Deviniti vs Guru

Make an informed decision with our comprehensive comparison. Discover which RAG solution perfectly fits your needs.

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT.ai

Fact checked and reviewed by Bill Cava

Published: 01.04.2025Updated: 25.04.2025

In this comprehensive guide, we compare Deviniti and Guru across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.

Overview

When choosing between Deviniti and Guru, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.

Quick Decision Guide

  • Choose Deviniti if: you value strong compliance and security focus
  • Choose Guru if: you value permission-aware ai is unique differentiator - answers respect real-time access control

About Deviniti

Deviniti Landing Page Screenshot

Deviniti is self-hosted genai solutions for compliance-critical industries. Deviniti is an AI development company specializing in secure, self-hosted AI agents and LLM solutions for highly regulated industries like finance, healthcare, and legal, with expertise in RAG architecture and custom AI development. Founded in 2010, headquartered in Kraków, Poland, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
77/100
Starting Price
Custom

About Guru

Guru Landing Page Screenshot

Guru is ai-powered knowledge management and search platform. Enterprise AI knowledge platform with permission-aware Knowledge Agents that deliver trusted, cited answers from your company's verified knowledge base across all workflows. Founded in 2015, headquartered in Philadelphia, PA, USA, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
86/100
Starting Price
$25/mo

Key Differences at a Glance

In terms of user ratings, Guru in overall satisfaction. From a cost perspective, Deviniti starts at a lower price point. The platforms also differ in their primary focus: AI Development versus Knowledge Management. These differences make each platform better suited for specific use cases and organizational requirements.

⚠️ What This Comparison Covers

We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.

Detailed Feature Comparison

logo of deviniti
Deviniti
logo of guru
Guru
logo of customGPT logo
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
  • Builds custom pipelines to pull in pretty much any source—internal docs, FAQs, websites, databases, even proprietary APIs.
  • Works with all the usual suspects (PDF, DOCX, etc.) and can tap uncommon sources if the project needs it. Project case study
  • Designs scalable setups—hardware, storage, indexing—to handle huge data sets and keep everything fresh with automated pipelines. Learn more
  • Native Knowledge Base: Guru Cards - verified knowledge articles with expert ownership and verification workflows
  • Pre-Built Connectors: Google Drive, SharePoint, Confluence, Notion, Slack channels, Discord servers
  • External Sources: Optionally approved public websites and web content
  • Content Types: Structured (Cards, wikis) and unstructured (documents, conversations, attachments)
  • Automated Syncing: API/SDK for automated Card creation, Zapier/Workato/Prismatic integrations for continuous sync
  • Real-Time Indexing: Knowledge updates reflected immediately in AI agent responses
  • Verification System: Regular verification intervals prompt content owners to review and update knowledge
  • Enterprise Scale: Handles millions of knowledge items across large organizations (thousands of employees)
  • Single Source of Truth: Centralized, verified company knowledge accessible to all AI agents
  • Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
  • Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
  • Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text. View Transcription Guide
  • Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier. See Zapier Connectors
  • Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
  • Plugs the chatbot into any channel you need—web, mobile, Slack, Teams, or even legacy apps—tailored to your stack.
  • Spins up custom API endpoints or webhooks to hook into CRMs, ERPs, or ITSM tools (dev work included). Integration approach
  • Native Workplace Apps: Slack workspace bot, Microsoft Teams bot, browser extension for any web app
  • AI Tool Integration: ChatGPT, Claude, GitHub Copilot via MCP (Model Context Protocol) Server
  • Business Apps: Salesforce knowledge integration, Zendesk support integration, intranet portals
  • Automation Platforms: Zapier (1,000+ apps), Workato, Prismatic for custom workflows
  • Developer Access: REST API, Python SDK, webhooks for event-driven integrations
  • Mobile Apps: iOS and Android native apps for on-the-go knowledge access
  • Embedded Knowledge: Widgets for internal portals, API-driven custom chat interfaces
  • MCP Server: Universal connector for any AI tool to access Guru's permission-aware knowledge layer
  • Focus: Strong internal channel support (Slack/Teams), less emphasis on public consumer channels (WhatsApp, Telegram)
  • Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
  • Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more. Explore API Integrations
  • Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
  • Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
  • Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc. Read more here.
  • Supports OpenAI API Endpoint compatibility. Read more here.
Core Chatbot Features
  • Builds a domain-tuned AI chatbot with multi-turn memory, context, and any language you need (local LLMs included).
  • Can add lead capture, human handoff, and tight workflow hooks (e.g., IT tickets) exactly as you specify. Case study
  • Conversational AI: Multi-turn dialogue with context retention - feels like talking to a knowledgeable co-worker
  • Multi-Lingual: Content in all languages supported, instant translation to 50+ languages (UI English-only)
  • Grounded Answers: All responses backed by verified company knowledge with automatic citations
  • Customizable Knowledge Agents: Create and deploy specialized AI agents for any team or project tailoring knowledge sources, tone, and focus to provide highly relevant role-specific insights that improve over time
  • Research Mode: Complex queries generate structured multi-source reports with detailed analysis
  • Permission-Aware: Answers automatically tailored to user's role and access permissions
  • Content Assist Features: Actions include "Fix grammar," "Summarize," "Make more concise," or custom prompts to match team tone or formatting needs
  • Admin Customization Controls: Admins can toggle specific actions on or off and create custom assist actions for different user groups ensuring alignment across teams
  • Conversation Logging: Complete audit trail via AI Agent Center - every question, answer, and source tracked
  • Analytics Dashboard: Usage stats, deflection rates, time saved, trending questions, knowledge gap identification
  • Human Escalation: Seamless handoff to subject-matter experts when AI cannot answer, convert queries to Card requests
  • Internal Focus: Optimized for employee knowledge access vs. external customer engagement features (lead capture not core)
  • Reduces hallucinations by grounding replies in your data and adding source citations for transparency. Benchmark Details
  • Handles multi-turn, context-aware chats with persistent history and solid conversation management.
  • Speaks 90+ languages, making global rollouts straightforward.
  • Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Customization & Branding
  • Everything’s bespoke: UI, tone, flows—whatever matches your brand.
  • Slots into your existing tools with custom styling and domain-specific dialogs—changes just take dev effort. Custom approach
  • Custom Agents: Each Knowledge Agent has unique name, avatar, scope, and purpose (IT, HR, Sales, Marketing, Product)
  • Prompt Configuration: Custom instructions and system messages per agent to shape behavior and response style
  • Permission Scoping: Agents automatically respect user roles - managers see more detail than general employees
  • Department Specialization: Create specialized agents for different teams using relevant knowledge Collections
  • Portal Branding: Guru Pages/Portal can include company logos, colors, custom styling for internal knowledge sites
  • Limited White-Labeling: Guru branding typically present in web app and extension (internal tool focus, not external)
  • Access Controls: Domain/IP restrictions (Enterprise), SAML SSO, SCIM provisioning for controlled access
  • Role-Based UI: Different user roles (admin, author, viewer) see different interfaces and capabilities
  • Configuration UI: No-code agent setup via "Manage > Knowledge Agents" menu with guided workflows
  • Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand. White-label Options
  • Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
  • Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
  • Uses domain allowlisting to ensure the chatbot appears only on approved sites.
L L M Model Options
  • Pick any model—GPT-4, Claude, Llama 2, Falcon—whatever fits your needs.
  • Fine-tune on proprietary data for insider terminology, but swapping models means a new build/deploy cycle. Our services
  • Abstracted Model: LLM selection handled under the hood - likely OpenAI GPT (GPT-3.5/GPT-4) by default
  • No User Selection: No UI toggle for model choice - optimized for trust and simplicity over technical control
  • LLM-Agnostic Architecture: Platform designed to work with different models for enterprise flexibility
  • Private Models: Enterprise can opt for dedicated private AI model instance (e.g., Azure OpenAI in customer tenant)
  • Zero Data Retention: Third-party LLM endpoints configured to never store or train on customer data
  • Automatic Optimization: System may use different models for simple FAQ vs. complex Research Mode queries
  • Security Focus: Model choice prioritizes compliance, data sovereignty, and zero leakage guarantees
  • Quality Assurance: All answers cited and permission-aware regardless of underlying model - trust layer above LLM
  • Taps into top models—OpenAI’s GPT-5.1 series, GPT-4 series, and even Anthropic’s Claude for enterprise needs (4.5 opus and sonnet, etc ).
  • Automatically balances cost and performance by picking the right model for each request. Model Selection Details
  • Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
  • Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Developer Experience ( A P I & S D Ks)
  • Delivers a project-specific API—JSON over HTTP—made exactly for your endpoints.
  • Docs, samples, and support come straight from Deviniti engineers, not a public SDK. Project example
  • REST API: Comprehensive endpoints for Cards, Collections, users, groups, AI queries, analytics
  • Python SDK: Official library for minimal-code integrations and automation scripts
  • Webhooks: Event subscriptions for Card updates, AI queries, user actions, knowledge changes
  • MCP Server: Model Context Protocol integration for connecting external AI tools to Guru knowledge
  • Integration Platforms: Pre-built Zapier, Workato, Prismatic connectors for no-code/low-code workflows
  • API Documentation: Extensive developer docs at developer.getguru.com with references, guides, examples
  • Authentication: API tokens, OAuth support, SAML SSO for programmatic access
  • Use Cases: Automated knowledge sync, custom chatbot frontends, analytics integration, bulk operations
  • Developer Community: Active Guru Developer Network, community forum, example projects shared
  • Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat. API Documentation
  • Offers open-source SDKs—like the Python customgpt-client—plus Postman collections to speed integration. Open-Source SDK
  • Backs you up with cookbooks, code samples, and step-by-step guides for every skill level.
Performance & Accuracy
  • Uses best-practice retrieval (multi-index, tuned prompts) to serve precise answers.
  • Fine-tunes on your data to squash hallucinations, though perfecting it may need ongoing tweaks. Our approach
  • RAG Foundation: Retrieval-Augmented Generation grounds all answers in verified company knowledge
  • Automatic Citations: Every answer includes exact source references (slide 8, specific Card, document section)
  • Multiple Retrieval Techniques: Several search algorithms ensure best information found for each query
  • Synthesis Capability: Combines insights from multiple documents for comprehensive complex answers
  • Verified Knowledge Base: Expert verification workflows ensure underlying data is reliable and current
  • Permission Filtering: Retrieval only uses content user is authorized to see - prevents context contamination
  • Hallucination Reduction: RAG architecture significantly reduces AI hallucinations vs. LLM-only approaches
  • Confidence Handling: When unsure, agent indicates lack of knowledge rather than guessing wrong answer
  • Real-Time Accuracy: Knowledge updates immediately reflected in AI responses - no stale data lag
  • Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
  • Independent tests rate median answer accuracy at 5/5—outpacing many alternatives. Benchmark Results
  • Always cites sources so users can verify facts on the spot.
  • Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
Customization & Flexibility ( Behavior & Knowledge)
  • Total control: add new sources with custom pipelines, tweak bot tone, inject live API calls—whatever you dream up.
  • Everything’s bespoke, so updates usually involve a quick dev sprint. Case details
  • Real-Time Knowledge Updates: Always available manual retraining across all plans through browser extension and integration sync triggers
  • Automatic Syncing: Continuous synchronization with integrated systems (Confluence, SharePoint, Notion, Google Drive, Salesforce, Zendesk) for real-time knowledge base updates
  • Custom Knowledge Agents: Each agent has unique name, avatar, scope, and purpose (IT, HR, Sales, Marketing, Product) with prompt configuration to shape behavior and response style
  • Department Specialization: Create specialized agents for different teams using relevant knowledge Collections with permission scoping automatically respecting user roles
  • Permission-Aware Responses: Answers automatically tailored to user's role and access permissions - managers see more detail than general employees
  • Content Assist Customization: Create custom assist actions for different user groups with admin controls to toggle specific actions on or off ensuring alignment across teams
  • Verification Workflows: Collaborative knowledge management where Card Owners receive verification reminders, experts can trigger out-of-cycle reviews, and verification intervals are configurable
  • Knowledge Attribution: Every Card has designated Owner (subject-matter expert), last verified timestamp, trusted status indicator, audit trail of changes
  • LIMITATION: No programmatic personality management - agent configuration dashboard-only, cannot modify per-user or via API (no /agents endpoint for creating/updating agents)
  • LIMITATION: Model Abstraction - no user control over LLM selection optimized for simplicity but reduces flexibility for technical users
  • Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
  • Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus. Learn How to Update Sources
  • Supports multiple agents per account, so different teams can have their own bots.
  • Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Pricing & Scalability
  • Project-based pricing plus optional maintenance—great for unique enterprise needs.
  • Your infra (cloud or on-prem) handles the load; the solution is built to scale to millions of queries. Client portfolio
  • Self-Serve Plan: $25/user/month (annual), $30/user/month (monthly), 10-user minimum ($250/month baseline)
  • AI Usage: AI credits included with usage limits - typical for normal internal usage patterns
  • Enterprise Plan: Custom pricing with flexible usage-based model, volume discounts, overage pricing
  • Seat-Based Model: Cost scales linearly with user count - can be expensive for very large deployments
  • Predictable Scaling: Start per-seat, transition to usage-based for enterprise scale to avoid surprise costs
  • No Content Limits: No explicit cap on knowledge items or documents (can store thousands of Cards)
  • Enterprise Scalability: Supports organizations with thousands of employees and extensive knowledge bases
  • ROI Focus: Guru claims 10x+ ROI from day one through productivity gains and time savings
  • Total Cost: Includes full platform (knowledge management + AI) vs. AI-only pricing of competitors
  • Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
  • Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates. View Pricing
  • Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
  • Deploy on-prem or private cloud for full data control and compliance peace of mind.
  • Uses strong encryption, access controls, and hooks into your existing security stack. Security details
  • SOC 2 Type II Certified: Independently audited security controls and compliance
  • GDPR Compliant: Data protection, privacy rights, EU data residency options
  • Zero LLM Data Retention: Third-party AI models never store or train on customer data
  • Private AI Models: Enterprise option for dedicated model instance (Azure OpenAI in customer tenant)
  • Encryption: Data encrypted at rest and in transit (TLS/SSL)
  • SAML SSO: Single sign-on integration with enterprise identity providers (Okta, Azure AD, etc.)
  • SCIM Provisioning: Automated user lifecycle management and group synchronization
  • IP Whitelisting: Enterprise plan allows restricting access to approved networks
  • Permission-Aware Security: AI respects real-time access controls - users only see authorized content
  • Audit Logs: Complete activity tracking via AI Agent Center for compliance and oversight
  • Role-Based Access Control: Granular permissions for admins, authors, viewers, knowledge managers
  • Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
  • Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private. Security Certifications
  • Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Observability & Monitoring
  • Custom monitoring ties into tools like CloudWatch or Prometheus to track everything.
  • Can add an admin dashboard or SIEM feeds for real-time analytics and alerts. More info
  • Analytics Dashboard: Comprehensive stats on knowledge base usage, AI queries, user engagement
  • AI Agent Center: Detailed logs of every AI query, answer, confidence, sources cited
  • Conversation Audit Trail: Complete history for compliance, quality review, knowledge gap analysis
  • Deflection Metrics: Track AI-answered vs. human-escalated queries, time saved statistics
  • Trend Analysis: Identify frequently asked questions, knowledge gaps, content improvement opportunities
  • Usage Alerts: Enterprise governance with proactive alerts when AI credit thresholds approached
  • BI Integration: API access enables piping analytics to Looker, Tableau, or custom dashboards
  • System Status: Public status dashboard (status.getguru.com) for uptime and performance monitoring
  • Real-Time Monitoring: Track agent performance, query volumes, response quality in real-time
  • Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
  • Lets you export logs and metrics via API to plug into third-party monitoring or BI tools. Analytics API
  • Provides detailed insights for troubleshooting and ongoing optimization.
Support & Ecosystem
  • Hands-on support from Deviniti—from kickoff through post-launch—direct access to the dev team.
  • Docs, training, and integrations are built around your stack, not one-size-fits-all. Our services
  • Multi-Channel Support: Help Center with guides, Community forum, live chat for paying customers
  • Enterprise Support: Dedicated Customer Success Manager, priority support, SLA guarantees
  • Guru University: Training programs, workshops, office hours, certification courses
  • Active Community: User forum for peer learning, knowledge sharing, best practice discussions
  • Developer Resources: Extensive API docs, Python SDK, integration examples, developer blog
  • Partner Ecosystem: Integration partners (Zapier, Workato), implementation consultants, certified experts
  • Guru Champions Program: Internal advocates drive adoption and share success stories
  • Exceptional Support Reputation: Praised in G2 reviews for responsive, effective assistance
  • Content Library: Knowledge base guides, webinars, case studies, RAG education materials
  • Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast. Developer Docs
  • Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs. Enterprise Solutions
  • Benefits from an active user community plus integrations through Zapier and GitHub resources.
Additional Considerations
  • Can build hybrid agents that run complex, transactional tasks—not just Q&A.
  • You own the solution end-to-end and can evolve it as AI tech moves forward. Custom governance
  • Content Maintenance Requirements: Platform value depends on organizational discipline in refreshing knowledge base regularly - requires disciplined maintenance where teams must actively verify cards and keep ownership clear
  • Search Limitations: Guru's search struggles when knowledge isn't perfectly documented and tagged within its system of Cards - if answer exists only in Slack thread or past conversation, Guru's search won't find it leading to "no results found" dead ends
  • Enterprise-Specific Limitations: Version history for published cards but not for drafts making collaborative edits hard to track or revert; editor cannot create step-by-step guides or decision trees requiring employees to scan long text
  • UI Performance Concerns: UI becomes laggy when Knowledge base and team grows - performance degradation at scale
  • Initial Setup Complexity: New users may find UI slightly complex particularly when managing large collections or reorganizing knowledge across departments - initial setup defining collections, permissions, and verification rules can take time especially for companies with many departments
  • Pricing Consideration: Per-user seat-based model can be expensive for very large deployments (1,000+ users) vs query-based alternatives - pricing structure requires consideration especially for smaller businesses
  • Limited Customization: User interface while generally user-friendly may lack flexibility in terms of customization potentially limiting company's ability to fully brand experience or tailor to specific visual preferences
  • Integration Gaps: While Guru integrates with popular tools like Slack users desire more native integrations with other platforms to further streamline workflows and data synchronization
  • No Built-In Customer Portal: Guru offers no built-in portal for customers - publishing content online needs extra API work
  • Internal Focus Trade-off: Platform designed for internal teams - NOT optimized for external customer support chatbots, public-facing agents, or lead capture capabilities
  • Best For: Companies prioritizing internal knowledge management with verified content workflows and distributed expertise capture
  • NOT Ideal For: External customer support chatbots, public-facing conversational AI, organizations without verification workflow culture, teams needing deep LLM customization
  • Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
  • Gets you to value quickly: launch a functional AI assistant in minutes.
  • Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
  • Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No- Code Interface & Usability
  • No out-of-the-box no-code dashboard—IT or bespoke admin panels handle config.
  • Everyday users chat with the bot; deeper tweaks live with the tech team.
  • Business User Focus: Designed for non-technical knowledge managers, content creators, department leads
  • Intuitive Card Editor: Wiki-like interface (similar to Notion) for creating and editing knowledge articles
  • Agent Configuration UI: "Manage > Knowledge Agents" menu with guided setup - no coding required
  • Point-and-Click Integrations: OAuth connections to Google Drive, Confluence, Slack via simple clicks
  • Organizational Tools: Tags, folders, Collections for systematic knowledge organization
  • Verification Workflows: Built-in prompts for regular content review - ensures accuracy without admin overhead
  • Role-Based Collaboration: Content experts manage knowledge, admins handle setup, users consume - clear separation
  • In-App Guidance: Tooltips, help articles, video tutorials (YouTube) guide users through processes
  • Mobile-Friendly: iOS and Android apps provide full knowledge management on-the-go
  • No Developer Required: Business users can deploy and maintain AI agents independently after initial setup
  • Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
  • Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing. User Experience Review
  • Uses role-based access so business users and devs can collaborate smoothly.
Competitive Positioning
  • Market position: Custom AI development agency (200+ clients served) specializing in self-hosted, enterprise RAG solutions with domain-specific fine-tuning and legacy system integration
  • Target customers: Large enterprises needing fully custom AI solutions, organizations with legacy systems requiring specialized integration, and companies requiring on-premises deployment with complete data sovereignty and compliance control
  • Key competitors: Azumo, internal AI development teams, Contextual.ai (enterprise), and other custom AI consulting firms
  • Competitive advantages: 200+ enterprise clients demonstrating proven track record, model-agnostic approach with fine-tuning on proprietary data, on-prem/private cloud deployment for full data control, custom API/workflow development tailored to exact specifications, white-glove support with direct dev team access, and complete solution ownership with bespoke UI/branding
  • Pricing advantage: Project-based pricing plus optional maintenance; higher upfront cost than SaaS but provides long-term ownership without subscription fees; best value for unique enterprise needs that can't be met with off-the-shelf solutions and require custom integrations
  • Use case fit: Ideal for enterprises with legacy systems needing specialized AI integration, organizations requiring domain-tuned models with insider terminology, companies needing hybrid AI agents handling complex transactional tasks beyond Q&A, and businesses demanding on-premises deployment with complete data sovereignty and custom compliance measures
  • Primary Advantage: Permission-aware AI with real-time access control - unique in market
  • Knowledge Foundation: 10+ years enterprise KM expertise ensures verified, trustworthy knowledge base
  • Enterprise Focus: Built for large organizations with complex permission structures and compliance needs
  • Integration Breadth: MCP Server enables universal AI tool connectivity without custom RAG
  • Primary Challenge: Per-user pricing can be expensive for very large deployments vs. query-based models
  • Internal Focus: Optimized for internal knowledge vs. external customer-facing chatbots
  • Market Position: Premium enterprise knowledge platform with AI vs. pure-play RAG chatbot services
  • Use Case Fit: Ideal for enterprises prioritizing trust, governance, and internal knowledge access
  • Proven Scale: Handles thousands of users and millions of knowledge items in production deployments
  • Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
  • Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
  • Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
  • Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
  • Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
  • Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
  • Model-agnostic approach: Supports any LLM - GPT-4, Claude, Llama 2, Falcon, Cohere, or custom models based on client needs
  • Custom model fine-tuning: Fine-tune models on proprietary data for domain-specific terminology and insider jargon
  • Local LLM deployment: On-premises model hosting for complete data sovereignty and offline operation
  • Multiple model support: Deploy different models for different use cases within same infrastructure
  • Model flexibility: Swap models through new build/deploy cycle as requirements evolve
  • Custom training pipelines: Build specialized training workflows for continuous model improvement
  • Abstracted Model Architecture: LLM selection handled internally - likely OpenAI GPT (GPT-3.5/GPT-4) by default for standard operations
  • No User-Facing Selection: No UI toggle for model choice - platform optimized for trust and simplicity over technical control
  • LLM-Agnostic Design: Architecture designed to work with different models providing enterprise flexibility for future model changes
  • Private Model Options: Enterprise can opt for dedicated private AI model instance (e.g., Azure OpenAI in customer tenant) for data sovereignty
  • Zero Data Retention: Third-party LLM endpoints configured to never store or train on customer data - critical privacy guarantee
  • Automatic Optimization: System may use different models for simple FAQ responses vs. complex Research Mode queries for cost/quality balance
  • Security-First Selection: Model choice prioritizes compliance, data sovereignty, and zero leakage guarantees over raw performance metrics
  • Quality Assurance Layer: All answers cited and permission-aware regardless of underlying model - trust layer above LLM capabilities
  • Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
  • Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request Model Selection Details
  • Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
  • Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
  • Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
  • Custom RAG architecture: Best-practice retrieval with multi-index strategies and tuned prompts for precise answers
  • Domain-specific fine-tuning: Train on proprietary data to eliminate hallucinations and improve accuracy for insider terminology
  • Multi-hop retrieval: Complex query workflows requiring multiple retrieval steps
  • Custom vector databases: Choose and configure optimal vector DB backend for your scale and performance needs
  • Hybrid search: Combine semantic and keyword search strategies tailored to your data characteristics
  • Source attribution: Full citation tracking with confidence scores and document references
  • Continuous improvement: Ongoing tweaks and refinements to perfect retrieval accuracy over time
  • RAG Foundation: Retrieval-Augmented Generation grounds all answers in verified company knowledge with automatic citations
  • Multiple Retrieval Techniques: Several search algorithms ensure best information found for each query type and context
  • Synthesis Capability: Combines insights from multiple documents for comprehensive answers to complex questions
  • Automatic Citations: Every answer includes exact source references (specific slide, Card, document section) for verification
  • Permission Filtering: Retrieval only uses content user is authorized to see - prevents context contamination and information leakage
  • Verified Knowledge Base: Expert verification workflows ensure underlying data is reliable, current, and trustworthy
  • Real-Time Accuracy: Knowledge updates immediately reflected in AI responses - no stale data lag or cache delays
  • Hallucination Reduction: RAG architecture significantly reduces AI hallucinations vs. LLM-only approaches through knowledge grounding
  • Confidence Handling: When unsure, agent indicates lack of knowledge rather than guessing wrong answer - transparency over completeness
  • Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks RAG Performance
  • Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content Benchmark Details
  • Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
  • Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
  • Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
  • Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
  • Source verification: Always cites sources so users can verify facts on the spot
Use Cases
  • Enterprise knowledge bases: Self-hosted chatbots with custom knowledge bases for internal company documentation
  • Legacy system integration: AI agents that interface with proprietary APIs, ERPs, CRMs, and ITSM tools
  • Regulated industries: On-prem deployment for healthcare, finance, and government with complete data control
  • Multi-lingual support: Custom chatbots supporting any language with local LLM deployment
  • Hybrid AI agents: Complex transactional workflows beyond Q&A (IT ticket creation, workflow automation)
  • Custom channel deployment: Integrate into any channel - web, mobile, Slack, Teams, or legacy applications
  • Domain-tuned assistants: Specialized agents with fine-tuned models for technical or medical terminology
  • Enterprise Internal Support: IT, HR, Sales, Support, Marketing, Product teams accessing verified company knowledge through AI agents
  • Knowledge Base Unification: Single source of truth aggregating content from SharePoint, Confluence, Notion, Salesforce, Google Drive
  • Employee Onboarding: New hires access role-appropriate information automatically filtered by permission level and department
  • Sales Enablement: Real-time access to product information, competitive intelligence, pricing, and deal strategies during customer conversations
  • Regulatory Compliance: Financial services, healthcare, legal industries requiring strict information controls and audit trails
  • Research Mode Queries: Complex multi-source research generating structured reports with detailed analysis and citations
  • Cross-System Integration: MCP Server enables ChatGPT, Claude, GitHub Copilot to access Guru knowledge with preserved permissions
  • Knowledge Gap Identification: Analytics identify missing content based on unanswered questions to drive content creation priorities
  • Large Organization Scale: Supports organizations with thousands of employees and millions of knowledge items in production
  • Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
  • Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
  • Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
  • Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
  • Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
  • Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
  • Financial services: Product guides, compliance documentation, customer education with GDPR compliance
  • E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
  • SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
  • On-premises deployment: Deploy on-prem or private cloud for complete data control and air-gapped environments
  • Compliance customization: Build custom compliance measures for HIPAA, GDPR, SOC 2, or industry-specific requirements
  • Strong encryption: AES-256 encryption at rest and TLS 1.3 in transit with custom key management
  • Access controls: Role-based access control (RBAC) integrated with existing identity management systems
  • Security integration: Hooks into existing security stack (SIEM, monitoring, alerting, audit logging)
  • Data residency: Full control over where data is stored and processed (US, EU, on-prem)
  • No third-party data sharing: Complete data sovereignty with no cloud vendor dependencies
  • Custom monitoring: Integrated with CloudWatch, Prometheus, or enterprise monitoring tools
  • SOC 2 Type II Certified: Independently audited security controls and compliance validated through third-party assessment
  • GDPR Compliant: Data protection, privacy rights, EU data residency options for European customers
  • Zero LLM Data Retention: Third-party AI models never store or train on customer data - contractual guarantee with providers
  • Private AI Models: Enterprise option for dedicated model instance (Azure OpenAI in customer tenant) for maximum data sovereignty
  • Encryption Standards: Data encrypted at rest and in transit (TLS/SSL) protecting information throughout lifecycle
  • SAML SSO: Single sign-on integration with enterprise identity providers (Okta, Azure AD, Google Workspace, OneLogin)
  • SCIM Provisioning: Automated user lifecycle management and group synchronization for enterprise IT workflows
  • IP Whitelisting: Enterprise plan allows restricting access to approved networks for enhanced security control
  • Permission-Aware Security: AI respects real-time access controls - users only see authorized content preventing leakage
  • Audit Logs: Complete activity tracking via AI Agent Center for compliance and oversight requirements
  • Role-Based Access Control: Granular permissions for admins, authors, viewers, knowledge managers with separation of duties
  • Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
  • SOC 2 Type II certification: Industry-leading security standards with regular third-party audits Security Certifications
  • GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
  • Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
  • Data isolation: Customer data stays isolated and private - platform never trains on user data
  • Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
  • Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
  • Project-based pricing: Custom quotes based on scope, complexity, and integration requirements
  • Typical project range: $50K-$500K+ for initial development depending on complexity
  • Optional maintenance: Ongoing support and enhancement contracts available post-launch
  • Infrastructure costs: Client manages cloud or on-prem infrastructure costs separately
  • No per-seat fees: Own the solution outright without subscription charges
  • Professional services: Consulting, integration, training, and documentation included in project scope
  • Long-term value: Higher upfront cost but no recurring SaaS fees - best for permanent enterprise solutions
  • 200+ client portfolio: Proven track record across Fortune 500 and mid-market enterprises
  • Self-Serve Plan: $25/user/month (annual billing), $30/user/month (monthly billing) with 10-user minimum ($250/month baseline)
  • AI Usage Credits: AI credits included with usage limits appropriate for typical internal usage patterns - not per-query charges
  • Enterprise Plan: Custom pricing with flexible usage-based model, volume discounts, overage pricing for scale
  • Seat-Based Model: Cost scales linearly with user count - can be expensive for very large deployments vs query-based pricing
  • Predictable Scaling: Start with per-seat pricing, transition to usage-based for enterprise scale to avoid surprise costs
  • No Content Limits: No explicit cap on knowledge items or documents - can store thousands of Cards without additional fees
  • Enterprise Scalability: Supports organizations with thousands of employees and extensive knowledge bases in production
  • ROI Focus: Guru claims 10x+ ROI from day one through productivity gains and time savings for knowledge workers
  • Total Cost Coverage: Includes full platform (knowledge management + AI) vs. AI-only pricing of pure RAG competitors
  • Credit System: A credit consumed whenever Guru's AI executes specific unit of work on behalf of users
  • Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security View Pricing
  • Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
  • Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs Enterprise Solutions
  • 7-Day Free Trial: Full access to Standard features without charges - available to all users
  • Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
  • Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
  • Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
  • White-glove support: Direct access to development team from kickoff through post-launch
  • Custom documentation: Tailored documentation for your specific implementation and tech stack
  • Training programs: Custom training for IT teams and end users on solution usage and maintenance
  • Dedicated project manager: Single point of contact throughout development lifecycle
  • Post-launch support: Optional maintenance contracts with SLA guarantees and priority response
  • Integration support: Hands-on help connecting to existing enterprise systems and workflows
  • Knowledge transfer: Complete handoff of code, architecture docs, and operational runbooks
  • Enterprise focus: Proven experience with large-scale deployments and complex requirements
  • Multi-Channel Support: Help Center with comprehensive guides, Community forum for peer learning, live chat for paying customers
  • Enterprise Support: Dedicated Customer Success Manager, priority support queues, SLA guarantees for response times
  • Guru University: Training programs, workshops, office hours, certification courses for user skill development
  • Active Community: User forum for peer learning, knowledge sharing, best practice discussions across industries
  • Developer Resources: Extensive API docs at developer.getguru.com, Python SDK, integration examples, developer blog
  • Partner Ecosystem: Integration partners (Zapier, Workato, Prismatic), implementation consultants, certified Guru experts
  • Guru Champions Program: Internal advocates within customer organizations drive adoption and share success stories
  • Exceptional Support Reputation: Praised in G2 reviews for responsive, effective assistance and customer success focus
  • Content Library: Knowledge base guides, webinars, case studies, RAG education materials for self-service learning
  • MCP Integration Support: GitHub repository with setup guides for connecting MCP-compatible AI systems to Guru
  • Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding Developer Docs
  • Email and in-app support: Quick support via email and in-app chat for all users
  • Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
  • Code samples: Cookbooks, step-by-step guides, and examples for every skill level API Documentation
  • Open-source resources: Python SDK (customgpt-client), Postman collections, GitHub integrations Open-Source SDK
  • Active community: User community plus 5,000+ app integrations through Zapier ecosystem
  • Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
  • High upfront cost: $50K-$500K+ initial development vs $29-$999/month SaaS solutions
  • Longer time to value: 2-6 month development cycle vs instant SaaS deployment
  • Custom maintenance required: Updates and changes require development work, not self-service
  • No out-of-box features: Everything built from scratch - no pre-built templates or no-code tools
  • Technical expertise required: IT team needed for ongoing management and infrastructure
  • Project-based approach: Each enhancement or change may require additional development sprint
  • Not for budget-constrained SMBs: Best suited for large enterprises with significant AI budgets
  • Best for unique needs only: Only justified when off-the-shelf solutions cannot meet requirements
  • Per-User Pricing Challenges: Seat-based model can be expensive for very large deployments (1,000+ users) vs query-based alternatives
  • Internal Focus Trade-off: Optimized for internal knowledge access vs external customer-facing chatbot capabilities (lead capture not core)
  • Limited White-Labeling: Guru branding typically present in web app and extension - internal tool focus vs external customer experiences
  • English-Only UI: Content supports all languages with translation to 50+, but user interface remains English-only for administrators
  • Model Abstraction: No user control over LLM selection - optimized for simplicity but reduces flexibility for technical users
  • AI Credit Management: Usage limits require monitoring and management - organizations may need to purchase additional credits
  • Enterprise Requirements: Advanced features (IP whitelisting, SSO, SCIM, private models) require Enterprise plan with custom pricing
  • Setup Complexity: Initial configuration of integrations, permissions, and verification workflows requires thoughtful planning
  • Change Management: Successful deployment requires organizational adoption of verification workflows and knowledge ownership culture
  • External Use Limitations: Platform designed for internal teams - not optimized for external customer support chatbots or public-facing agents
  • Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
  • Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
  • Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
  • Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
  • Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
  • Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
  • Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
  • Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
  • Custom AI Agents: Build autonomous agents using advanced LLM architecture with planning modules, memory systems, and RAG pipelines tailored to exact business requirements Agent Development
  • Planning Module: Agents break down complex tasks into smaller manageable steps using task decomposition methods - enabling multi-step autonomous workflows
  • Memory System: Retains past interactions ensuring consistent responses in long-running workflows, maintaining context to improve handling of complex tasks over time
  • RAG Integration: Agents use specialized RAG pipelines, code interpreters, and external APIs to gather and process data efficiently - enhancing ability to access and use external resources for accurate outcomes RAG Implementation
  • Tool & API Integration: Agents execute actions beyond Q&A - integrate with CRMs, ERPs, ITSM tools, proprietary APIs, and legacy systems through custom webhooks and endpoints
  • Domain-Tuned Behavior: Fine-tune on proprietary data for insider terminology, multi-turn memory with context preservation, and any language support including local LLM deployment
  • Hybrid Agent Capabilities: Build agents that run complex transactional tasks beyond simple Q&A - handle workflows like IT ticket creation, CRM updates, and approval processes Hybrid Agents
  • Real-World Proven: Deployed AI Agent in Credit Agricole bank for customer service automation - routes simple queries automatically, flags complex ones for human support, and drafts personalized replies
N/A
  • Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
  • Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
  • Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
  • Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions View Agent Documentation
  • Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
  • Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
  • Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
R A G-as-a- Service Assessment
  • Platform Type: CUSTOM AI DEVELOPMENT CONSULTANCY - not a platform but professional services firm building bespoke enterprise RAG solutions and AI agents from scratch (200+ clients served)
  • Core Offering: Project-based custom development of self-hosted AI agents, RAG architectures, and LLM applications tailored to exact specifications - not pre-built software or SaaS
  • Agent Capabilities: Build fully autonomous AI agents with planning modules, memory systems, RAG pipelines, and tool integration - proven in regulated industries like banking (Credit Agricole deployment) Agent Services
  • Developer Experience: White-glove professional services with dedicated dev team, project-specific API development (JSON over HTTP), custom documentation and samples, hands-on support from kickoff through post-launch
  • No-Code Capabilities: NONE - everything requires custom development work. No dashboard, visual builders, or self-service tools. IT teams or bespoke admin panels handle configuration post-delivery
  • Target Market: Large enterprises with legacy systems needing specialized AI integration, organizations requiring on-premises deployment with complete data sovereignty, companies with unique needs that can't be met with off-the-shelf solutions
  • RAG Technology Approach: Best-practice retrieval with multi-index strategies, tuned prompts, fine-tuning on proprietary data to eliminate hallucinations, custom vector DB selection, and hybrid search strategies tailored to data characteristics RAG Approach
  • Deployment Model: On-prem or private cloud only - complete data control with no cloud vendor dependencies, custom infrastructure managed by client, strong encryption and access controls integrated with existing security stack
  • Enterprise Readiness: ISO 27001 certification, GDPR and CCPA compliance, custom compliance measures for HIPAA or industry-specific requirements, AES-256 encryption, RBAC integrated with existing identity management
  • Pricing Model: Project-based $50K-$500K+ initial development plus optional ongoing maintenance contracts - higher upfront cost but no recurring SaaS fees, full solution ownership
  • Use Case Fit: Enterprises with legacy systems needing specialized AI integration, domain-tuned models with insider terminology, hybrid AI agents handling complex transactional tasks, on-premises deployment with complete data sovereignty
  • NOT A PLATFORM: Does not offer self-service software, API-as-a-service, or turnkey solutions - exclusively custom development consultancy requiring sales engagement and multi-month build cycles
  • Competitive Positioning: Competes with other AI consultancies (Azumo, internal AI teams) and enterprise RAG platforms - differentiates through 200+ client track record, regulated industry expertise (banking, legal), and complete customization
  • Platform Type: TRUE RAG PLATFORM (Enterprise Knowledge Management + AI)
  • Core Architecture: Retrieval-Augmented Generation with verified knowledge base foundation
  • Service Model: Cloud SaaS with managed infrastructure and AI endpoints
  • Retrieval Quality: Multiple search techniques, permission filtering, expert-verified content ensures accuracy
  • Knowledge Processing: Sophisticated indexing, real-time updates, cross-source synthesis capabilities
  • LLM Integration: Abstracted model with zero data retention, private model options for enterprise
  • Citation Support: Industry-leading citation precision (slide 8 of deck, specific Card section)
  • Enterprise Readiness: SOC 2, GDPR, SAML SSO, audit logs, permission-aware security
  • Target Users: Enterprise teams (IT, HR, Sales, Support), large organizations (1,000+ employees)
  • Key Differentiator: Permission-aware AI + verified knowledge foundation = trusted enterprise answers
  • Platform Type: TRUE RAG-AS-A-SERVICE PLATFORM - all-in-one managed solution combining developer APIs with no-code deployment capabilities
  • Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
  • API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat API Documentation
  • Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
  • No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
  • Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
  • RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses Benchmark Details
  • Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
  • Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
  • Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
  • Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Customization & Flexibility
N/A
  • Real-Time Knowledge Updates: Edit Guru Cards anytime via web UI or API - changes immediately available to AI
  • Continuous Syncing: External sources (Google Drive, Confluence, etc.) can auto-sync on schedules
  • Verification Workflows: Regular prompts to content owners ensure knowledge stays fresh and accurate
  • Agent Configuration: Custom prompt settings, intro messages, response style per agent via configuration UI
  • Permission-Based Personalization: Answers automatically tailored to user role without manual multi-bot setup
  • Draft Mode: Capture new AI-generated insights as draft Cards for human review and approval
  • Human-in-Loop: Subject-matter experts can refine AI answers and incorporate into knowledge base
  • Multi-Agent Flexibility: Create specialized agents for different departments, each with unique scope and behavior
  • No Downtime Updates: Knowledge base modifications happen live without service interruption
N/A
Permission- Aware A I
N/A
  • Real-Time Access Control: AI respects user permissions from connected systems (SharePoint, Confluence, etc.)
  • Role-Based Answers: Manager asking same question as employee gets different answer based on accessible content
  • Prevents Information Leakage: Confidential knowledge never used in answers for unauthorized users
  • No Manual Segmentation: Don't need separate bots per role - single agent adapts automatically
  • Cross-System Permissions: Honors permissions from external sources (Google Drive, Notion, Salesforce)
  • Audit Compliance: Every answer logged with user identity and sources accessed for oversight
  • Dynamic Scoping: As user permissions change (promotion, role change), AI answers update immediately
  • Enterprise Trust: Critical for regulated industries (finance, healthcare, legal) with strict information controls
  • Competitive Advantage: Most RAG platforms don't enforce real-time permission awareness - Guru's unique strength
N/A
Knowledge Management Foundation
N/A
  • Single Source of Truth: Centralized, verified company knowledge accessible across all systems
  • Expert Ownership: Every Guru Card has designated owner responsible for accuracy and updates
  • Verification System: Regular intervals prompt owners to review content - ensures freshness
  • Version Control: Track changes to knowledge over time, restore previous versions if needed
  • Trust Layer: AI answers only as accurate as underlying knowledge - verification ensures high quality
  • Knowledge Gaps: Analytics identify missing content based on unanswered questions - drive content creation
  • Collaborative Creation: Draft mode lets users capture AI insights for expert review and approval
  • Content Lifecycle: From creation to verification to retirement - complete knowledge management workflow
  • Foundation Strength: 10+ years of enterprise knowledge management expertise powers AI capabilities
N/A
M C P Server Integration
N/A
  • Universal AI Connector: Model Context Protocol enables any AI tool to access Guru knowledge
  • Supported Tools: ChatGPT, Claude, GitHub Copilot, custom AI agents, future MCP-compatible tools
  • No RAG Rebuild: Connect external AI to Guru instead of building separate retrieval pipeline
  • Permission Preservation: MCP ensures external tools respect Guru's permission-aware knowledge layer
  • Citation Transparency: AI answers via MCP include Guru's source citations and references
  • Developer Efficiency: One integration vs. custom RAG for each AI tool - massive time savings
  • Future-Proof: As new AI tools emerge, MCP compatibility provides instant Guru integration
  • Enterprise Workflow: Use best-in-class AI tools while maintaining centralized knowledge governance
  • Technical Implementation: GitHub repository with setup guides for connecting MCP-compatible AI systems
N/A

Ready to experience the CustomGPT difference?

Start Free Trial →

Final Thoughts

Final Verdict: Deviniti vs Guru

After analyzing features, pricing, performance, and user feedback, both Deviniti and Guru are capable platforms that serve different market segments and use cases effectively.

When to Choose Deviniti

  • You value strong compliance and security focus
  • Self-hosted solutions for data privacy
  • Domain expertise in regulated industries

Best For: Strong compliance and security focus

When to Choose Guru

  • You value permission-aware ai is unique differentiator - answers respect real-time access control
  • Enterprise-grade security: SOC 2, GDPR, zero LLM data retention, private models
  • Verified knowledge base with expert verification workflows ensures accuracy

Best For: Permission-aware AI is unique differentiator - answers respect real-time access control

Migration & Switching Considerations

Switching between Deviniti and Guru requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.

Pricing Comparison Summary

Deviniti starts at custom pricing, while Guru begins at $25/month. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.

Our Recommendation Process

  1. Start with a free trial - Both platforms offer trial periods to test with your actual data
  2. Define success metrics - Response accuracy, latency, user satisfaction, cost per query
  3. Test with real use cases - Don't rely on generic demos; use your production data
  4. Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
  5. Check vendor stability - Review roadmap transparency, update frequency, and support quality

For most organizations, the decision between Deviniti and Guru comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.

📚 Next Steps

Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.

  • Review: Check the detailed feature comparison table above
  • Test: Sign up for free trials and test with real queries
  • Calculate: Estimate your monthly costs based on expected usage
  • Decide: Choose the platform that best aligns with your requirements

Last updated: December 11, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.

Ready to Get Started with CustomGPT?

Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.

Why Choose CustomGPT?

97% Accuracy

Industry-leading benchmarks

5-Min Setup

Get started instantly

24/7 Support

Expert help when you need it

Enterprise Ready

Scale with confidence

Trusted by leading companies worldwide

Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us

Join the Discussion

Loading comments...

Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.

Watch: Understanding AI Tool Comparisons