In this comprehensive guide, we compare Fastbots and Lindy.ai across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between Fastbots and Lindy.ai, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose Fastbots if: you value best value for multi-llm access - $19.99/month for gpt-4, claude, and gemini (vs competitors at $50-100/month)
Choose Lindy.ai if: you value exceptional no-code usability: 4.9/5 g2 rating, 30-second setup vs 15-60 min with zapier/make
About Fastbots
Fastbots is ai chatbot platform with 80+ integrations and white-label agency features. Fastbots is a multi-LLM chatbot platform with 80+ native integrations, visual flow builder, and comprehensive white-labeling for agencies. It offers intelligent routing across GPT-4, Claude, and Gemini with competitive pricing starting at $19.99/month, but lacks enterprise certifications and has inconsistent performance across different LLMs. Founded in 2023, headquartered in United States, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
96/100
Starting Price
$19.99/mo
About Lindy.ai
Lindy.ai is ai-powered personal assistant for workflow automation. No-code AI agent platform positioning as 'AI employees' for workflow automation, NOT developer-focused RAG platform. 5,000+ integrations via Pipedream, Claude Sonnet 4.5 default, $5.1M revenue (Oct 2024), 4.9/5 G2 rating. Critical limitation: No public API or SDKs available. Founded in 2023, headquartered in San Francisco, CA, USA, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
81/100
Starting Price
Custom
Key Differences at a Glance
In terms of user ratings, Fastbots in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: Chatbot Platform versus AI Assistant. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
Fastbots
Lindy.ai
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
Website crawling: Enter URL and auto-extract content with configurable depth
Document upload: PDF, DOCX, TXT, CSV files
Audio and video ingestion: Upload media files for transcription and knowledge extraction
Plain text input: Paste or type content directly
Storage limits: 400K characters (Free), 11 million characters (Starter+)
Auto-retrain: Configurable schedule for knowledge base updates (daily, weekly, monthly)
Note: No native Google Drive, Dropbox, or Notion integrations - requires manual export or API setup
Note: No YouTube transcript auto-ingestion - video must be uploaded as file
Note: 11M character limit can fill quickly with comprehensive documentation (e.g., enterprise KB with 100+ articles)
Sitemap support: Bulk import from XML sitemaps
Document Formats: PDF, DOCX, XLSX, CSV, TXT, HTML with 20MB per-file size limit
Audio Support: Full audio file support with automatic transcription included in workflow
YouTube Integration: Dedicated action for YouTube transcript extraction and processing
Website Crawling: Single page or full-site crawling with automatic link following capability
Cloud Integrations: Google Drive (including shared drives), OneDrive, Dropbox, Notion, SharePoint, Intercom, Freshdesk with automatic syncing
Automatic Refresh: Knowledge bases refresh every 24 hours automatically with manual 'Resync Knowledge Base' actions for immediate updates
Search Constraint: When search fuzziness drops below 100, searches limited to first 1,500 files - meaningful constraint for large enterprise deployments
Marketing vs Reality: Documentation claims 'no limit to data you can feed' but practical constraints exist around character limits and file counts
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
L L M Model Options
OpenAI models: GPT-4, GPT-4 Turbo, GPT-3.5 Turbo
Anthropic Claude 3: Opus (most capable), Sonnet (balanced), Haiku (fast)
Google Gemini Pro 1.5
Meta Llama 3.1
Model selection: User chooses specific LLM per chatbot
Intelligent routing: Assign different models to different conversation scenarios (e.g., GPT-4 for complex, GPT-3.5 for simple)
Cost optimization: Route simple queries to cheaper models, complex to GPT-4
Note: Performance varies by model: Users report GPT-4 works best, Claude/Gemini show inconsistencies
No API key requirement: Models included in subscription (vs bring-your-own-key platforms)
Anthropic Claude: Sonnet 4.5 (default - 'almost no one overrides' per Anthropic case study), Sonnet 3.7, Haiku 3.5
Google Gemini: Gemini 2.5 Pro, Gemini 2.5 Flash, Gemini 2.0 Flash for varied performance/cost trade-offs
Default Selection Rationale: Claude Sonnet 4.5 excels at 'navigating ambiguity in large context windows' and handling 'deeply nested data structures requiring nuanced reasoning'
Business Impact: Lindy achieved 10x customer growth after implementing Claude as default LLM
Per-Action Granularity: Users manually select models per workflow step through visual builder interface
Credit Impact: Model selection affects credit consumption - larger models (Sonnet 4.5) consume more credits than smaller models (Haiku 3.5)
No Automatic Routing: No dynamic model switching or automatic model selection based on query complexity
Manual Configuration: Each workflow action requires explicit model selection vs intelligent automatic routing
Taps into top models—OpenAI’s GPT-5.1 series, GPT-4 series, and even Anthropic’s Claude for enterprise needs (4.5 opus and sonnet, etc ).
Automatically balances cost and performance by picking the right model for each request.
Model Selection Details
Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Performance & Accuracy
GPT-4 performance: Highest accuracy and consistency reported by users
Claude 3 performance: Mixed results - some users report hallucinations and off-topic responses
Gemini Pro performance: Inconsistent accuracy noted in user reviews
Overall accuracy: ~85% with optimal model selection (GPT-4)
Response time: Real-time streaming for faster perceived performance
Uptime: ~99.5% estimated from user feedback
Note: No published SLA commitments
Conversation memory: Context retention across messages within session
Hybrid Search: Semantic + keyword search with configurable 'Search Fuzziness' (0-100 scale) - at 100 (pure semantic) no file limit, lower values add keyword matching but limit to 1,500 files
Default Results: 4 search results returned (adjustable up to 10 maximum)
Vector Database: NOT disclosed - no documentation mentions Pinecone, Chroma, Qdrant, or any specific vector store
Embedding Models: Undocumented - no information about which embedding models power semantic search
Hallucination Reduction: Architectural constraints vs retrieval optimization - 'poor man's RLHF' with human confirmation before action execution
Learning Integration: Corrections from feedback embedded in vector storage for future retrieval improvement
Structured Workflows: 'Agents on rails' philosophy constrains LLM behavior through predefined workflow steps
NO Published Benchmarks: No RAG accuracy metrics, retrieval precision/recall scores, or latency measurements available
Black Box Implementation: RAG treated as opaque system - no transparency into vector similarity scores, embedding quality, or retrieval mechanisms
Enterprise Concern: Opacity may concern organizations requiring transparency into AI decision-making for compliance or auditing
Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
Independent tests rate median answer accuracy at 5/5—outpacing many alternatives.
Benchmark Results
Always cites sources so users can verify facts on the spot.
Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
REST API: Available on Professional ($99/mo) and above
Note: No official SDKs in any language (Python, JavaScript, etc.)
API documentation: Basic REST endpoint documentation in help center
Note: No Swagger/OpenAPI specification
Note: Developer experience rated lower compared to enterprise platforms
Webhook support: POST notifications to external endpoints
Custom JavaScript: Inject custom code for widget behavior
API rate limits: Not publicly documented
Authentication: API key-based
CRITICAL LIMITATION: Lindy deliberately prioritizes no-code accessibility over developer tooling - most significant gap for RAG platform comparison
NO Public REST API: Cannot manage agents, create workflows, or query knowledge base programmatically
NO GraphQL Endpoint: No alternative API architecture available for data querying
NO Official SDKs: No Python, JavaScript, Ruby, Go, or any other language SDK exists
NO OpenAPI/Swagger: No machine-readable API specification for automated client generation
NO CLI Tools: No command-line interface for automation or scripting
NO Developer Console: No API sandbox or testing environment available
Available Workarounds: Inbound webhooks (external systems trigger workflows via POST with bearer token), HTTP Request actions (call external APIs from workflows), Code Action (run Python/JavaScript in E2B sandboxes ~150ms startup), Callback URLs (bidirectional webhook communication)
Minimal GitHub Presence: github.com/lindy-ai contains only 3 repositories - build caching utility, ML engineer hiring challenge, no public SDKs or integration libraries
Documentation Quality: User-focused Lindy Academy with step-by-step tutorials, but NO API reference, code samples, or technical architecture documentation
Developer Path: For programmatic RAG control, custom retrieval pipelines, or embedding integration - Lindy offers no viable path forward
Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat.
API Documentation
Greeting messages: Customize initial bot message and icebreakers
Tone and personality: Configurable via system prompts
Multi-language support: 95+ languages with automatic translation
Business plan features: Full white-labeling with custom branding throughout admin dashboard
Widget Customization: Display name (e.g., 'Technical Support Assistant'), accent color for brand alignment, logo/icon upload for expanded/collapsed states
Messaging Customization: Custom greeting and callout messages for initial engagement prompts
Domain Restrictions: Specify allowed deployment domains for access control and security
White-Labeling Uncertainty: Documentation doesn't explicitly confirm complete Lindy branding removal - unclear if available outside enterprise agreements
No Deep CSS Control: Limited to essential branding elements vs full CSS customization or brandless deployments on standard plans
Persona Customization: Agent-level prompts define personality, tone, and expertise areas
Settings Context: Persists across all task runs for consistent agent behavior
Per-Run Context: Allows dynamic customization per execution for adaptive responses
Memory Snippets: Learning capability saves preferences like 'Don't schedule meetings before 11am' across all sessions
RBAC Controls: Admins can lock configurations and set credit allocation limits per user or team
Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand.
White-label Options
Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
Uses domain allowlisting to ensure the chatbot appears only on approved sites.
Lead qualification: Score and route leads based on responses
Human handoff: Transfer to inbox or third-party tools (Intercom, Zendesk, etc.)
Unified inbox: Manage all conversations from one dashboard
Team collaboration: Multiple team members with role-based access
Conversation memory: Context retention throughout session
Intent detection: AI-powered understanding of user goals
Fallback responses: Custom messages when bot doesn't understand
A/B testing: Test different response variations
Chatbot vs Agent Philosophy: Lindy differentiates through autonomous agent operation rather than traditional chatbot conversation - emphasizes task execution over conversational interaction
Multi-Lingual Voice Agents (Gaia): 30+ language support for voice agents, transcription covers 50+ languages, text agents operate in 85+ languages with automatic detection - no manual language configuration required
Lead Capture Excellence: Real-time qualification with email/phone validation, firmographic enrichment, UTM attribution tracking, automatic CRM syncing - claims up to 70% higher conversion vs traditional forms
Human Handoff Logic: Configurable escalation conditions with phone agents able to transfer calls directly to human team members with full conversation context and history preservation
Conversation Memory System: Tracks conversation history within and across sessions through memory feature - context persists through workflow execution vs vector similarity search in traditional RAG systems
Analytics & Performance Tracking: Qualification rates, response times, completion rates, handling times monitored comprehensively with weekly automated email summaries of task usage and agent performance
Agent Evals Feature: Dedicated benchmarking system for measuring agent performance against quality standards and preventing regression over time with automated quality monitoring
Workflow-Centric Design: Emphasizes autonomous task execution over conversational chatbot patterns - structured workflows with 'agents on rails' philosophy constraining LLM behavior through predefined steps
Hallucination Prevention: Architectural constraints vs retrieval optimization - 'poor man's RLHF' with human confirmation before action execution prevents costly mistakes
Learning Integration: Corrections from user feedback embedded in vector storage for future retrieval improvement - system learns from mistakes through Memory Snippets saving preferences like scheduling constraints
Reduces hallucinations by grounding replies in your data and adding source citations for transparency.
Benchmark Details
Handles multi-turn, context-aware chats with persistent history and solid conversation management.
Speaks 90+ languages, making global rollouts straightforward.
Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Omnichannel Support
Website widget: Embeddable chat with customization
WhatsApp: Cloud API + 360Dialog integration
Facebook Messenger: Native integration with business pages
Instagram DM: Automated responses to direct messages
Telegram: Bot deployment with inline buttons
Slack: Workspace integration for internal or customer use
Discord: Server bot deployment
Note: No voice/IVR capabilities (unlike UChat or Zendesk)
Note: No SMS support without third-party integration
API deployment: Build custom interfaces via API
N/A
N/A
Observability & Monitoring
Conversation analytics: Total conversations, messages, unique users
Error Tracking: Built-in retry mechanisms with detailed failure monitoring and debugging
Trigger History: Task completion logs track every workflow execution and result
Qualification Metrics: Lead conversion rates and response time tracking for sales/marketing workflows
Completion Rates: Workflow success measurement and handling time analysis
Weekly Digests: Automated email summaries of task usage delivered to administrators
Agent Evals: Benchmarking feature against quality standards with regression prevention
Log Retention: 1 day (Free tier - severely constrains troubleshooting) to 30+ days (Enterprise tier)
Audit Logs: User actions, data access, configuration changes tracked on Business/Enterprise plans
Export Capabilities: Available but SIEM integration specifics require sales confirmation
No RAG-Specific Metrics: Cannot track retrieval precision, recall, embedding quality, or vector similarity scores
Workflow-Centric: Focuses on output quality rather than retrieval precision - notable gap for RAG-specific monitoring vs platforms like LangSmith or Arize
Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
Lets you export logs and metrics via API to plug into third-party monitoring or BI tools.
Analytics API
Provides detailed insights for troubleshooting and ongoing optimization.
Pricing & Scalability
Free plan: 1 chatbot, 100 messages/month, 400K characters, basic features
Professional ($99/mo): 5 chatbots, 10K messages/month, priority support, API access, advanced analytics
Business ($399/mo): 20 chatbots, 40K messages/month, white-label, dedicated account manager
5-day trial: Test paid features before committing
Best value proposition: $19.99 for GPT-4, Claude, Gemini vs competitors at $50-100/month
No hidden costs: LLM usage included in subscription (no per-token charges)
Annual discount: Save 20% with yearly billing
Free Plan: $0/month, 400 credits, 1M character knowledge base, basic automations with 100+ integrations
Pro Plan: $49.99/month, 5,000 credits, 20M character knowledge base, phone calls, full integrations, Lindy branding on embed
Business Plans: $199.99-$299.99/month, 20,000-30,000 credits, 50M character knowledge base, custom branding, 30+ languages, unlimited calls
Enterprise Plan: Custom pricing with SSO, SCIM provisioning, dedicated support, custom training
Additional Costs: Phone calls $0.19/minute (GPT-4o), team members $19.99/member/month (Pro/Business), custom automation building $500 one-time, credits $19-$1,199/month (10,000-1,000,000 credits)
Credit Consumption: Varies by model choice and complexity - larger models (Claude Sonnet 4.5) consume more credits than smaller models
Primary User Complaint: Unpredictable costs - credit depletion speed consistently frustrating in reviews, particularly for complex workflows with premium actions
Pricing Transparency Issue: Credit system creates forecasting difficulty vs fixed per-seat or usage-based pricing
Scalability: Character limits constrain large knowledge bases - 50M character cap on Business tier may limit enterprise deployments
Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates.
View Pricing
Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
Yes GDPR compliance
Yes CCPA compliance
Yes Data encryption in transit and at rest
Yes SSL/TLS for custom domains
Note: No SOC 2 Type II certification
Note: No HIPAA compliance - unsuitable for healthcare
Note: No ISO 27001 certification
Note: No PCI DSS certification - payment data should be handled via integrations only
Note: No FedRAMP authorization - not for government use
Data residency: Not documented - likely US-based
Data retention: Configurable conversation history retention
User access controls: Role-based permissions for team members
SOC 2 Type II: Certified by Johanson Group audit - independently validated security controls
HIPAA Compliant: Business Associate Agreement (BAA) available for healthcare deployments
GDPR Compliant: EU data protection and privacy rights compliance
PIPEDA Compliant: Canadian Personal Information Protection and Electronic Documents Act
CCPA Compliant: California Consumer Privacy Act compliance
No AI Training: Customer data NEVER used for AI model training - explicitly stated in privacy policy
Encryption: AES-256 at rest, TLS 1.2+ in transit for comprehensive data protection
Infrastructure: Google Cloud Platform hosting with multi-zone redundancy for high availability
Backups: Daily encrypted backups with secure key management
Access Controls: RBAC (Role-Based Access Control), MFA (Multi-Factor Authentication), Enterprise SSO via existing identity providers, SCIM provisioning for automated user lifecycle
Audit Logs: Track agent activity, data access, configuration changes - available on Business/Enterprise plans
Data Residency Limitation: US-based only - no explicit EU data residency option documented (enterprise inquiries required for region-specific deployments)
No ISO 27001: Information security management certification not documented
Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private.
Security Certifications
Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Support & Ecosystem
4.9/5 customer support rating on G2 (exceptional)
Email support: All plans
Priority support: Professional and Business plans
Dedicated account manager: Business plan
Knowledge base: Comprehensive help center with guides and tutorials
Video tutorials: Step-by-step implementation guides
Community: User community for best practices and tips
Live chat support: Available during business hours
Response time: Fast responses noted by users (typically within hours)
Pricing Unpredictability: Credit-based model most common user complaint - costs difficult to forecast vs fixed tiers
Data Residency Limitation: US-only hosting blocks EU customers with strict data localization requirements
Market Position: Competes with Zapier, Make, n8n for workflow automation budget vs RAG API platforms (CustomGPT.ai, Pinecone Assistant)
Use Case Fit: Exceptional for business users automating workflows without developers; poor fit for developers requiring programmatic RAG capabilities
Comparison Warning: Direct feature comparison with RAG-as-a-Service platforms is misleading - different product categories, target audiences, and value propositions
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
OpenAI models: GPT-4, GPT-4 Turbo, GPT-3.5 Turbo with user selection per chatbot
Anthropic Claude 3: Opus (most capable), Sonnet (balanced), Haiku (fast)
Google Gemini Pro 1.5 for multimodal capabilities
Meta Llama 3.1 open-source alternative
Intelligent routing: Assign different models to different conversation scenarios (e.g., GPT-4 for complex, GPT-3.5 for simple)
Cost optimization: Route simple queries to cheaper models (GPT-3.5), complex to premium (GPT-4)
No API key requirement: Models included in subscription vs bring-your-own-key platforms
Performance variance: User reports indicate GPT-4 works best, Claude/Gemini show inconsistencies
Default Model - Claude Sonnet 4.5: Primary LLM 'almost no one overrides' according to Anthropic case study - excels at navigating ambiguity in large context windows
Anthropic Claude Family: Sonnet 4.5 (default, best performance), Sonnet 3.7 (balanced), Haiku 3.5 (fast, cost-effective) with 200K token context windows
Claude Sonnet 4.5 Rationale: Selected for 'navigating ambiguity in large context windows' and handling 'deeply nested data structures requiring nuanced reasoning'
Business Impact: Lindy achieved 10x customer growth after implementing Claude as default LLM - significant competitive advantage
Model Switching: Each workflow action requires explicit model selection - no automatic routing based on query complexity or cost optimization
No Dynamic Model Routing: Cannot intelligently switch between models based on task requirements - manual configuration only vs AI-powered model selection
Limited Model Experimentation: No A/B testing capabilities or automatic model performance comparison across different LLMs
Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request
Model Selection Details
Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
Website crawling: Auto-extract content with configurable depth from URL entry
Document upload: PDF, DOCX, TXT, CSV files with 11 million character storage limit (Starter+)
Audio and video ingestion: Upload media files for transcription and knowledge extraction
Auto-retrain scheduling: Configurable updates (daily, weekly, monthly) for knowledge base freshness
Sitemap support: Bulk import from XML sitemaps for comprehensive site coverage
Conversation memory: Context retention across messages within session
Overall accuracy: ~85% with optimal model selection (GPT-4 performs best)
Response time: Real-time streaming for faster perceived performance
Limitations: No native Google Drive, Dropbox, or Notion integrations; 11M character limit fills quickly with comprehensive documentation
Search Fuzziness: 100 = pure semantic search (no file limit), lower values add keyword matching but limit to first 1,500 files - trade-off between precision and scale
Default Retrieval: 4 search results returned per query (adjustable up to 10 maximum) for context-aware responses
Document Processing: PDF, DOCX, XLSX, CSV, TXT, HTML with 20MB per-file size limit and automatic text extraction
Audio & Video: Full audio file support with automatic transcription, YouTube transcript extraction via dedicated action
Website Crawling: Single page or full-site crawling with automatic link following and sitemap discovery
Cloud Integration: Google Drive (shared drives), OneDrive, Dropbox, Notion, SharePoint, Intercom, Freshdesk with automatic 24-hour sync
Manual Refresh: 'Resync Knowledge Base' actions for immediate updates when 24-hour sync insufficient
Vector Database: NOT disclosed - no documentation mentions Pinecone, Chroma, Qdrant, or proprietary implementation
Embedding Models: Undocumented - no information about which embedding models power semantic search or customization options
Chunking Strategy: Not configurable - automatic text segmentation with undisclosed chunk size and overlap parameters
Hallucination Reduction: 'Agents on rails' philosophy constrains LLM behavior through predefined workflow steps - architectural constraints vs retrieval optimization
Learning Integration: Human feedback corrections embedded in vector storage for future retrieval improvement
CRITICAL LIMITATION - Black Box Implementation: RAG treated as opaque system - no transparency into vector similarity scores, embedding quality, retrieval mechanisms
CRITICAL LIMITATION - No Published Benchmarks: No RAG accuracy metrics, retrieval precision/recall scores, or latency measurements available
CRITICAL LIMITATION - No Developer Control: Cannot customize embedding models, similarity thresholds, reranking, or retrieval parameters
Enterprise Concern: Opacity may concern organizations requiring transparency into AI decision-making for compliance auditing or regulatory requirements
Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks
RAG Performance
Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content
Benchmark Details
Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
Source verification: Always cites sources so users can verify facts on the spot
Use Cases
E-commerce customer support: Shopify, WooCommerce, BigCommerce integrations for 24/7 product queries and order tracking
Lead generation: Custom forms with field validation, lead qualification scoring, and CRM sync (HubSpot, Salesforce, Pipedrive)
Multi-channel deployment: WhatsApp (Cloud API + 360Dialog), Facebook Messenger, Instagram DM, Telegram, Slack, Discord with unified inbox
Small business websites: JavaScript widget embedding with customization for professional appearance at $19.99/month
Agency white-label: Custom domains, remove branding from Starter plan for client deployments
Multilingual support: 95+ languages with automatic translation for global customer bases
NOT suitable for: Regulated industries (no HIPAA, SOC 2), voice/IVR use cases, enterprises requiring compliance certifications
Primary Use Case: No-code workflow automation for operations teams, sales teams, marketing teams requiring AI-powered task execution without developers
Sales Automation: Lead qualification with real-time scoring, email/phone validation, firmographic enrichment, CRM syncing (Salesforce, HubSpot, Pipedrive)
Customer Support: Email triage, ticket routing, FAQ responses, escalation workflows with human handoff and context transfer
Healthcare: Patient appointment scheduling, medical record processing (HIPAA-compliant), insurance verification, billing automation
Legal: Document review, contract analysis, case research, deadline tracking with confidentiality controls
Voice Agents (Gaia): Phone call automation with 30+ language support, call transcription in 50+ languages, call transfer to humans
Team Sizes: Individual contributors to enterprise teams (1-500+ users) - scales from solopreneurs to Fortune 500 companies
Industries: Technology, professional services, healthcare, legal, financial services, e-commerce, real estate - any industry with repetitive workflows
Implementation Speed: 30 seconds with Agent Builder ('vibe coding') vs 15-60 minutes with Zapier/Make - fastest setup in automation category
NOT Ideal For: Developers needing programmatic RAG APIs, custom retrieval pipeline tuning, embedding model experimentation, transparent RAG implementation details, organizations requiring EU data residency
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
Professional ($99/mo): 5 chatbots, 10K messages/month, priority support, API access, advanced analytics
Business ($399/mo): 20 chatbots, 40K messages/month, white-label, dedicated account manager
5-day trial: Test paid features before committing to subscription
Best value proposition: $19.99 for GPT-4, Claude, Gemini access vs competitors at $50-100/month
No hidden costs: LLM usage included in subscription (no per-token charges like some platforms)
Annual discount: Save 20% with yearly billing commitment
Free Plan - $0/month: 400 credits, 1M character knowledge base, 100+ integrations, basic automations, 1-day log retention for evaluation
Pro Plan - $49.99/month: 5,000 credits, 20M character knowledge base, phone calls, full integrations, Lindy branding on embed, 7-day logs
Business Plan - $199.99-$299.99/month: 20,000-30,000 credits, 50M character knowledge base, custom branding, 30+ languages, unlimited calls, 30-day logs
Enterprise Plan - Custom Pricing: Unlimited credits/users, custom knowledge base limits, SSO, SCIM provisioning, dedicated support, custom SLAs, custom training
Additional Team Members: $19.99/member/month on Pro/Business plans for expanding user access and collaboration
Phone Calls: $0.19/minute using GPT-4o for voice interactions - additional cost on top of plan credits
Custom Automation Building: $500 one-time fee for professional automation development by Lindy team
Credit Add-Ons: $19-$1,199/month for 10,000-1,000,000 credits for high-volume usage beyond plan limits
Credit Consumption Variability: Varies by model choice (Claude Sonnet 4.5 vs Haiku 3.5), workflow complexity, premium actions - unpredictable costs
Billing Cycle: Monthly subscription with automatic renewal, credit rollover not documented (likely use-it-or-lose-it monthly)
Payment Methods: Credit card, Enterprise invoicing with wire transfer options for annual contracts
Comparison: vs Zapier ($19.99-$69/month), Make ($9-$29/month), n8n (self-hosted free) - Lindy premium pricing justified by AI capabilities
PRIMARY USER COMPLAINT - Unpredictable Costs: Credit depletion speed consistently frustrating in reviews - 'credits consumed quickly and unpredictably'
CRITICAL LIMITATION - Pricing Transparency: Credit system creates forecasting difficulty vs fixed per-seat or usage-based pricing - budget planning challenging
LIMITATION - Character Limits: 50M character cap on Business tier may limit large enterprise deployments vs unlimited competitors
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
4.9/5 customer support rating on G2 (exceptional for pricing tier)
Email support: Available on all plans including free tier
Priority support: Professional and Business plans with faster response times
Dedicated account manager: Business plan ($399/month) includes personal contact
Knowledge base: Comprehensive help center with guides and tutorials
Video tutorials: Step-by-step implementation guides for common scenarios
Community: User community for best practices sharing and tips
Live chat support: Available during business hours for quick questions
Response time: Fast responses noted by users (typically within hours, not days)
Limitations: No 24/7 support on lower tiers, no SLA guarantees on response times
Email Support: support@lindy.ai (general), security@lindy.ai (security issues), privacy@lindy.ai (privacy concerns) with tier-based response times
Slack Community: Peer support network for knowledge sharing among Lindy users and automation best practices
Community Forum: community.lindy.ai for discussions, troubleshooting, feature requests with active user participation
Documentation: Lindy Academy with step-by-step tutorials for business users, video walkthroughs, use case examples
Onboarding: Self-service for Free/Pro, guided onboarding for Business, white-glove implementation for Enterprise with custom training
User-Focused Resources: Strong for business user adoption with non-technical language, visual guides, practical examples
CRITICAL GAP - No Developer Documentation: No API reference, code samples, technical architecture documentation, OpenAPI specs
CRITICAL GAP - No Phone Support: Email and community only for Free/Pro/Business tiers - phone access restricted to Enterprise only
LIMITATION - Support Quality Inconsistency: User reviews note 'inconsistent responsiveness on lower tiers' - common Trustpilot criticism
LIMITATION - Slow Response Times: Some users report 'writing to support twice with no response' - support quality concerns for non-enterprise customers
Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding
Developer Docs
Email and in-app support: Quick support via email and in-app chat for all users
Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
Code samples: Cookbooks, step-by-step guides, and examples for every skill level
API Documentation
Active community: User community plus 5,000+ app integrations through Zapier ecosystem
Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
No compliance certifications: Missing SOC 2, HIPAA, ISO 27001, PCI DSS, FedRAMP - unsuitable for regulated industries (healthcare, finance, government)
No native cloud storage: No Google Drive, Dropbox, or Notion integrations - requires manual export or API setup
Storage limits: 11M character limit can fill quickly with comprehensive enterprise documentation (e.g., 100+ article knowledge bases)
Model performance variance: Users report GPT-4 works best, Claude/Gemini show inconsistencies and hallucinations
No voice/IVR capabilities: No phone integration or voice bot features unlike UChat or Zendesk
No SMS support: Text messaging requires third-party integration
Developer experience: No official SDKs in any language (Python, JavaScript, etc.), basic REST API documentation only
Analytics limitations: Less advanced than enterprise platforms (no predictive insights or AI-powered recommendations)
Best for: SMBs prioritizing value and multi-LLM access over enterprise certifications and advanced features
NO Public REST API: Cannot manage agents, create workflows, or query knowledge base programmatically - blocks developer integration
NO Official SDKs: No Python, JavaScript, Ruby, Go, or any language SDK for programmatic access - workflow automation only
NO CLI Tools: No command-line interface for automation or scripting - dashboard-only management
NO Developer Console: No API sandbox, testing environment, or technical documentation for developers
Black Box RAG Implementation: Vector database, embedding models, similarity thresholds completely undisclosed - no transparency
No RAG Benchmarks: No published accuracy metrics, retrieval precision/recall, or latency measurements for evaluation
Search Fuzziness Constraint: Lower fuzziness values limit searches to first 1,500 files - meaningful limitation for large deployments
Character Storage Limits: 50M character maximum on Business tier - may constrain large enterprise knowledge bases vs unlimited competitors
Unpredictable Credit Consumption: Most common user complaint - 'credits depleted quickly and unpredictably' makes budgeting difficult
US-Only Data Residency: No documented EU data residency option - blocks customers with strict data localization requirements (GDPR, Digital Sovereignty)
No ISO 27001 Certification: Only SOC 2 Type II documented - ISO 27001 absence may limit enterprise procurement in regulated industries
1-Day Free Tier Log Retention: Severely limits troubleshooting and security incident investigation vs 30+ day industry standard
Learning Curve for Complex Workflows: Despite 'vibe coding' simplicity, sophisticated multi-agent systems and delegation rules require workflow design expertise
Support Quality Inconsistency: Mixed reviews noting slow/unresponsive support for non-enterprise tiers - support quality varies significantly by plan
No Manual Model Performance Comparison: Cannot A/B test different LLMs or compare model performance - manual experimentation required
Credit-Based Pricing Opacity: Difficult to forecast costs vs fixed per-seat or per-query pricing - budget planning challenging
NOT Ideal For: Developers needing RAG APIs, teams requiring transparent RAG implementation, EU data residency requirements, organizations needing predictable pricing, technical teams wanting embedding/retrieval control
Platform Category Mismatch: Fundamentally a workflow automation platform (competes with Zapier/Make) NOT a RAG-as-a-Service platform - architectural comparison to CustomGPT.ai is misleading
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
AI agent transformation: Transform chatbots into powerful AI agents that seamlessly perform tasks through natural conversational interactions
Zapier AI Actions integration: Deploy AI agents that automate tasks, streamline workflows, and perform real-world business actions with ease
Mid-conversation app calling: Bots can call thousands of apps mid-chat to check orders, book appointments, send emails without leaving conversation
Natural language understanding: AI models designed to understand and respond naturally making conversations feel human-like and helpful
95 languages support: Assist users in their preferred language automatically for global customer engagement
Advanced model options: OpenAI, Google, and Anthropic's Claude 3.5 for nuanced conversational abilities
Effortless lead collection: Gather contact details during conversations with automatic multi-email address sending
Seamless CRM connectivity: Connect to over 7,000 apps using Zapier or Make integrations to collect leads and send to CRM platforms
No-code conversational AI: Create sophisticated conversational AI agents without writing a single line of code
Business knowledge integration: Knows everything about your business and chats directly to customers in friendly conversational manner
Agent Autonomy Focus: Differentiates through autonomous operation rather than traditional chatbot conversation functionality
Multi-Lingual Support: Voice agents (Gaia) support 30+ languages, transcription covers 50+ languages, text agents operate in 85+ languages with automatic detection
Lead Capture Excellence: Real-time qualification, email/phone validation, firmographic enrichment, UTM attribution, automatic CRM syncing - claims up to 70% higher conversion vs traditional forms
Human Handoff: Configurable escalation conditions with phone agents able to transfer calls directly to human team members with full context
Conversation Memory: Tracks conversation history within and across sessions through memory feature, but differs from typical RAG retrieval - context persists through workflow execution vs vector similarity search
Weekly Digests: Automated email summaries of task usage and agent performance
Agent Evals: Dedicated feature for benchmarking agent performance against quality standards and preventing regression
Workflow-Centric: Emphasizes autonomous task execution over conversational interaction - fundamentally different from chatbot platforms
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
R A G-as-a- Service Assessment
Platform type: CONVERSATIONAL AI PLATFORM WITH RAG (not pure RAG-as-a-Service) - chatbot builder with integrated knowledge retrieval
Data source flexibility: Good - Website crawling with configurable depth, document upload (PDF, DOCX, TXT, CSV), audio/video ingestion, plain text input, sitemap support
LLM model options: Excellent - OpenAI (GPT-4, GPT-4 Turbo, GPT-3.5 Turbo), Anthropic Claude 3 (Opus, Sonnet, Haiku), Google Gemini Pro 1.5, Meta Llama 3.1 with user selection per chatbot
Knowledge base management: 11M character storage limit (Starter+), auto-retrain scheduling (daily, weekly, monthly), conversation memory for context retention
API-first architecture: Weak - REST API available on Professional ($99/mo) and above, no official SDKs, basic documentation, no Swagger/OpenAPI spec
Performance benchmarks: ~85% accuracy with optimal model selection (GPT-4), real-time streaming responses, ~99.5% uptime estimated from user feedback (no published SLA)
RAG accuracy: GPT-4 highest accuracy/consistency, Claude 3/Gemini Pro show mixed results with inconsistencies noted in user reviews
Self-service AI pricing: Excellent - $19.99/month for GPT-4, Claude, Gemini access (best value in market vs competitors at $50-100/month)
Compliance & certifications: Poor - GDPR/CCPA compliant, data encryption, SSL/TLS but NO SOC 2, HIPAA, ISO 27001, PCI DSS, FedRAMP
Integration ecosystem: Excellent - 80+ native integrations (no Zapier/Make required) including WhatsApp, Messenger, Instagram, Shopify, Stripe, HubSpot, Salesforce
Best for: SMBs, agencies, e-commerce stores prioritizing value, multi-LLM access, and native integrations over enterprise RAG features and certifications
Not suitable for: Regulated industries (healthcare, finance), enterprises requiring certifications, advanced RAG parameter controls, voice/IVR use cases
Platform Type: NOT A RAG-AS-A-SERVICE PLATFORM - No-code AI agent/workflow automation platform targeting business users vs developers
Critical Distinction: Lindy prioritizes business user accessibility over programmatic RAG control - fundamentally different design philosophy
RAG Implementation: Black-box hybrid search (semantic + keyword) with configurable fuzziness but no exposed retrieval controls
Vector Database: Undisclosed - no documentation of Pinecone, Chroma, Qdrant, or specific vector store
Embedding Models: Undocumented - no information about which models power semantic search
API Availability: NO public REST API, GraphQL endpoint, or official SDKs for programmatic access
Developer Tools: NO OpenAPI spec, CLI tools, developer console, API sandbox, or technical documentation
Benchmarks: No published RAG accuracy, latency, or performance metrics available
Target Audience: Operations teams automating workflows vs developers building custom RAG applications
Use Case Mismatch: Comparing Lindy to CustomGPT.ai is architecturally misleading - fundamentally different product categories serving different user personas
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Additional Considerations
Free plan limitations: Only 50 messages per month suitable for testing rather than real-world production use
Not suitable for complex flows: Limited ability for intricate multi-step "if-this-then-that" logic like classic Messenger marketing bots
Training time investment: Bot training and customization take time to master for optimal performance
Limited Meta integration: Limited ability to integrate with Meta (Facebook) content lessens overall tool value for social media marketing
Company maturity: Founded in 2022, still building long-term enterprise track record vs more established players - consideration for very large corporations
Scalability evaluation: Businesses should evaluate whether pricing model accommodates growth without becoming prohibitively expensive
Custom plans available: Enterprise needs can be accommodated with custom pricing and fully managed services
Managed services offering: For large teams with advanced needs, FastBots offers fully managed services handling strategy, setup, training, and ongoing improvements
Strategic advantage: Unmatched flexibility with choice of LLMs and data sources distinguishes from competitors with locked-in models
Best Use Cases: Operations teams automating repetitive workflows without developer resources - lead qualification, email triage, meeting scheduling, CRM updates, customer support routing excel
Primary Strength: Zero-training deployment with Agent Builder ('vibe coding') creates sophisticated automations in 30 seconds vs 15-60 minutes with Zapier/Make for equivalent workflows
Unique Capabilities: Autopilot (Computer Use) enables automations impossible through traditional integrations - can interact with any web-based application without published APIs through AI-powered browser control
Multi-Agent Societies: Multiple specialized Lindies collaborate on complex tasks through delegation rules - Sales (SDR → AE → CS), Support (Triage → Technical → Escalation), Research with specialized investigators
Credit-Based Pricing Reality: Most common user complaint is unpredictable costs - 'credits consumed quickly and unpredictably' makes budget forecasting difficult vs fixed per-seat or usage-based pricing in competitors
Enterprise Limitations: Character limits (50M cap on Business tier) may constrain large deployments, US-only data residency blocks EU customers with strict localization requirements, no ISO 27001 certification may limit procurement
Developer Friction: Deliberately prioritizes no-code accessibility over developer tooling - NO public REST API, NO SDKs, NO CLI tools, NO programmatic RAG control makes it unsuitable for API-first use cases
Support Inconsistency: User reviews note 'inconsistent responsiveness on lower tiers' and 'writing to support twice with no response' - support quality varies significantly by plan tier
Platform Comparison Warning: Fundamentally different architecture from RAG-as-a-Service platforms - comparing Lindy to CustomGPT is misleading as they serve different product categories (workflow automation vs knowledge retrieval)
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
Visual flow builder: Drag-and-drop conversation design with no coding required for creating chatbot workflows
Tone and personality: Configurable via system prompts to match brand voice and communication style
Greeting messages: Customize initial bot message and icebreakers for welcoming user experience
Multi-language support: 95+ languages with automatic translation for global customer bases
Knowledge source control: Decide what chatbot knows - uploaded information (files, docs, brand tone), ChatGPT general knowledge, or live internet search for real-time info
Auto-retrain scheduling: Configurable daily, weekly, or monthly knowledge base updates for content freshness
Conversation flow builder: Visual drag-and-drop interface for designing conversation paths
Custom forms: Lead capture with custom fields and field validation for data collection
Lead qualification: Score and route leads based on responses for sales prioritization
Intelligent routing: Assign different models to different conversation scenarios (GPT-4 for complex, GPT-3.5 for simple) for cost optimization
Military-grade encryption: All uploaded data secured with military-grade encryption for data protection
Behavior Customization Layers: Settings Context (agent-level configuration persisting across all task runs), Per-Run Context (dynamic customization per execution for adaptive responses), Memory Snippets (learning preferences saved across sessions)
Workflow Flexibility: Visual builder allows business users to modify agent logic without coding - drag-and-drop interface for conversation flows, conditional logic, API integrations, data transformations
Agent Personality Configuration: Configurable tone, expertise areas, communication style through prompt configuration - define professional vs casual voice, technical depth, response verbosity
Knowledge Base Management: Automatic refresh every 24 hours for all connected cloud sources (Google Drive, OneDrive, Dropbox, Notion, SharePoint, Intercom, Freshdesk) with manual 'Resync Knowledge Base' actions for immediate updates
Search Fuzziness Controls: Configurable slider (0-100 scale) balancing semantic vs keyword search - at 100 (pure semantic) no file limit, lower values add keyword matching but constrain to 1,500 files
Retrieval Configuration: Default 4 search results returned (adjustable up to 10 maximum) with hybrid search combining semantic similarity and keyword matching for precision
RBAC Controls: Admins can lock configurations and set credit allocation limits per user or team - prevents unauthorized changes and controls spending across organization
CRITICAL LIMITATION - No Embedding Control: Cannot customize embedding models, vector similarity thresholds, or retrieval parameters - black-box RAG implementation prevents optimization of retrieval pipeline
Developer Flexibility Gap: No programmatic access to knowledge base management, no API for document upload or retrieval configuration, no ability to tune vector search parameters or chunking strategies
Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus.
Learn How to Update Sources
Supports multiple agents per account, so different teams can have their own bots.
Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Customization & Flexibility
N/A
Knowledge Updates: Automatic refresh every 24 hours for all connected cloud sources
Manual Resync: 'Resync Knowledge Base' actions available for immediate updates when needed
Cloud Source Syncing: Google Drive, OneDrive, Dropbox, Notion, SharePoint, Intercom, Freshdesk automatically stay current
Settings Context: Agent-level configuration persists across all task runs for consistent behavior
Per-Run Context: Dynamic customization per execution allows adaptive agent responses
Memory Snippets: Learning preferences saved across sessions (e.g., scheduling constraints, communication style preferences)
Workflow Customization: Visual builder allows business users to modify agent logic without coding
Agent Personality: Configurable tone, expertise areas, and communication style through prompt configuration
No Embedding Control: Cannot customize embedding models, vector similarity thresholds, or retrieval parameters
Limited Developer Flexibility: Black-box RAG implementation prevents optimization of retrieval pipeline or tuning of vector search
N/A
Autopilot & Computer Use
N/A
Unique Capability: AI agents operate cloud-based virtual computers for any website/application interaction
No API Required: Enables automations impossible through traditional integrations - can interact with platforms without published APIs
Computer Vision: Agents 'see' and interact with UIs just like humans - click buttons, fill forms, navigate applications
Workflow Expansion: Breaks beyond 5,000+ integration catalog to access literally any web-based application
Use Cases: Legacy system automation, platforms without APIs, visual task completion, web scraping with context
After analyzing features, pricing, performance, and user feedback, both Fastbots and Lindy.ai are capable platforms that serve different market segments and use cases effectively.
When to Choose Fastbots
You value best value for multi-llm access - $19.99/month for gpt-4, claude, and gemini (vs competitors at $50-100/month)
80+ native integrations eliminate need for Zapier/Make middleware (saves $20-50/month)
Exceptional customer support - 4.9/5 rating with fast response times
Best For: Best value for multi-LLM access - $19.99/month for GPT-4, Claude, and Gemini (vs competitors at $50-100/month)
When to Choose Lindy.ai
You value exceptional no-code usability: 4.9/5 g2 rating, 30-second setup vs 15-60 min with zapier/make
Massive integration ecosystem: 5,000+ apps via Pipedream Connect with 2,500+ pre-built actions
Claude Sonnet 4.5 default drives 10x customer growth - best-in-class language understanding
Best For: Exceptional no-code usability: 4.9/5 G2 rating, 30-second setup vs 15-60 min with Zapier/Make
Migration & Switching Considerations
Switching between Fastbots and Lindy.ai requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
Fastbots starts at $19.99/month, while Lindy.ai begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between Fastbots and Lindy.ai comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 11, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...