In this comprehensive guide, we compare Deviniti and Vertex AI across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between Deviniti and Vertex AI, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose Deviniti if: you value strong compliance and security focus
Choose Vertex AI if: you value industry-leading 2m token context window with gemini models
About Deviniti
Deviniti is self-hosted genai solutions for compliance-critical industries. Deviniti is an AI development company specializing in secure, self-hosted AI agents and LLM solutions for highly regulated industries like finance, healthcare, and legal, with expertise in RAG architecture and custom AI development. Founded in 2010, headquartered in Kraków, Poland, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
77/100
Starting Price
Custom
About Vertex AI
Vertex AI is google's unified ml platform with gemini models and automl. Vertex AI is Google Cloud's comprehensive machine learning platform that unifies data engineering, data science, and ML engineering workflows. It offers state-of-the-art Gemini models with industry-leading context windows up to 2 million tokens, AutoML capabilities, and enterprise-grade infrastructure for building, deploying, and scaling AI applications. Founded in 2008, headquartered in Mountain View, CA, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
88/100
Starting Price
Custom
Key Differences at a Glance
In terms of user ratings, Vertex AI in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: AI Development versus AI Chatbot. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
Deviniti
Vertex AI
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
Custom pipelines – Ingest any source: docs, APIs, databases, proprietary systems Case study
Format support – PDF, DOCX, and uncommon formats as needed
Scalable infrastructure – Automated pipelines for huge datasets with fresh indexing Learn more
⚠️ Custom build required – No pre-built connectors or templates
Multi-format support – Structured/unstructured data from Google Cloud Storage (PDF, HTML, CSV) (Vertex AI Search)
Google web-crawling – Automatically ingests relevant public website content into indexes (Towards AI)
✅ Continuous ingestion – Auto-indexing keeps knowledge base current without manual updates
BigQuery integration – Direct connection to structured data sources for real-time analytics integration
1,400+ file formats – PDF, DOCX, Excel, PowerPoint, Markdown, HTML + auto-extraction from ZIP/RAR/7Z archives
Website crawling – Sitemap indexing with configurable depth for help docs, FAQs, and public content
Multimedia transcription – AI Vision, OCR, YouTube/Vimeo/podcast speech-to-text built-in
Cloud integrations – Google Drive, SharePoint, OneDrive, Dropbox, Notion with auto-sync
Pricing advantage – Higher upfront, no subscriptions; best for unique needs
Use case fit – Legacy systems, domain-tuned models, hybrid agents, data sovereignty
Market position: Enterprise-grade Google Cloud AI platform combining Vertex AI Search with Conversation for production-ready RAG, deeply integrated with GCP ecosystem
Target customers: Organizations already invested in Google Cloud infrastructure, enterprises requiring PaLM 2/Gemini models with Google's search capabilities, and companies needing global scalability with multi-region deployment and GCP service integration
Key competitors: Azure AI Search, AWS Bedrock, OpenAI Enterprise, Coveo, and custom RAG implementations
Competitive advantages: Native Google PaLM 2/Gemini models with external LLM support, Google's web-crawling infrastructure for public content ingestion, integrated GCP services (BigQuery, Dataflow, Cloud Functions), hybrid search with advanced reranking, SOC/ISO/HIPAA/GDPR compliance with customer-managed keys, global infrastructure for millisecond responses worldwide, and Google Cloud Operations Suite for comprehensive monitoring
Pricing advantage: Pay-as-you-go with free tier for development; competitive for GCP customers leveraging existing enterprise agreements and volume discounts; autoscaling prevents overprovisioning; best value for organizations with GCP infrastructure wanting unified billing and managed services
Use case fit: Best for organizations already using GCP infrastructure (BigQuery, Cloud Functions), enterprises needing Google's proprietary models (PaLM 2, Gemini) with web-crawling capabilities, and companies requiring global scalability with multi-region deployment and tight integration with GCP analytics and data pipelines
Market position – Leading RAG platform balancing enterprise accuracy with no-code usability. Trusted by 6,000+ orgs including Adobe, MIT, Dropbox.
Key differentiators – #1 benchmarked accuracy • 1,400+ formats • Full white-labeling included • Flat-rate pricing
After analyzing features, pricing, performance, and user feedback, both Deviniti and Vertex AI are capable platforms that serve different market segments and use cases effectively.
When to Choose Deviniti
You value strong compliance and security focus
Self-hosted solutions for data privacy
Domain expertise in regulated industries
Best For: Strong compliance and security focus
When to Choose Vertex AI
You value industry-leading 2m token context window with gemini models
Comprehensive ML platform covering entire AI lifecycle
Deep integration with Google Cloud ecosystem
Best For: Industry-leading 2M token context window with Gemini models
Migration & Switching Considerations
Switching between Deviniti and Vertex AI requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
Deviniti starts at custom pricing, while Vertex AI begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between Deviniti and Vertex AI comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: January 1, 2026 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...