In this comprehensive guide, we compare Azure AI and Progress Agentic RAG across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between Azure AI and Progress Agentic RAG, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose Azure AI if: you value comprehensive ai platform with 200+ services
Choose Progress Agentic RAG if: you value proprietary remi v2 model (30x faster inference) addresses hallucination problem with continuous quality monitoring - differentiated capability absent from most competitors
About Azure AI
Azure AI is microsoft's comprehensive ai platform for enterprise solutions. Azure AI is Microsoft's suite of AI services offering pre-built APIs, custom model development, and enterprise-grade infrastructure for building intelligent applications across vision, language, speech, and decision-making domains. Founded in 1975, headquartered in Redmond, WA, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
88/100
Starting Price
Custom
About Progress Agentic RAG
Progress Agentic RAG is enterprise application development and deployment platform. Enterprise RAG-as-a-Service platform launched Sept 2025 following Progress Software's acquisition of Barcelona-based Nuclia. Combines SOC2/ISO 27001 security with proprietary REMi evaluation model for continuous answer quality monitoring. Built on open-source NucliaDB (710+ GitHub stars) with Python/JavaScript SDKs. Starting at $700/month. Founded in 2019 (Nuclia), acquired 2025, headquartered in Barcelona, Spain (Nuclia) / Bedford, MA, USA (Progress), the platform has established itself as a reliable solution in the RAG space.
Overall Rating
82/100
Starting Price
$700/mo
Key Differences at a Glance
In terms of user ratings, Azure AI in overall satisfaction. From a cost perspective, Azure AI starts at a lower price point. The platforms also differ in their primary focus: AI Platform versus Enterprise Software. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
Azure AI
Progress Agentic RAG
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
Lets you pull data from almost anywhere—databases, blob storage, or common file types like PDF, DOCX, and HTML—as shown in the Azure AI Search overview.
Uses Azure pipelines and connectors to tap into a wide range of content sources, so you can set up indexing exactly the way you need.
Keeps everything in sync through Azure services, ensuring your information stays current without extra effort.
60+ Document Formats: PDF, Word (.docx), Excel, PowerPoint, plain text, email formats with automatic parsing
Multimedia Processing: Automatic speech-to-text (MP3, WAV, AIFF), video transcript extraction (MP4, etc.), OCR for scanned documents/images
Cloud Connectors: SharePoint, Confluence, OneDrive, Google Drive, Amazon S3 with direct integration
Sync Agent Desktop App: 60-minute automatic sync with content hashing to prevent redundant reindexing
Manual Upload Interface: Files, folders, web links, sitemaps, Q&A pairs via dashboard
Fast Deployment: 2-hour initial ingestion, 48-hour full deployment timeline
CRITICAL GAPS: NO Dropbox integration, NO Notion integration, NO explicit YouTube transcript extraction documented
Architecture Focus: Comprehensive knowledge retrieval vs lead conversion focus (unlike Drift)
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
Provides full-featured SDKs and REST APIs that slot right into Azure’s ecosystem—including Logic Apps and PowerApps (Azure Connectors).
Supports easy embedding via web widgets and offers native hooks for Slack, Microsoft Teams, and other channels.
Lets you build custom workflows with Azure’s low-code tools or dive deeper with the full API for more control.
RAG Cookbook: Comprehensive downloadable guide for developers
SDK Ecosystem: Python (~21K weekly downloads) + JavaScript/TypeScript with active developer usage
14-Day Free Trial: Hands-on evaluation without credit card requirement
Progress Enterprise Support: Backed by 2,000+ employee parent company infrastructure
AWS Marketplace: Available November 2025 for streamlined enterprise procurement
Open-Source Community: NucliaDB 710+ GitHub stars with AGPLv3 license transparency
API-First Support: Comprehensive REST API documentation with regional endpoints
Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast.
Developer Docs
Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs.
Enterprise Solutions
Benefits from an active user community plus integrations through Zapier and GitHub resources.
Additional Considerations
Deep Azure integration lets you craft end-to-end solutions without leaving the platform.
Combines fine-grained tuning capabilities with the reliability you’d expect from an enterprise-grade service.
Best suited for organizations already invested in Azure, thanks to unified billing and familiar cloud management tools.
Recent Acquisition (June 2025): Progress Software acquired Nuclia for $50M - platform transitioning under new ownership with potential strategic direction changes
Genuine No-Code + Developer Appeal: Dual-track value proposition - non-technical teams use dashboard, developers leverage API/SDKs for custom builds
REMi Quality Differentiator: Proprietary continuous evaluation model (30x faster in v2) addresses hallucination problem absent from most RAG competitors
Open-Source Trust Factor: NucliaDB (710+ GitHub stars, AGPLv3) provides code transparency vs black-box platforms - security audits possible
Multimodal Strength: OCR for images, speech-to-text for audio/video creates comprehensive searchable corpus beyond text-only competitors
Enterprise RAG Focus: Platform optimized for knowledge retrieval and semantic search - not conversational marketing/sales engagement like Drift/Yellow.ai
Progress Ecosystem Integration: OpenEdge database connector, Sitefinity CMS integration provides distribution channels unavailable to standalone platforms
Documentation Fragmentation: Dual portals (docs.rag.progress.cloud + legacy docs.nuclia.dev) during transition may cause developer confusion
Competitive Pricing Entry: $700/month Fly tier undercuts enterprise RAG alternatives while providing genuine capabilities vs limited free tiers
Best For: Organizations wanting model flexibility (7 providers), multimodal indexing, open-source transparency, and developer API access without managing infrastructure
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No- Code Interface & Usability
Provides an intuitive Azure portal where you can create indexes, tweak analyzers, and monitor performance.
Low-code tools like Logic Apps and PowerApps connectors help non-developers add search features without heavy coding.
More advanced setups—complex indexing or fine-grained configuration—may still call for technical expertise versus fully turnkey options.
Target Users: Non-technical teams (marketing, HR, legal, customer support) with zero coding required
Visual Dashboard: Create Knowledge Box, upload documents, deploy search widget in single session
Rapid Deployment: Progress explicitly markets minutes-to-production capability for business users
Shadow DOM Architecture: Advanced users can apply CSS styling via cssPath attribute for customization
Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing.
User Experience Review
Uses role-based access so business users and devs can collaborate smoothly.
Competitive Positioning
Market position: Enterprise-grade cloud AI platform deeply integrated with Microsoft ecosystem, offering production-ready search and RAG capabilities at global scale
Target customers: Organizations already invested in Azure infrastructure, Microsoft enterprise customers, and companies requiring enterprise compliance (SOC, ISO, GDPR, HIPAA, FedRAMP) with 99.999% uptime SLAs
Key competitors: AWS Bedrock, Google Vertex AI, OpenAI Enterprise, Coveo, and Vectara.ai for enterprise search and RAG
Competitive advantages: Seamless Azure ecosystem integration (Logic Apps, PowerApps, Microsoft Teams), hybrid search with semantic ranking, native Azure OpenAI integration, global infrastructure for low latency, and unified billing/management through Azure portal
Pricing advantage: Pay-as-you-go model with free tier for development; competitive for Azure customers who can leverage existing enterprise agreements and volume discounts; scales efficiently with consumption-based pricing
Use case fit: Best for organizations already using Azure infrastructure, Microsoft enterprise customers needing tight Office 365/Teams integration, and companies requiring global scalability with enterprise-grade compliance and regional data residency options
Market Position: Enterprise RAG-as-a-Service with genuine no-code accessibility + developer-first API design (dual-track appeal)
vs. CustomGPT: Similar RAG-as-a-Service category, Progress emphasizes REMi quality monitoring + open-source foundation differentiation
vs. Drift/Yellow.ai: TRUE RAG platform vs conversational marketing/sales engagement platforms (fundamentally different categories)
vs. Lindy.ai: Full API/SDK access vs NO public API (Progress developer-friendly, Lindy no-code only)
Integration Gaps: NO native messaging channels (Slack/WhatsApp/Teams) vs omnichannel competitors - requires custom development
HIPAA Gap: No documented certification creates healthcare trust gap vs compliant competitors (Drift has HIPAA)
Recent Acquisition Risk: June 2025 Progress purchase means platform still maturing under new ownership with potential direction changes
Progress Ecosystem Advantage: Integration with OpenEdge, Sitefinity CMS provides distribution channels unavailable to standalone competitors
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
Azure OpenAI Service: Access to GPT-4, GPT-4o, GPT-3.5 Turbo through native Azure integration
Anthropic Claude: Available through Microsoft Foundry, bringing frontier intelligence to Azure (late 2024/early 2025)
Multi-Model Platform: Azure is the only cloud providing access to both Claude and GPT frontier models to customers on one platform
Model Selection Flexibility: Choose between Azure-hosted models or external LLMs accessed via API
Prompt Templates: Customizable system prompts and prompt templates to shape model behavior for specific use cases
Enterprise Integration: All models integrated with Azure security, compliance, and governance frameworks
Anthropic Models: Claude 3.7, Claude 3.5 Sonnet v2 for safety-focused, high-quality generation
OpenAI Models: ChatGPT 4o, 4o mini for industry-leading language capabilities
Google Models: Gemini Flash 2.5, PaLM2 for multimodal and search-optimized tasks
Meta Models: Llama 3.2 for open-source flexibility and customization
Microsoft/Azure: Mistral Large 2 for enterprise deployments with Azure integration
Cohere Models: Command-R suite for retrieval-optimized generation
Nuclia Private GenAI: 100% data isolation mode for maximum security without third-party LLM exposure
Model Switching: Change providers without architectural changes via Prompt Lab for side-by-side testing
Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request
Model Selection Details
Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
Agentic Retrieval (New 2024): Specialized pipeline using LLMs to intelligently break down complex queries into focused subqueries, executing them in parallel with structured responses optimized for chat completion models
Hybrid Search: Combines vector search, keyword search, and semantic search in the same corpus with sophisticated relevance tuning
Vector Store Functionality: Functions as long-term memory, knowledge base, or grounding data repository for RAG applications
Semantic Kernel Integration: Supports Azure Semantic Kernel and LangChain for coordinating RAG workflows
Import Wizard Automation: Built-in Azure portal wizard automates RAG pipeline with parsing, chunking, enrichment, and embedding in one flow
Multimodal Processing: OCR for scanned documents/images, automatic speech-to-text for audio (MP3, WAV, AIFF), video transcript extraction
60+ Document Formats: PDF, Word, Excel, PowerPoint, plain text, email formats with automatic parsing
Open-Source Foundation: NucliaDB (710+ GitHub stars, AGPLv3) provides transparency into retrieval mechanisms vs black-box platforms
Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks
RAG Performance
Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content
Benchmark Details
Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
Source verification: Always cites sources so users can verify facts on the spot
Use Cases
Enterprise Search: Centralizes documents and policies into searchable repository, improving productivity by up to 40% (saving nearly 9 hours per week per employee)
Customer Service Automation: Powers self-service chatbots, real-time agent counsel, agent coaching, and automated conversation summarization
RAG Applications: Over half of Fortune 500 companies use Azure AI Search for mission-critical RAG workloads (OpenAI, Otto Group, KPMG, PETRONAS)
Knowledge Management: Enables employees to quickly find information in vast organizational knowledge bases with AI-driven insights
Personalized Customer Interactions: Delivers relevant, real-time responses through self-service portals and chatbots based on customer data
Content Discovery: Dynamic content generation through chat completion models for AI-powered customer experiences
Multi-Industry Applications: Proven across retail, financial services, healthcare, manufacturing, and government sectors
Enterprise Knowledge Management: Non-technical teams (marketing, HR, legal, customer support) deploying knowledge bases in minutes
Healthcare & Pharma: Althaia Hospitals medical protocol search for 5,000+ healthcare professionals with HIPAA-grade security needs
Financial Services: BrokerChooser replaced keyword search with generative AI for significant conversion increases
Education: Columbia Business School and Barry University for academic knowledge discovery and institutional knowledge management
Engineering & Research: NAFEMS knowledge discovery across thousands of technical publications for international membership
Trade Organizations: CCOO (Spain's largest union) serving 1M+ members with knowledge retrieval platform
Dynamic Knowledge Management: Continuous updates, gap identification, and automatic documentation generation
Developer RAG Backend: API-first infrastructure for building custom AI applications with Prompt Lab experimentation
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
Scaling Consideration: Token-based consumption pricing requires careful usage forecasting for budget predictability beyond included tier
Best Value For: Organizations wanting to control costs through usage optimization vs fixed seat-based or per-project pricing models
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
Microsoft Support Network: Extensive support backed by Microsoft's enterprise support infrastructure with dedicated channels for mission-critical deployments
Enterprise SLA Plans: Dedicated support plans with guaranteed response times and uptime commitments
Microsoft Learn: Comprehensive in-depth documentation, Microsoft Learn modules, and step-by-step tutorials (Azure AI Search Documentation)
Community Forums: Active community of Azure developers and partners sharing best practices and solutions
Azure Portal Dashboard: Integrated monitoring and management through Azure portal for index tracking, query performance, and usage analytics
Official SDKs: Robust REST APIs and SDKs for C#, Python, Java, JavaScript with comprehensive sample code (Azure SDKs)
Azure Monitor Integration: Custom alerts, dashboards, and analytics through Azure Monitor and Application Insights (Azure Monitor)
Active community: User community plus 5,000+ app integrations through Zapier ecosystem
Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
Free Tier Constraints: 50 MB storage limit, shared resources with other subscribers, no fixed partitions or replicas
Tier Immutability (Legacy): Cannot change tier after creation on older services, though new 2024 feature allows tier changes
Vector Search Limitations: Vector index sizes restricted by memory reserved for service tier, some regions lack required infrastructure for improved limits
No Pause/Stop: Cannot pause search service - computing resources allocated when created, pay continuous fixed rate
Index Portability: No native backup/restore support for porting indexes between services
Query Complexity: Partial term searches (prefix, fuzzy, regex) more computationally expensive than keyword searches, may impact performance
Field Size Limits: Facetable/filterable/searchable fields limited to 16 KB text storage vs 16 MB for searchable-only fields; maximum document size ~16 MB; record limit 50,000 characters
Schema Flexibility: Updating existing indexes can be difficult and disrupt workflows in some cases, requiring workarounds
Learning Curve: Advanced customizations require steep learning curve with trial-and-error for fine-tuning search experience
Cost Considerations: Pricing structure restrictive for smaller teams/individual developers; costs quickly add up with higher usage tiers and complex pricing models
Latency Trade-offs: AI enrichment and image analysis computationally intensive, consuming disproportionate processing power
Language Support: Some features (speller, query rewrite) limited to subset of languages
Offline Documentation: Lack of offline documentation frustrating for limited internet environments
Azure Ecosystem Lock-In: Best suited for organizations already invested in Azure, less competitive for non-Azure customers
NO HIPAA Certification Documented: Healthcare organizations processing PHI must contact sales - major compliance gap vs competitors with documented HIPAA
NO Native Messaging Channels: No Slack, WhatsApp, Telegram, or Microsoft Teams integrations - requires custom API-based development
Documentation Fragmentation: Dual portals (docs.rag.progress.cloud + docs.nuclia.dev) during Progress acquisition transition may cause confusion
Recent Acquisition Risk: June 2025 Progress purchase means platform still maturing under new ownership with potential direction changes
Scalability Concerns: Multiple problems limit scalability - hard to scale nodes up/down, write operations affect concurrent search performance
NO Dropbox Integration: Missing Dropbox connector vs competitors - limits cloud storage sync options
NO Notion Integration: Missing Notion connector - gap for knowledge management workflows
NO YouTube Transcript Extraction: Not explicitly documented vs competitors with video indexing features
Missing Features: NO lead capture, NO human handoff/escalation workflows, NO proactive alerting (monitoring exists, alerting undocumented)
Learning Curve: 30+ RAG parameters and Prompt Lab may feel technical for non-developer teams despite no-code dashboard
Best For: Development teams and technical users - powerful for experts but may overwhelm business users wanting simple deployment
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
Agentic Retrieval (2024): Multi-query pipeline designed for complex questions in chat and copilot apps using LLMs to break queries into smaller, focused subqueries for better coverage (Agentic Retrieval)
Query Decomposition: Deconstructs complex queries containing multiple "asks" into component parts with LLM-generated paraphrasing and synonym mapping
Parallel Execution: Subqueries run in parallel with semantic reranking to promote most relevant matches, then combined into unified response
Performance Enhancement: Up to 40% improvement in answer relevance in conversational AI compared to traditional RAG approaches
Knowledge Base Integration: Knowledge bases ground agents with multiple data sources without siloed retrieval pipelines, available in Azure AI Foundry portal
Chat History Context: Reads conversation history as input to retrieval pipeline for contextually aware responses
Automatic Corrections: Corrects spelling mistakes and rewrites queries using synonym maps for improved retrieval accuracy
API Availability: Supported through Knowledge Base object in 2025-11-01-preview and Azure SDK preview packages (public preview)
Agent-to-Agent Workflows: Designed for RAG patterns and agent-to-agent communication in enterprise AI systems
Retrieval Agents: Autonomously select optimal retrieval strategies based on query characteristics
CSS Customization: Shadow DOM architecture with cssPath attribute for advanced styling
White-Labeling: Full OEM deployment support via API-first design
MISSING FEATURES: NO lead capture, NO human handoff/escalation workflows, NO proactive alerting (monitoring exists, alerting undocumented)
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
R A G-as-a- Service Assessment
Platform Type: TRUE RAG-AS-A-SERVICE - End-to-end RAG systems built for app excellence, enterprise-readiness, and speed to market with native Azure integration
AI-Assisted Metrics: 3 AI-assisted metrics in prompt flow requiring no ground truth - breaks queries into intents, assesses relevant information, calculates affirmative response fractions
Hybrid Search Optimization: Combines vector search, keyword search, and semantic search with sophisticated relevance tuning for improved retrieval performance
Answer Optimization: Built-in capabilities for retrieval steering, reasoning effort optimization, and answer synthesis for production RAG applications
Query Planning: Leverages knowledge bases and AI models for query planning, decomposition, reranking, and structured answer synthesis
Enterprise Scale Analytics: Insights into user search behavior, query performance, and search result effectiveness through built-in analytics and monitoring
Import Wizard Automation: Azure portal wizard automates RAG pipeline with parsing, chunking, enrichment, and embedding in single flow
Azure AI Studio Integration: Unified platform for exploring APIs/models, comprehensive tooling, responsible design, deployment at scale with continuous monitoring
40% Accuracy Improvement: Studies demonstrate RAG can increase base model accuracy by 40% compared to standalone LLMs (RAG Performance)
Production-Ready Excellence: Rigorously tested AI technology with high-performance RAG applications without compromising scale or cost
Global Infrastructure: Designed for millisecond-level responses under heavy load with globally distributed infrastructure
Platform Type: TRUE RAG-AS-A-SERVICE PLATFORM - Core mission is retrieval-augmented generation backend with developer-first API access
Core Focus: Semantic search and generative Q&A across knowledge bases with transparent NucliaDB architecture
RAG Backend Design: Fully managed RAG infrastructure with embeddable widgets (NOT closed conversational marketing like Drift/Yellow.ai)
Programmatic Access: Complete REST API + dual SDKs (Python/JavaScript) for full knowledge base management
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
R E Mi Evaluation Model ( Core Differentiator)
N/A
Proprietary Investment: Significant R&D differentiator addressing hallucination problem - absent from most competitors
REMi v2 (Current): Llama-REMi v1 based on Llama 3.2-3B with 30x faster inference vs original Mistral implementation
Continuous Quality Monitoring: Evaluates EVERY interaction across four dimensions (0-5 scale)
Answer Relevance: Measures how directly response addresses the query
Context Relevance: Assesses quality of retrieved passages relative to question
Groundedness: Evaluates degree to which answers derive from source context (hallucination detection)
Answer Correctness: Alignment with ground truth when available (optional dimension)
Benchmark Validation: Nuclia with OpenAI embeddings achieved highest scores vs Vectara on Docmatix 1.4k dataset across answer relevance, context relevance, correctness
Real-Time Visibility: Dashboard health displays with 7-day rolling averages and performance graphs (24h to 30d)
Competitive Advantage: Most RAG platforms lack continuous quality evaluation - Progress makes this core differentiator
N/A
Open- Source Nuclia D B Foundation
N/A
GitHub Presence: 710+ stars, AGPLv3 license provides full transparency into core retrieval mechanisms
Technology Stack: Python and Rust implementation for performance and reliability
Managed Infrastructure: Progress removes operational burden while maintaining technical transparency
Four Index Types: Document Index (property filtering), Full Text (keyword/fuzzy search), Chunk/Vector (semantic similarity), Knowledge Graph (entity relationships)
Dynamic Sharding: Automatic shard creation as vectors grow with index node replication for fault tolerance
Dynamic Scaling: Automatic shard creation as vector counts grow with index node replication
Web Component Embedding: <nuclia-search-bar> and <nuclia-chat> for website integration
Multi-Region Support: Regional data residency options (EU/US) for compliance requirements
N/A
Customer Base & Case Studies
N/A
SRS Distribution (Wholesale Building Materials): "Progress Agentic RAG has fundamentally changed how we access and act on information across our organisation. Its ability to deliver fast, accurate, and verifiable insights from our unstructured data has been a game-changer for productivity and decision-making."
BrokerChooser (Financial Services): Replaced keyword search with generative AI, reporting significant conversion increases and better user experience
NAFEMS (Engineering Simulation Association): Knowledge discovery across thousands of technical publications for international membership community
Althaia Hospitals (Spain's Largest Central Catalonia Hospital): Medical protocol search supporting 5,000+ healthcare professionals
Columbia Business School: Academic knowledge discovery and research support
Barry University: Education sector deployment for institutional knowledge management
CCOO (Spain's Largest Trade Union): 1M+ members served with knowledge retrieval platform
Buff Sportswear: Commercial deployment for product and customer knowledge management
Pre-Acquisition Scale: ~20 customers across healthcare, pharmaceutical, education, public administration sectors
After analyzing features, pricing, performance, and user feedback, both Azure AI and Progress Agentic RAG are capable platforms that serve different market segments and use cases effectively.
When to Choose Azure AI
You value comprehensive ai platform with 200+ services
Deep integration with Microsoft ecosystem
Enterprise-grade security and compliance
Best For: Comprehensive AI platform with 200+ services
When to Choose Progress Agentic RAG
You value proprietary remi v2 model (30x faster inference) addresses hallucination problem with continuous quality monitoring - differentiated capability absent from most competitors
Open-source NucliaDB transparency (710+ GitHub stars) with managed infrastructure removes operational burden while maintaining technical visibility
Genuine no-code accessibility: business users (marketing, HR, legal, support) can deploy functional RAG pipelines in minutes via visual dashboard
Best For: Proprietary REMi v2 model (30x faster inference) addresses hallucination problem with continuous quality monitoring - differentiated capability absent from most competitors
Migration & Switching Considerations
Switching between Azure AI and Progress Agentic RAG requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
Azure AI starts at custom pricing, while Progress Agentic RAG begins at $700/month. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between Azure AI and Progress Agentic RAG comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 11, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...