Hybrid Optimization – Vector + keyword + semantic with relevance tuning
  • ✅ Import Wizard – Automates parsing, chunking, enrichment, embedding pipeline
  • ✅ 40% Accuracy Boost – vs standalone LLMs (study)
  • Platform type – CUSTOM AI CONSULTANCY (not SaaS/platform)
  • Core offering – Bespoke enterprise RAG and AI agents (200+ clients)
  • Agent capabilities – Autonomous agents with planning, memory, tool integration Agent Services
  • Developer experience – White-glove services, project-specific APIs, custom docs
  • ⚠️ No no-code – Zero self-service, everything needs custom dev
  • Deployment – On-prem/private cloud only, complete data sovereignty
  • Enterprise ready – ISO 27001, GDPR/CCPA, custom HIPAA compliance
  • ⚠️ NOT A PLATFORM – Exclusively custom consultancy, multi-month builds
  • Platform type – TRUE RAG-AS-A-SERVICE with managed infrastructure
  • API-first – REST API, Python SDK, OpenAI compatibility, MCP Server
  • No-code option – 2-minute wizard deployment for non-developers
  • Hybrid positioning – Serves both dev teams (APIs) and business users (no-code)
  • Enterprise ready – SOC 2 Type II, GDPR, WCAG 2.0, flat-rate pricing

Ready to experience the CustomGPT difference?

Start Free Trial →

Final Thoughts

Final Verdict: Azure AI vs Deviniti

After analyzing features, pricing, performance, and user feedback, both Azure AI and Deviniti are capable platforms that serve different market segments and use cases effectively.

When to Choose Azure AI

  • You value comprehensive ai platform with 200+ services
  • Deep integration with Microsoft ecosystem
  • Enterprise-grade security and compliance

Best For: Comprehensive AI platform with 200+ services

When to Choose Deviniti

  • You value strong compliance and security focus
  • Self-hosted solutions for data privacy
  • Domain expertise in regulated industries

Best For: Strong compliance and security focus

Migration & Switching Considerations

Switching between Azure AI and Deviniti requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.

Pricing Comparison Summary

Azure AI starts at custom pricing, while Deviniti begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.

Our Recommendation Process

  1. Start with a free trial - Both platforms offer trial periods to test with your actual data
  2. Define success metrics - Response accuracy, latency, user satisfaction, cost per query
  3. Test with real use cases - Don't rely on generic demos; use your production data
  4. Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
  5. Check vendor stability - Review roadmap transparency, update frequency, and support quality

For most organizations, the decision between Azure AI and Deviniti comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.

📚 Next Steps

Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.

  • Review: Check the detailed feature comparison table above
  • Test: Sign up for free trials and test with real queries
  • Calculate: Estimate your monthly costs based on expected usage
  • Decide: Choose the platform that best aligns with your requirements

Last updated: January 2, 2026 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.

Ready to Get Started with CustomGPT?

Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.

Why Choose CustomGPT?

97% Accuracy

Industry-leading benchmarks

5-Min Setup

Get started instantly

24/7 Support

Expert help when you need it

Enterprise Ready

Scale with confidence

Trusted by leading companies worldwide

Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us

Join the Discussion

Loading comments...

Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.

Watch: Understanding AI Tool Comparisons