Contextual AI vs SciPhi

Make an informed decision with our comprehensive comparison. Discover which RAG solution perfectly fits your needs.

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT.ai

Fact checked and reviewed by Bill Cava

Published: 01.04.2025Updated: 25.04.2025

In this comprehensive guide, we compare Contextual AI and SciPhi across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.

Overview

When choosing between Contextual AI and SciPhi, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.

Quick Decision Guide

  • Choose Contextual AI if: you value invented by the original creator of rag technology
  • Choose SciPhi if: you value state-of-the-art retrieval accuracy

About Contextual AI

Contextual AI Landing Page Screenshot

Contextual AI is rag 2.0 platform for enterprise-grade specialized ai agents. Contextual AI is an enterprise platform that pioneered RAG 2.0 technology, enabling organizations to build specialized RAG agents with exceptional accuracy for complex, knowledge-intensive workloads through end-to-end optimized systems. Founded in 2023, headquartered in Mountain View, CA, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
91/100
Starting Price
Custom

About SciPhi

SciPhi Landing Page Screenshot

SciPhi is the most advanced ai retrieval system. R2R is a production-ready AI retrieval system supporting Retrieval-Augmented Generation with advanced features including multimodal ingestion, hybrid search, knowledge graphs, and a Deep Research API for multi-step reasoning across documents and the web. Founded in 2023, headquartered in San Francisco, CA, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
89/100
Starting Price
Custom

Key Differences at a Glance

In terms of user ratings, both platforms score similarly in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: RAG Platform versus RAG Platform. These differences make each platform better suited for specific use cases and organizational requirements.

⚠️ What This Comparison Covers

We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.

Detailed Feature Comparison

logo of contextualai
Contextual AI
logo of sciphi
SciPhi
logo of customGPT logo
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
  • Easily brings in both unstructured files (PDFs, HTML, images, charts) and structured data (databases, spreadsheets) through ready-made connectors.
  • Does multimodal retrieval—turns images and charts into embeddings so everything is searchable together. Source
  • Hooks into popular SaaS tools like Slack, GitHub, and Google Drive for integrated data flow.
  • Handles 40 + formats—from PDFs and spreadsheets to audio—at massive scale Reference.
  • Async ingest auto-scales, crunching millions of tokens per second—perfect for giant corpora Benchmark details.
  • Ingest via code or API, so you can tap proprietary databases or custom pipelines with ease.
  • 1,400+ file formats – PDF, DOCX, Excel, PowerPoint, Markdown, HTML + auto-extraction from ZIP/RAR/7Z archives
  • Website crawling – Sitemap indexing with configurable depth for help docs, FAQs, and public content
  • Multimedia transcription – AI Vision, OCR, YouTube/Vimeo/podcast speech-to-text built-in
  • Cloud integrations – Google Drive, SharePoint, OneDrive, Dropbox, Notion with auto-sync
  • Knowledge platforms – Zendesk, Freshdesk, HubSpot, Confluence, Shopify connectors
  • Massive scale – 60M words (Standard) / 300M words (Premium) per bot with no performance degradation
Integrations & Channels
  • Built for API integration first—no plug-and-play web widget included.
  • Enterprise-grade endpoints and a Snowflake Native App option make tight data integration straightforward. Source
  • Ships a REST RAG API—plug it into websites, mobile apps, internal tools, or even legacy systems.
  • No off-the-shelf chat widget; you wire up your own front end API snippet.
  • Website embedding – Lightweight JS widget or iframe with customizable positioning
  • CMS plugins – WordPress, WIX, Webflow, Framer, SquareSpace native support
  • 5,000+ app ecosystem – Zapier connects CRMs, marketing, e-commerce tools
  • MCP Server – Integrate with Claude Desktop, Cursor, ChatGPT, Windsurf
  • OpenAI SDK compatible – Drop-in replacement for OpenAI API endpoints
  • LiveChat + Slack – Native chat widgets with human handoff capabilities
Core Chatbot Features
  • Powers advanced RAG agents with multi-hop retrieval and chain-of-thought reasoning for tough questions.
  • Uses a reranker plus groundedness scoring for factual answers with precise attribution. Source
  • “Instant Viewer” highlights the exact source text backing each part of the answer.
  • Core RAG engine serves retrieval-grounded answers; hook it to your UI for multi-turn chat.
  • Multi-lingual if the LLM you pick supports it.
  • Lead-capture or human handoff flows are yours to build through the API.
  • ✅ #1 accuracy – Median 5/5 in independent benchmarks, 10% lower hallucination than OpenAI
  • ✅ Source citations – Every response includes clickable links to original documents
  • ✅ 93% resolution rate – Handles queries autonomously, reducing human workload
  • ✅ 92 languages – Native multilingual support without per-language config
  • ✅ Lead capture – Built-in email collection, custom forms, real-time notifications
  • ✅ Human handoff – Escalation with full conversation context preserved
Customization & Branding
  • Lets you tweak system prompts, tone, and content filters to match company policies—on the back end.
  • No out-of-the-box UI builder; you’ll embed it in your own branded front end. Source
  • Fully bespoke—design any UI you want and skin it to match your brand.
  • SciPhi focuses on the back end, so front-end look-and-feel is entirely up to you.
  • Full white-labeling included – Colors, logos, CSS, custom domains at no extra cost
  • 2-minute setup – No-code wizard with drag-and-drop interface
  • Persona customization – Control AI personality, tone, response style via pre-prompts
  • Visual theme editor – Real-time preview of branding changes
  • Domain allowlisting – Restrict embedding to approved sites only
L L M Model Options
  • Runs on its own Grounded Language Model (GLM) tuned for RAG—tests show ~88 % factual accuracy.
  • Exposes standalone model APIs (reranker, generator) with simple token-based pricing. Source
  • LLM-agnostic—GPT-4, Claude, Llama 2, you choose.
  • Pick, fine-tune, or swap models anytime to balance cost and performance Model options.
  • GPT-5.1 models – Latest thinking models (Optimal & Smart variants)
  • GPT-4 series – GPT-4, GPT-4 Turbo, GPT-4o available
  • Claude 4.5 – Anthropic's Opus available for Enterprise
  • Auto model routing – Balances cost/performance automatically
  • Zero API key management – All models managed behind the scenes
Developer Experience ( A P I & S D Ks)
  • Offers solid REST APIs and a Python SDK for managing agents, ingesting data, and querying. Source
  • Endpoints cover tuning, evaluation, and standalone components—all with clear, token-based pricing.
  • REST API plus a Python client (R2RClient) handle ingest and query tasks
  • Docs and GitHub repos offer deep dives and open-source starter code SciPhi GitHub.
  • REST API – Full-featured for agents, projects, data ingestion, chat queries
  • Python SDK – Open-source customgpt-client with full API coverage
  • Postman collections – Pre-built requests for rapid prototyping
  • Webhooks – Real-time event notifications for conversations and leads
  • OpenAI compatible – Use existing OpenAI SDK code with minimal changes
Performance & Accuracy
  • RAG 2.0 approach tops industry benchmarks for document understanding and factuality. Source
  • Handles large, noisy datasets with multi-hop retrieval and strong reranking for grounded answers.
  • Hybrid search (dense + keyword) keeps retrieval fast and sharp.
  • Knowledge-graph boosts (HybridRAG) drive up to 150 % better accuracy
  • Sub-second latency—even at enterprise scale.
  • Sub-second responses – Optimized RAG with vector search and multi-layer caching
  • Benchmark-proven – 13% higher accuracy, 34% faster than OpenAI Assistants API
  • Anti-hallucination tech – Responses grounded only in your provided content
  • OpenGraph citations – Rich visual cards with titles, descriptions, images
  • 99.9% uptime – Auto-scaling infrastructure handles traffic spikes
Customization & Flexibility ( Behavior & Knowledge)
  • Create multiple datastores and link them to agents by role or permission for fine-grained access.
  • Tune the LLM on your own data, add guardrails, and embed custom logic as needed. Source
  • Add new sources, tweak retrieval, mix collections—everything’s programmable.
  • Chain API calls, re-rank docs, or build full agentic flows
  • Live content updates – Add/remove content with automatic re-indexing
  • System prompts – Shape agent behavior and voice through instructions
  • Multi-agent support – Different bots for different teams
  • Smart defaults – No ML expertise required for custom behavior
Pricing & Scalability
  • Usage-based pricing tailored for enterprises—cost scales with agent capacity, data size, and query load. Source
  • Standalone component APIs are priced per token, letting you mix and match pieces as you grow.
  • Free tier plus a $25/mo Dev tier for experiments.
  • Enterprise plans with custom pricing and self-hosting for heavy traffic Pricing.
  • Standard: $99/mo – 60M words, 10 bots
  • Premium: $449/mo – 300M words, 100 bots
  • Auto-scaling – Managed cloud scales with demand
  • Flat rates – No per-query charges
Security & Privacy
  • SOC 2 compliant with encryption in transit and at rest; deploy on-prem or in a VPC for full sovereignty. Source
  • Implements role-based permissions and query-time access checks to keep data secure.
  • Customer data stays isolated in SciPhi Cloud; self-host for full control.
  • Standard encryption in transit and at rest; tune self-hosted setups to meet any regulation.
  • SOC 2 Type II + GDPR – Third-party audited compliance
  • Encryption – 256-bit AES at rest, SSL/TLS in transit
  • Access controls – RBAC, 2FA, SSO, domain allowlisting
  • Data isolation – Never trains on your data
Observability & Monitoring
  • Built-in evaluation shows groundedness scores, retrieval metrics, and logs every step. Source
  • Plugs into external monitoring tools and supports detailed logging for audits and troubleshooting.
  • Dev dashboard shows real-time logs, latency, and retrieval quality Dashboard.
  • Hook into Prometheus, Grafana, or other tools for deep monitoring.
  • Real-time dashboard – Query volumes, token usage, response times
  • Customer Intelligence – User behavior patterns, popular queries, knowledge gaps
  • Conversation analytics – Full transcripts, resolution rates, common questions
  • Export capabilities – API export to BI tools and data warehouses
Support & Ecosystem
  • High-touch enterprise support with solution engineers and technical account managers.
  • Grows its ecosystem via partnerships (e.g., Snowflake) and industry thought leadership. Source
  • Community help via Discord and GitHub; Enterprise customers get dedicated support
  • Open-source core encourages community contributions and integrations.
  • Comprehensive docs – Tutorials, cookbooks, API references
  • Email + in-app support – Under 24hr response time
  • Premium support – Dedicated account managers for Premium/Enterprise
  • Open-source SDK – Python SDK, Postman, GitHub examples
  • 5,000+ Zapier apps – CRMs, e-commerce, marketing integrations
Additional Considerations
  • Great for mission-critical apps that need multimodal retrieval and advanced reasoning.
  • Requires more up-front setup and technical know-how than no-code tools—best for teams with ML expertise.
  • Handles complex needs like role-based data access and evolving multimodal content. Source
  • Advanced extras like GraphRAG and agentic flows push beyond basic Q&A
  • Great fit for enterprises needing deeply customized, fully integrated AI solutions.
  • Time-to-value – 2-minute deployment vs weeks with DIY
  • Always current – Auto-updates to latest GPT models
  • Proven scale – 6,000+ organizations, millions of queries
  • Multi-LLM – OpenAI + Claude reduces vendor lock-in
No- Code Interface & Usability
  • Web console helps manage agents, but there's no drag-and-drop chatbot builder.
  • UI integration is a coding project. APIs are full-featured, but non-tech users will need developer help.
  • No no-code UI—built for devs to wire into their own front ends.
  • Dashboard is utilitarian: good for testing and monitoring, not for everyday business users.
  • 2-minute deployment – Fastest time-to-value in the industry
  • Wizard interface – Step-by-step with visual previews
  • Drag-and-drop – Upload files, paste URLs, connect cloud storage
  • In-browser testing – Test before deploying to production
  • Zero learning curve – Productive on day one
Competitive Positioning
  • Market position: Enterprise RAG 2.0 platform with proprietary Grounded Language Model (GLM) optimized for factual accuracy and multimodal retrieval capabilities
  • Target customers: Large enterprises and ML teams requiring mission-critical AI applications with advanced reasoning, multimodal content handling (images, charts), and strict accuracy requirements (88% factual accuracy benchmarked)
  • Key competitors: OpenAI Enterprise, Azure AI, Deepset, Vectara.ai, and custom-built RAG solutions using LangChain/Haystack
  • Competitive advantages: Proprietary GLM model with superior RAG performance, multimodal retrieval (images/charts), SOC 2 compliance with VPC/on-prem deployment options, Snowflake Native App integration, groundedness scoring with "Instant Viewer" for source attribution, and multi-hop retrieval with chain-of-thought reasoning
  • Pricing advantage: Usage-based enterprise pricing with standalone component APIs (reranker, generator) priced per token; flexible for organizations that want to mix and match components; best value for high-accuracy, high-volume use cases
  • Use case fit: Ideal for mission-critical enterprise applications requiring multimodal retrieval (technical documentation with diagrams), domain-specific AI agents with advanced reasoning, and organizations needing role-based data access with query-time permission checks
  • Market position – Developer-first RAG infrastructure combining open-source flexibility with managed cloud service
  • Target customers – Dev teams needing high-performance RAG, enterprises requiring millions tokens/second ingestion
  • Key competitors – LangChain/LangSmith, Deepset/Haystack, Pinecone Assistant, custom RAG implementations
  • Competitive advantages – HybridRAG (150% accuracy boost), async auto-scaling, 40+ formats, sub-second latency
  • Pricing advantage – Free tier + $25/mo Dev plan; open-source foundation enables cost optimization
  • Use case fit – Massive document volumes, advanced RAG needs, self-hosting control requirements
  • Market position – Leading RAG platform balancing enterprise accuracy with no-code usability. Trusted by 6,000+ orgs including Adobe, MIT, Dropbox.
  • Key differentiators – #1 benchmarked accuracy • 1,400+ formats • Full white-labeling included • Flat-rate pricing
  • vs OpenAI – 10% lower hallucination, 13% higher accuracy, 34% faster
  • vs Botsonic/Chatbase – More file formats, source citations, no hidden costs
  • vs LangChain – Production-ready in 2 min vs weeks of development
A I Models
  • Grounded Language Model (GLM): Proprietary model tuned specifically for RAG with ~88% factual accuracy on FACTS benchmark
  • Industry-Leading Groundedness: GLM achieves 88% vs. Gemini 2.0 Flash (84.6%), Claude 3.5 Sonnet (79.4%), GPT-4o (78.8%) on factuality benchmarks
  • Inline Attribution: Model provides citations showing exact source documents for each part of response as generated
  • Standalone APIs: Exposes separate reranker and generator APIs with simple token-based pricing for flexible integration
  • Model-Agnostic Option: Platform supports integration with other LLMs if needed for specific use cases
  • Optimized for RAG: GLM specifically designed for retrieval-augmented generation scenarios vs. general-purpose LLMs
  • LLM-Agnostic Architecture – GPT-4, GPT-3.5, Claude, Llama 2, and other open-source models
  • Model Flexibility – Easy swapping to balance cost/performance without vendor lock-in
  • Custom Support – Configure any LLM via API including fine-tuned or proprietary models
  • Embedding Providers – Multiple embedding options for semantic search and vector generation
  • ✅ Full control over temperature, max tokens, and generation parameters
  • OpenAI – GPT-5.1 (Optimal/Smart), GPT-4 series
  • Anthropic – Claude 4.5 Opus/Sonnet (Enterprise)
  • Auto-routing – Intelligent model selection for cost/performance
  • Managed – No API keys or fine-tuning required
R A G Capabilities
  • RAG 2.0 Architecture: Advanced approach tops industry benchmarks for document understanding and factuality with multi-hop retrieval
  • Multimodal Retrieval: Turns images and charts into embeddings for unified search across text and visual content
  • Groundedness Scoring: Built-in evaluation shows groundedness scores with "Instant Viewer" highlighting exact source text backing each answer part
  • Reranker + Scoring: Uses reranker plus groundedness scoring for factual answers with precise attribution
  • Multi-Hop Retrieval: Advanced RAG agents with multi-hop retrieval and chain-of-thought reasoning for tough questions
  • Handles Noisy Datasets: Strong reranking and retrieval for large, noisy datasets with multiple datastores by role or permission
  • Query-Time Access Checks: Role-based permissions with query-time access validation for secure data retrieval
  • HybridRAG Technology – Vector search + knowledge graphs for 150% accuracy improvement
  • Hybrid Search – Dense vector + keyword with reciprocal rank fusion
  • Agentic RAG – Reasoning agent for autonomous research across documents and web
  • Multimodal Ingestion – 40+ formats (PDFs, spreadsheets, audio) at massive scale
  • ✅ Millions of tokens/second async auto-scaling ingestion throughput
  • ✅ Sub-second latency even at enterprise scale with optimized operations
  • GPT-4 + RAG – Outperforms OpenAI in independent benchmarks
  • Anti-hallucination – Responses grounded in your content only
  • Automatic citations – Clickable source links in every response
  • Sub-second latency – Optimized vector search and caching
  • Scale to 300M words – No performance degradation at scale
Use Cases
  • Industries Served: Finance, technology, media, professional services, regulated industries (healthcare, telecommunications) requiring high-accuracy AI
  • Notable Customers: HSBC (banking), Qualcomm (technology), The Economist (media) demonstrating enterprise adoption
  • Mission-Critical Applications: Applications where factual accuracy is paramount and hallucinations must be minimized
  • Multimodal Use Cases: Technical documentation with diagrams, charts in business documents, visual content requiring understanding
  • Domain-Specific AI Agents: Custom agents requiring advanced reasoning with access to structured and unstructured data
  • Role-Based Access: Organizations needing fine-grained data access control with query-time permission enforcement
  • Team Sizes: Large enterprises and ML teams with technical expertise for integration and deployment
  • Enterprise Knowledge – Process millions of documents with knowledge graph relationships
  • Support Automation – RAG-powered support bots with accurate, grounded responses
  • Research & Analysis – Agentic RAG for autonomous research across collections and web
  • Compliance & Legal – Large document repositories with precise citation tracking
  • Internal Docs – Developer-focused RAG for code, API references, technical knowledge
  • Custom AI Apps – API-first architecture integrates into any application or workflow
  • Customer support – 24/7 AI handling common queries with citations
  • Internal knowledge – HR policies, onboarding, technical docs
  • Sales enablement – Product info, lead qualification, education
  • Documentation – Help centers, FAQs with auto-crawling
  • E-commerce – Product recommendations, order assistance
Security & Compliance
  • SOC 2 Compliant: Security compliance with encryption in transit and at rest for enterprise requirements
  • Deployment Options: Cloud, on-premise, or VPC deployment for full data sovereignty and compliance needs
  • Role-Based Permissions: Implements role-based permissions with query-time access checks to keep sensitive data secure
  • Encryption: Data encrypted in transit and at rest with enterprise-grade security protocols
  • Snowflake Partnership: Snowflake Native App option enables tight, secure data integration within customer environments
  • Data Sovereignty: On-prem and VPC options allow complete control over data location and access
  • Data Isolation – Single-tenant architecture with isolated customer data in SciPhi Cloud
  • Self-Hosting Option – On-premise deployment for complete data control in regulated industries
  • Encryption Standards – TLS in transit, AES-256 at rest encryption
  • Access Controls – Document-level granular permissions with role-based access control (RBAC)
  • ✅ Open-source R2R core enables security audits and compliance validation
  • ✅ Self-hosted deployments tunable for HIPAA, SOC 2, and other regulations
  • SOC 2 Type II + GDPR – Regular third-party audits, full EU compliance
  • 256-bit AES encryption – Data at rest; SSL/TLS in transit
  • SSO + 2FA + RBAC – Enterprise access controls with role-based permissions
  • Data isolation – Never trains on customer data
  • Domain allowlisting – Restrict chatbot to approved domains
Pricing & Plans
  • Free Tier: Credits for first 1M input and 1M output tokens to evaluate platform capabilities
  • Usage-Based Pricing: Enterprise pricing tailored by agent capacity, data size, and query load for scalability
  • Token-Based Components: Standalone component APIs (reranker, generator) priced per token for flexible mix-and-match
  • Enterprise Custom Pricing: Pricing details require sales engagement for production deployments and dedicated instances
  • Buy Additional Credits: Users can purchase credits as needs grow beyond free tier allocation
  • Best Value For: High-accuracy, high-volume enterprise use cases requiring multimodal retrieval and advanced reasoning
  • Free Tier – Generous no-credit-card tier for experimentation and development
  • Developer Plan – $25/month for individual developers and small projects
  • Enterprise Plans – Custom pricing based on scale, features, and support
  • Self-Hosting – Open-source R2R available free (infrastructure costs only)
  • ✅ Flat subscription pricing without per-query or per-document charges
  • ✅ Managed cloud handles infrastructure, deployment, scaling, updates, maintenance
  • Standard: $99/mo – 10 chatbots, 60M words, 5K items/bot
  • Premium: $449/mo – 100 chatbots, 300M words, 20K items/bot
  • Enterprise: Custom – SSO, dedicated support, custom SLAs
  • 7-day free trial – Full Standard access, no charges
  • Flat-rate pricing – No per-query charges, no hidden costs
Support & Documentation
  • High-Touch Enterprise Support: Solution engineers and technical account managers for dedicated customer success
  • API Documentation: Solid REST APIs and Python SDK documentation for managing agents, ingesting data, and querying
  • Endpoint Coverage: APIs for tuning, evaluation, standalone components with clear, token-based pricing transparency
  • Partnership Ecosystem: Grows via partnerships (Snowflake) and industry thought leadership for enterprise integration
  • Learning Resources: Technical documentation and integration guides for ML teams and developers
  • Response Times: Enterprise support includes dedicated resources for onboarding and technical assistance
  • Comprehensive Docs – Detailed docs at r2r-docs.sciphi.ai covering all features and endpoints
  • GitHub Repository – Active open-source development at github.com/SciPhi-AI/R2R with code examples
  • Community Support – Discord community and GitHub issues for peer support
  • Enterprise Support – Dedicated channels for enterprise customers with SLAs
  • ✅ Python client (R2RClient) with extensive examples and starter code
  • ✅ Developer dashboard with real-time logs, latency, and retrieval quality metrics
  • Documentation hub – Docs, tutorials, API references
  • Support channels – Email, in-app chat, dedicated managers (Premium+)
  • Open-source – Python SDK, Postman, GitHub examples
  • Community – User community + 5,000 Zapier integrations
Limitations & Considerations
  • Technical Expertise Required: Best for teams with ML expertise - more up-front setup and technical know-how than no-code tools
  • NO Drag-and-Drop Builder: Web console helps manage agents, but no drag-and-drop chatbot builder for non-technical users
  • UI Integration is Coding Project: APIs are full-featured, but non-tech users will need developer help for implementation
  • Learning Curve: Platform requires understanding of RAG concepts, embeddings, and AI agent architecture
  • NO Pre-Built UI: No out-of-the-box UI builder; customers embed in their own branded front end
  • API-First Platform: Built for API integration first - no plug-and-play web widget included
  • Enterprise Focus: Pricing and features target large enterprises vs. SMBs or individual developers
  • NOT Ideal For: Small teams without ML/AI expertise, organizations wanting no-code deployment, businesses needing immediate plug-and-play solutions
  • ⚠️ Developer-Focused – Requires technical expertise to build and wire custom front ends
  • ⚠️ Infrastructure Requirements – Self-hosting needs GPU infrastructure and DevOps expertise
  • ⚠️ Integration Effort – API-first design means building your own chat UI
  • ⚠️ Learning Curve – Advanced features like knowledge graphs require RAG concept understanding
  • ⚠️ Community Support Limits – Open-source support relies on community unless enterprise plan
  • Managed service – Less control over RAG pipeline vs build-your-own
  • Model selection – OpenAI + Anthropic only; no Cohere, AI21, open-source
  • Real-time data – Requires re-indexing; not ideal for live inventory/prices
  • Enterprise features – Custom SSO only on Enterprise plan
Core Agent Features
  • RAG 2.0 Agents: Specialized RAG agents for expert knowledge work with advanced contextual understanding and multi-hop retrieval capabilities
  • Multi-Hop Retrieval: Advanced RAG agents execute multi-hop retrieval and chain-of-thought reasoning for tough, complex questions
  • Task-Oriented Assistants: Domain-specific AI agents designed for mission-critical applications requiring high accuracy and minimal hallucinations
  • Multiple Datastore Support: Create multiple datastores and link them to agents by role or permission for fine-grained access control
  • Custom Logic Integration: Tune LLM on your own data, add guardrails, and embed custom logic as needed for specialized workflows
  • Agent APIs: Programmatic agent creation, management, and querying through comprehensive REST APIs and Python SDK
  • Grounded Generation: Inline citations showing exact document spans that informed each response part with built-in hallucination reduction
  • Document-Level Security: Enterprise controls for access permissions on sensitive data with query-time access validation
  • Platform Generally Available (January 2025): Helping enterprises build specialized RAG agents to support expert knowledge work
  • Benchmark Performance: Each component achieves leading benchmarks on BIRD (structured reasoning), RAG-QA Arena (end-to-end RAG), OmniDocBench (document understanding)
  • Agentic RAG – Reasoning agent for autonomous research across documents/web with multi-step problem solving
  • Advanced Toolset – Semantic search, metadata search, document retrieval, web search, web scraping capabilities
  • Multi-Turn Context – Stateful dialogues maintaining conversation history via conversation_id for follow-ups
  • Citation Transparency – Detailed responses with source citations for fact-checking and verification
  • ⚠️ No Pre-Built UI – API-first platform requires custom front-end development
  • ⚠️ No Lead Analytics – Lead capture and dashboards must be implemented at application layer
  • Custom AI Agents – Autonomous GPT-4/Claude agents for business tasks
  • Multi-Agent Systems – Specialized agents for support, sales, knowledge
  • Memory & Context – Persistent conversation history across sessions
  • Tool Integration – Webhooks + 5,000 Zapier apps for automation
  • Continuous Learning – Auto re-indexing without manual retraining
R A G-as-a- Service Assessment
  • Platform Type: TRUE ENTERPRISE RAG 2.0 PLATFORM - Proprietary Grounded Language Model (GLM) optimized for factual accuracy and multimodal retrieval
  • RAG 2.0 Architecture: Advanced approach tops industry benchmarks for document understanding and factuality with multi-hop retrieval (announced general availability January 2025)
  • Proprietary GLM Model: ~88% factual accuracy on FACTS benchmark outperforming Gemini 2.0 Flash (84.6%), Claude 3.5 Sonnet (79.4%), GPT-4o (78.8%)
  • Built-in Evaluation Tools: Assess generated responses for equivalence and groundedness with comprehensive evaluation across every critical component
  • Multimodal Retrieval: Turns images and charts into embeddings for unified search across text and visual content in technical documentation
  • Groundedness Scoring: Built-in scoring with "Instant Viewer" highlighting exact source text backing each answer part for transparency
  • Reranker + Scoring: Uses reranker plus groundedness scoring for factual answers with precise attribution and hallucination reduction
  • Handles Noisy Datasets: Strong reranking and retrieval for large, noisy datasets with multiple datastores by role or permission
  • Production-Grade Accuracy: Delivers production-grade accuracy for specialized knowledge tasks with enterprise security, audit trails, high availability, scalability, compliance
  • Joint Tuning Capability: Retrieval and generation components can be jointly tuned by providing sample queries, gold-standard responses, supporting evidence
  • Comprehensive Assessment: Measures end-to-end RAG performance, multi-modal document understanding, structured data retrieval, and grounded language generation
  • Target Market: Large enterprises and ML teams requiring mission-critical AI applications with advanced reasoning and strict accuracy requirements
  • Use Case Fit: Ideal for mission-critical enterprise applications requiring multimodal retrieval, domain-specific AI agents, and role-based data access with query-time permission checks
  • Platform Type – HYBRID RAG-AS-A-SERVICE combining open-source R2R with managed SciPhi Cloud
  • Core Mission – Bridge experimental RAG models to production-ready systems with deployment flexibility
  • Developer Target – Built for OSS community, startups, enterprises emphasizing developer flexibility and control
  • RAG Leadership – HybridRAG (150% accuracy), millions tokens/second, 40+ formats, sub-second latency
  • ✅ Open-source R2R core on GitHub enables customization, portability, avoids vendor lock-in
  • ⚠️ NO no-code features – No chat widgets, visual builders, pre-built integrations or dashboards
  • Platform type – TRUE RAG-AS-A-SERVICE with managed infrastructure
  • API-first – REST API, Python SDK, OpenAI compatibility, MCP Server
  • No-code option – 2-minute wizard deployment for non-developers
  • Hybrid positioning – Serves both dev teams (APIs) and business users (no-code)
  • Enterprise ready – SOC 2 Type II, GDPR, WCAG 2.0, flat-rate pricing

Ready to experience the CustomGPT difference?

Start Free Trial →

Final Thoughts

Final Verdict: Contextual AI vs SciPhi

After analyzing features, pricing, performance, and user feedback, both Contextual AI and SciPhi are capable platforms that serve different market segments and use cases effectively.

When to Choose Contextual AI

  • You value invented by the original creator of rag technology
  • Best-in-class accuracy on RAG benchmarks
  • End-to-end optimized system vs cobbled together solutions

Best For: Invented by the original creator of RAG technology

When to Choose SciPhi

  • You value state-of-the-art retrieval accuracy
  • Open-source with strong community
  • Production-ready with proven scalability

Best For: State-of-the-art retrieval accuracy

Migration & Switching Considerations

Switching between Contextual AI and SciPhi requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.

Pricing Comparison Summary

Contextual AI starts at custom pricing, while SciPhi begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.

Our Recommendation Process

  1. Start with a free trial - Both platforms offer trial periods to test with your actual data
  2. Define success metrics - Response accuracy, latency, user satisfaction, cost per query
  3. Test with real use cases - Don't rely on generic demos; use your production data
  4. Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
  5. Check vendor stability - Review roadmap transparency, update frequency, and support quality

For most organizations, the decision between Contextual AI and SciPhi comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.

📚 Next Steps

Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.

  • Review: Check the detailed feature comparison table above
  • Test: Sign up for free trials and test with real queries
  • Calculate: Estimate your monthly costs based on expected usage
  • Decide: Choose the platform that best aligns with your requirements

Last updated: December 28, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.

Ready to Get Started with CustomGPT?

Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.

Why Choose CustomGPT?

97% Accuracy

Industry-leading benchmarks

5-Min Setup

Get started instantly

24/7 Support

Expert help when you need it

Enterprise Ready

Scale with confidence

Trusted by leading companies worldwide

Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us

Join the Discussion

Loading comments...

Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.

Watch: Understanding AI Tool Comparisons