Azure AI vs SimplyRetrieve

Make an informed decision with our comprehensive comparison. Discover which RAG solution perfectly fits your needs.

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT.ai

Fact checked and reviewed by Bill Cava

Published: 01.04.2025Updated: 25.04.2025

In this comprehensive guide, we compare Azure AI and SimplyRetrieve across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.

Overview

When choosing between Azure AI and SimplyRetrieve, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.

Quick Decision Guide

  • Choose Azure AI if: you value comprehensive ai platform with 200+ services
  • Choose SimplyRetrieve if: you value completely free and open source

About Azure AI

Azure AI Landing Page Screenshot

Azure AI is microsoft's comprehensive ai platform for enterprise solutions. Azure AI is Microsoft's suite of AI services offering pre-built APIs, custom model development, and enterprise-grade infrastructure for building intelligent applications across vision, language, speech, and decision-making domains. Founded in 1975, headquartered in Redmond, WA, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
88/100
Starting Price
Custom

About SimplyRetrieve

SimplyRetrieve Landing Page Screenshot

SimplyRetrieve is lightweight retrieval-centric generative ai platform. SimplyRetrieve is an open-source tool providing a fully localized, lightweight, and user-friendly GUI and API platform for Retrieval-Centric Generation (RCG). It emphasizes privacy and can run on a single GPU while maintaining clear separation between LLM context interpretation and knowledge memorization. Founded in 2019, headquartered in Tokyo, Japan, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
82/100
Starting Price
Custom

Key Differences at a Glance

In terms of user ratings, Azure AI in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: AI Platform versus RAG Platform. These differences make each platform better suited for specific use cases and organizational requirements.

⚠️ What This Comparison Covers

We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.

Detailed Feature Comparison

logo of azureai
Azure AI
logo of simplyretrieve
SimplyRetrieve
logo of customGPT logo
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
  • ✅ Multi-Source Support – Databases, blob storage, PDF, DOCX, HTML via Azure pipelines
  • ✅ Auto-Sync – Azure services keep indexed information current automatically
  • File-Based Workflow – Drop PDFs, DOCX, PPTX, HTML into folder and embed via script
  • GUI Knowledge Editor – Add documents on-the-fly through basic interface
  • Manual Processing – ⚠️ No web crawler or automatic refresh capabilities
  • Local Storage – ✅ All data stays on your machine for air-gapped deployments
  • 1,400+ file formats – PDF, DOCX, Excel, PowerPoint, Markdown, HTML + auto-extraction from ZIP/RAR/7Z archives
  • Website crawling – Sitemap indexing with configurable depth for help docs, FAQs, and public content
  • Multimedia transcription – AI Vision, OCR, YouTube/Vimeo/podcast speech-to-text built-in
  • Cloud integrations – Google Drive, SharePoint, OneDrive, Dropbox, Notion with auto-sync
  • Knowledge platforms – Zendesk, Freshdesk, HubSpot, Confluence, Shopify connectors
  • Massive scale – 60M words (Standard) / 300M words (Premium) per bot with no performance degradation
Integrations & Channels
  • ✅ Azure Ecosystem – SDKs, REST APIs, Logic Apps, PowerApps (connectors)
  • ✅ Native Channels – Web widgets, Slack, Microsoft Teams integration
  • ✅ Low-Code Options – Custom workflows via low-code tools or full API
  • Local Gradio GUI – Python scripts for queries with no pre-built channels
  • No Native Integrations – ⚠️ No Slack, Teams, or website widgets out-of-box
  • Custom Wrappers Required – Build your own connectors to forward messages
  • Website embedding – Lightweight JS widget or iframe with customizable positioning
  • CMS plugins – WordPress, WIX, Webflow, Framer, SquareSpace native support
  • 5,000+ app ecosystem – Zapier connects CRMs, marketing, e-commerce tools
  • MCP Server – Integrate with Claude Desktop, Cursor, ChatGPT, Windsurf
  • OpenAI SDK compatible – Drop-in replacement for OpenAI API endpoints
  • LiveChat + Slack – Native chat widgets with human handoff capabilities
Core Chatbot Features
  • ✅ RAG-Powered Answers – Semantic search + LLM generation for grounded responses
  • ✅ Hybrid Search – Keyword + semantic with optional ranking for relevance
  • ✅ Multilingual – Conversation history management from Azure portal
  • Open-Source RAG Bot – Runs on local LLMs with streaming responses
  • Single-Turn Q&A – ⚠️ Limited multi-turn conversation and long-term memory
  • Retrieval Tuning Module – Transparency layer showing answer construction process
  • Basic Interactions – No lead capture or human handoff features
  • ✅ #1 accuracy – Median 5/5 in independent benchmarks, 10% lower hallucination than OpenAI
  • ✅ Source citations – Every response includes clickable links to original documents
  • ✅ 93% resolution rate – Handles queries autonomously, reducing human workload
  • ✅ 92 languages – Native multilingual support without per-language config
  • ✅ Lead capture – Built-in email collection, custom forms, real-time notifications
  • ✅ Human handoff – Escalation with full conversation context preserved
Customization & Branding
  • ✅ Full UI Control – Custom CSS, logos, welcome messages for branding
  • ✅ White-Labeling – Domain restrictions via Azure configuration
  • ✅ Search Behavior – Custom analyzers, synonym maps (config options)
  • Plain Gradio Interface – Minimal theming with developer-focused design
  • Source Code Customization – Tweak code or build custom front-end for branding
  • Full white-labeling included – Colors, logos, CSS, custom domains at no extra cost
  • 2-minute setup – No-code wizard with drag-and-drop interface
  • Persona customization – Control AI personality, tone, response style via pre-prompts
  • Visual theme editor – Real-time preview of branding changes
  • Domain allowlisting – Restrict embedding to approved sites only
L L M Model Options
  • ✅ Azure OpenAI – GPT-4, GPT-3.5 via native Azure integration
  • ✅ Prompt Control – Customizable templates and system prompts
  • ✅ Model Flexibility – Azure-hosted or external LLMs via API
  • WizardVicuna-13B Default – Instruction-tuned open-source model included
  • Hugging Face Compatible – Swap any model with sufficient GPU resources
  • Full Local Control – ✅ No external APIs or cloud dependencies
  • Model Limitations – ⚠️ Smaller models won't match GPT-4 depth
  • GPT-5.1 models – Latest thinking models (Optimal & Smart variants)
  • GPT-4 series – GPT-4, GPT-4 Turbo, GPT-4o available
  • Claude 4.5 – Anthropic's Opus available for Enterprise
  • Auto model routing – Balances cost/performance automatically
  • Zero API key management – All models managed behind the scenes
Developer Experience ( A P I & S D Ks)
  • ✅ Multi-Language SDKs – C#, Python, Java, JavaScript (Azure SDKs)
  • ✅ Documentation – Tutorials, sample code for index management and queries
  • ✅ Azure AD Auth – Secure API access via Azure portal
  • Python Script Interface – No formal REST API or SDK
  • Subprocess Integration – Call scripts directly or build custom wrapper
  • Open Source Access – ✅ Full code access for modification
  • REST API – Full-featured for agents, projects, data ingestion, chat queries
  • Python SDK – Open-source customgpt-client with full API coverage
  • Postman collections – Pre-built requests for rapid prototyping
  • Webhooks – Real-time event notifications for conversations and leads
  • OpenAI compatible – Use existing OpenAI SDK code with minimal changes
Performance & Accuracy
  • ✅ Enterprise Scale – Millisecond responses under heavy load (Microsoft Mechanics)
  • ✅ High Relevance – Hybrid search, semantic ranking, configurable scoring
  • ✅ Global Infrastructure – Low latency, high throughput worldwide
  • Slower Inference – ⚠️ 3-10+ seconds per reply on single GPU
  • Decent Accuracy – Good when relevant docs found, struggles with complexity
  • FAISS Vector Search – Fast retrieval using Facebook's library
  • Sub-second responses – Optimized RAG with vector search and multi-layer caching
  • Benchmark-proven – 13% higher accuracy, 34% faster than OpenAI Assistants API
  • Anti-hallucination tech – Responses grounded only in your provided content
  • OpenGraph citations – Rich visual cards with titles, descriptions, images
  • 99.9% uptime – Auto-scaling infrastructure handles traffic spikes
Customization & Flexibility ( Behavior & Knowledge)
  • ✅ Index Control – Custom analyzers, tokenizers, synonym maps for domain-specific search
  • ✅ Cognitive Skills – Plugin custom skills during indexing for specialized processing
  • ✅ LLM Tuning – Prompt customization for style and tone control
  • Deep Parameter Control – Tweak retrieval params, system prompts, knowledge weighting
  • Embedding Model Swap – Replace multilingual-e5-base with alternatives
  • Pipeline Modification – ✅ Full source access for custom logic
  • Live content updates – Add/remove content with automatic re-indexing
  • System prompts – Shape agent behavior and voice through instructions
  • Multi-agent support – Different bots for different teams
  • Smart defaults – No ML expertise required for custom behavior
Pricing & Scalability
  • ✅ Pay-As-You-Go – Tier, partition, replica based (Pricing Guide)
  • ✅ Free Tier – Development/small projects; production tiers available
  • ✅ On-Demand Scaling – Add replicas/partitions; enterprise discounts available
  • MIT Licensed – ✅ Completely free with no subscription fees
  • Infrastructure Costs – Pay only for GPU hardware or cloud servers
  • Manual Scaling – ⚠️ Spin up and manage your own hardware
  • Standard: $99/mo – 60M words, 10 bots
  • Premium: $449/mo – 300M words, 100 bots
  • Auto-scaling – Managed cloud scales with demand
  • Flat rates – No per-query charges
Security & Privacy
  • ✅ Enterprise Compliance – SOC, ISO, GDPR, HIPAA, FedRAMP (Azure Compliance)
  • ✅ Data Encryption – Transit/rest, customer-managed keys, Private Link isolation
  • ✅ Azure AD RBAC – Granular role-based access control and authentication
  • 100% Local Execution – ✅ Perfect for sensitive data and air-gapped environments
  • No External Transmission – All processing stays on-premises
  • DIY Security – ⚠️ No built-in auth, you implement access controls
  • SOC 2 Type II + GDPR – Third-party audited compliance
  • Encryption – 256-bit AES at rest, SSL/TLS in transit
  • Access controls – RBAC, 2FA, SSO, domain allowlisting
  • Data isolation – Never trains on your data
Observability & Monitoring
  • ✅ Portal Dashboard – Track indexes, query performance, usage at glance
  • ✅ Azure Monitor – Custom alerts, dashboards (Azure Monitor)
  • ✅ Export Logs – API-based log and analytics export for analysis
  • Analysis Tab – Shows retrieved docs and query construction process
  • Console Logging – Basic logs printed to terminal
  • No Dashboard – ⚠️ Add your own monitoring for stats
  • Real-time dashboard – Query volumes, token usage, response times
  • Customer Intelligence – User behavior patterns, popular queries, knowledge gaps
  • Conversation analytics – Full transcripts, resolution rates, common questions
  • Export capabilities – API export to BI tools and data warehouses
Support & Ecosystem
  • ✅ Microsoft Support – Docs, Microsoft Learn modules, active community forums
  • ✅ Enterprise SLAs – Dedicated channels for mission-critical deployments
  • ✅ Developer Community – Large Azure ecosystem sharing best practices
  • Community-Driven – GitHub issues and lightweight documentation
  • Research Foundation – Academic paper (arXiv 2308.03983) on RCG approach
  • No Paid Support – ⚠️ No SLA or enterprise help desk
  • Comprehensive docs – Tutorials, cookbooks, API references
  • Email + in-app support – Under 24hr response time
  • Premium support – Dedicated account managers for Premium/Enterprise
  • Open-source SDK – Python SDK, Postman, GitHub examples
  • 5,000+ Zapier apps – CRMs, e-commerce, marketing integrations
Additional Considerations
  • ✅ Deep Integration – End-to-end solutions within Azure platform
  • ✅ Enterprise-Grade – Fine-grained tuning with proven reliability
  • ⚠️ Azure-First – Best for organizations already invested in Azure ecosystem
N/A
  • Time-to-value – 2-minute deployment vs weeks with DIY
  • Always current – Auto-updates to latest GPT models
  • Proven scale – 6,000+ organizations, millions of queries
  • Multi-LLM – OpenAI + Claude reduces vendor lock-in
No- Code Interface & Usability
  • ✅ Azure Portal – Create indexes, tweak analyzers, monitor performance intuitively
  • ✅ Low-Code Tools – Logic Apps, PowerApps for non-developers
  • ⚠️ Learning Curve – Advanced setups require technical expertise vs turnkey solutions
N/A
  • 2-minute deployment – Fastest time-to-value in the industry
  • Wizard interface – Step-by-step with visual previews
  • Drag-and-drop – Upload files, paste URLs, connect cloud storage
  • In-browser testing – Test before deploying to production
  • Zero learning curve – Productive on day one
Competitive Positioning
  • Market Position – Enterprise AI platform with production-ready RAG at global scale
  • Target Customers – Azure-invested orgs needing SOC/ISO/GDPR/HIPAA/FedRAMP compliance, 99.999% SLAs
  • Key Competitors – AWS Bedrock, Google Vertex AI, OpenAI Enterprise, Coveo, Vectara
  • Competitive Advantages – Azure ecosystem integration, hybrid search, native OpenAI, global infrastructure
  • Best Fit – Organizations using Azure/Office 365 requiring enterprise compliance and regional residency
  • Market Position – MIT open-source local RAG for on-premises deployment
  • Target Customers – Developers experimenting locally, strict data isolation orgs
  • Key Competitors – LangChain, LlamaIndex, PrivateGPT, LocalGPT
  • Advantages – ✅ Free MIT license, 100% local, full model control
  • Best For – Offline environments, GPU infrastructure teams, zero cloud costs
  • Market position – Leading RAG platform balancing enterprise accuracy with no-code usability. Trusted by 6,000+ orgs including Adobe, MIT, Dropbox.
  • Key differentiators – #1 benchmarked accuracy • 1,400+ formats • Full white-labeling included • Flat-rate pricing
  • vs OpenAI – 10% lower hallucination, 13% higher accuracy, 34% faster
  • vs Botsonic/Chatbase – More file formats, source citations, no hidden costs
  • vs LangChain – Production-ready in 2 min vs weeks of development
A I Models
  • ✅ Azure OpenAI – GPT-4, GPT-4o, GPT-3.5 Turbo native integration
  • ✅ Anthropic Claude – Available via Microsoft Foundry (late 2024/early 2025)
  • ✅ Multi-Model Platform – Only cloud with both Claude and GPT models
  • ✅ Model Flexibility – Azure-hosted or external LLMs via API
  • ✅ Prompt Templates – Customizable prompts for specific use cases
  • ✅ Enterprise Integration – Models integrated with Azure security/compliance/governance
  • WizardVicuna-13B – Default uncensored instruction-tuned model
  • Any Hugging Face Model – Llama 2, Falcon, Mistral with GPU capacity
  • No Vendor Lock-In – ✅ Complete flexibility without API limits
  • Performance Trade-Off – ⚠️ Open models slower than managed cloud APIs
  • OpenAI – GPT-5.1 (Optimal/Smart), GPT-4 series
  • Anthropic – Claude 4.5 Opus/Sonnet (Enterprise)
  • Auto-routing – Intelligent model selection for cost/performance
  • Managed – No API keys or fine-tuning required
R A G Capabilities
  • ✅ Agentic Retrieval (2024) – LLM-powered query decomposition into parallel subqueries for chat
  • ✅ Hybrid Search – Vector + keyword + semantic with relevance tuning
  • ✅ Vector Store – Long-term memory, knowledge base for RAG apps
  • ✅ Framework Support – Azure Semantic Kernel, LangChain for RAG workflows
  • ✅ Import Wizard – Automates parsing, chunking, enrichment, embedding pipeline
  • ✅ Query Enhancement – Rewriting, synonyms, paraphrasing, spelling correction
  • Retrieval-Centric Generation – Research-backed approach separating LLM from knowledge memorization
  • Mixtures-of-Knowledge-Bases – Multiple knowledge bases with intelligent routing
  • Explicit Prompt-Weighting – Control retrieved content influence on answers
  • Retrieval Transparency – ✅ Visual debugging showing document selection
  • FAISS Search – Fast approximate nearest neighbor retrieval
  • GPT-4 + RAG – Outperforms OpenAI in independent benchmarks
  • Anti-hallucination – Responses grounded in your content only
  • Automatic citations – Clickable source links in every response
  • Sub-second latency – Optimized vector search and caching
  • Scale to 300M words – No performance degradation at scale
Use Cases
  • ✅ Enterprise Search – 40% productivity boost (9 hours/week saved per employee)
  • ✅ Customer Service – Self-service chatbots, real-time agent support, coaching, summarization
  • ✅ RAG Applications – 50%+ Fortune 500 companies (OpenAI, Otto, KPMG, PETRONAS)
  • ✅ Knowledge Management – AI-driven insights for organizational knowledge bases
  • ✅ Multi-Industry – Retail, financial, healthcare, manufacturing, government sectors
  • Air-Gapped Environments – ✅ Defense, classified research requiring offline operation
  • Healthcare PHI Compliance – HIPAA organizations needing 100% data isolation
  • RAG Research – Developers learning internals with full transparency
  • Zero-Cost RAG – Teams with GPU infrastructure avoiding subscriptions
  • Data Sovereignty – Strict data residency preventing cloud processing
  • Customer support – 24/7 AI handling common queries with citations
  • Internal knowledge – HR policies, onboarding, technical docs
  • Sales enablement – Product info, lead qualification, education
  • Documentation – Help centers, FAQs with auto-crawling
  • E-commerce – Product recommendations, order assistance
Security & Compliance
  • ✅ Certifications – SOC, ISO, GDPR, HIPAA, FedRAMP (Azure Compliance)
  • ✅ Encryption – Transit (SSL/TLS) and rest with customer-managed keys
  • ✅ Private Link – Enhanced isolation for security
  • ✅ Azure AD RBAC – Granular access control with secure authentication
  • ✅ 99.999% SLA – Enterprise reliability with regional data residency
  • ✅ Security Monitoring – Continuous oversight via Azure Monitor
  • Complete Data Isolation – ✅ Ideal for classified, PHI, PII data
  • No Third-Party APIs – Zero external calls to cloud providers
  • Open-Source Auditing – Full code transparency for security reviews
  • Self-Managed Security – ⚠️ You control all security layers
  • SOC 2 Type II + GDPR – Regular third-party audits, full EU compliance
  • 256-bit AES encryption – Data at rest; SSL/TLS in transit
  • SSO + 2FA + RBAC – Enterprise access controls with role-based permissions
  • Data isolation – Never trains on customer data
  • Domain allowlisting – Restrict chatbot to approved domains
Pricing & Plans
  • ✅ Free Tier – 50 MB storage for dev/small projects
  • ✅ Basic Tier – Entry production with fixed storage (no partition scaling)
  • ✅ Standard Tiers – Scalable throughput via partitions and replicas
  • ✅ Storage Optimized – High-volume data at reduced $/TB
  • ✅ 2024 Capacity Boost – 5-6x storage increase free (Pricing)
  • ✅ Tier Flexibility (2024) – Change tiers without downtime; enterprise discounts available
  • MIT License – ✅ Free with no subscription or API charges
  • GPU Costs Only – Hardware or cloud compute are sole expenses
  • Unlimited Queries – No per-request pricing or rate limits
  • Standard: $99/mo – 10 chatbots, 60M words, 5K items/bot
  • Premium: $449/mo – 100 chatbots, 300M words, 20K items/bot
  • Enterprise: Custom – SSO, dedicated support, custom SLAs
  • 7-day free trial – Full Standard access, no charges
  • Flat-rate pricing – No per-query charges, no hidden costs
Support & Documentation
  • ✅ Enterprise Support – Microsoft infrastructure with dedicated mission-critical channels
  • ✅ SLA Plans – Guaranteed response times and uptime commitments
  • ✅ Microsoft Learn – Docs, tutorials, modules (docs)
  • ✅ Community Forums – Active Azure developers sharing best practices
  • ✅ Portal Dashboard – Integrated monitoring for indexes, queries, analytics
  • ✅ Official SDKs – REST APIs, C#, Python, Java, JavaScript (SDKs)
  • GitHub Repository – Code, docs, and examples at RCGAI/SimplyRetrieve
  • Academic Paper – arXiv 2308.03983 explaining RCG architecture
  • Community Support – GitHub Issues for troubleshooting
  • No Paid Support – ⚠️ Community-driven only, no SLAs
  • Documentation hub – Docs, tutorials, API references
  • Support channels – Email, in-app chat, dedicated managers (Premium+)
  • Open-source – Python SDK, Postman, GitHub examples
  • Community – User community + 5,000 Zapier integrations
Limitations & Considerations
  • ⚠️ Free Tier Limits – 50 MB storage, shared resources, no partitions/replicas
  • ⚠️ No Pause/Stop – Pay continuous fixed rate; resources allocated when created
  • ⚠️ Vector Limitations – Index sizes restricted by tier memory; regional infrastructure gaps
  • ⚠️ Learning Curve – Advanced customizations require trial-and-error, technical expertise
  • ⚠️ Cost Structure – Restrictive for small teams; costs scale quickly with usage
  • ⚠️ Azure Lock-In – Less competitive for non-Azure customers; best for Azure ecosystem
  • Developer-Only Tool – ⚠️ Requires Python, GPU, and technical expertise
  • GPU Infrastructure Required – ⚠️ Dedicated hardware or cloud GPU needed
  • Basic UI – Gradio interface needs custom front-end for production
  • Manual Scaling – ⚠️ No auto-scaling, you manage load balancing
  • No Enterprise Features – Missing multi-tenancy, user management, analytics
  • Slower Inference – ⚠️ 3-10+ seconds vs sub-second cloud APIs
  • Managed service – Less control over RAG pipeline vs build-your-own
  • Model selection – OpenAI + Anthropic only; no Cohere, AI21, open-source
  • Real-time data – Requires re-indexing; not ideal for live inventory/prices
  • Enterprise features – Custom SSO only on Enterprise plan
Core Agent Features
  • ✅ Agentic Retrieval (2024) – Multi-query pipeline for complex chat questions (docs)
  • ✅ Query Decomposition – LLM breaks complex queries into focused subqueries
  • ✅ Parallel Execution – Subqueries run simultaneously with semantic reranking
  • ✅ 40% Performance Boost – Improved answer relevance vs traditional RAG
  • ✅ Knowledge Bases – Multi-source grounding without siloed pipelines (Azure AI Foundry)
  • ✅ Chat History – Contextually aware responses from conversation history
  • Retrieval-Centric Generation – Research approach separating reasoning from knowledge
  • Retrieval Tuning Module – ✅ Developer transparency showing document selection
  • Knowledge Base Mixing – Route queries across multiple sources
  • Single-Turn Focus – ⚠️ Limited multi-turn conversation memory
  • No Chatbot UI – ⚠️ Gradio for developers only
  • No Production Features – ⚠️ No lead capture, handoff, or multi-channel support
  • Custom AI Agents – Autonomous GPT-4/Claude agents for business tasks
  • Multi-Agent Systems – Specialized agents for support, sales, knowledge
  • Memory & Context – Persistent conversation history across sessions
  • Tool Integration – Webhooks + 5,000 Zapier apps for automation
  • Continuous Learning – Auto re-indexing without manual retraining
R A G-as-a- Service Assessment
  • ✅ TRUE RAG-AS-A-SERVICE – End-to-end enterprise RAG with native Azure integration
  • ✅ Performance Metrics – Prompt variations, retrieval accuracy, response evaluation
  • ✅ AI-Assisted Metrics – 3 metrics requiring no ground truth for evaluation
  • ✅ Hybrid Optimization – Vector + keyword + semantic with relevance tuning
  • ✅ Import Wizard – Automates parsing, chunking, enrichment, embedding pipeline
  • ✅ 40% Accuracy Boost – vs standalone LLMs (study)
  • NOT RAG-AS-A-SERVICE – Open-source research project for local experimentation
  • Academic Foundation – Published research tool from RCGAI (arXiv 2308.03983)
  • Self-Hosted Only – ⚠️ No managed infrastructure, APIs, or SLAs
  • Developer-First Design – Python with GPU infrastructure requirements
  • 100% Local Execution – ✅ Perfect for air-gapped and classified environments
  • No Service Features – ⚠️ No auth, multi-tenancy, analytics, or SaaS conveniences
  • Platform type – TRUE RAG-AS-A-SERVICE with managed infrastructure
  • API-first – REST API, Python SDK, OpenAI compatibility, MCP Server
  • No-code option – 2-minute wizard deployment for non-developers
  • Hybrid positioning – Serves both dev teams (APIs) and business users (no-code)
  • Enterprise ready – SOC 2 Type II, GDPR, WCAG 2.0, flat-rate pricing

Ready to experience the CustomGPT difference?

Start Free Trial →

Final Thoughts

Final Verdict: Azure AI vs SimplyRetrieve

After analyzing features, pricing, performance, and user feedback, both Azure AI and SimplyRetrieve are capable platforms that serve different market segments and use cases effectively.

When to Choose Azure AI

  • You value comprehensive ai platform with 200+ services
  • Deep integration with Microsoft ecosystem
  • Enterprise-grade security and compliance

Best For: Comprehensive AI platform with 200+ services

When to Choose SimplyRetrieve

  • You value completely free and open source
  • Strong privacy focus - fully localized
  • Lightweight - runs on single GPU

Best For: Completely free and open source

Migration & Switching Considerations

Switching between Azure AI and SimplyRetrieve requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.

Pricing Comparison Summary

Azure AI starts at custom pricing, while SimplyRetrieve begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.

Our Recommendation Process

  1. Start with a free trial - Both platforms offer trial periods to test with your actual data
  2. Define success metrics - Response accuracy, latency, user satisfaction, cost per query
  3. Test with real use cases - Don't rely on generic demos; use your production data
  4. Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
  5. Check vendor stability - Review roadmap transparency, update frequency, and support quality

For most organizations, the decision between Azure AI and SimplyRetrieve comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.

📚 Next Steps

Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.

  • Review: Check the detailed feature comparison table above
  • Test: Sign up for free trials and test with real queries
  • Calculate: Estimate your monthly costs based on expected usage
  • Decide: Choose the platform that best aligns with your requirements

Last updated: December 31, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.

Ready to Get Started with CustomGPT?

Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.

Why Choose CustomGPT?

97% Accuracy

Industry-leading benchmarks

5-Min Setup

Get started instantly

24/7 Support

Expert help when you need it

Enterprise Ready

Scale with confidence

Trusted by leading companies worldwide

Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us

Join the Discussion

Loading comments...

Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.

Watch: Understanding AI Tool Comparisons