In this comprehensive guide, we compare RAGFlow and Supavec across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between RAGFlow and Supavec, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose RAGFlow if: you value truly open-source (apache 2.0) with 68k+ github stars - vibrant community
Choose Supavec if: you value 100% open source with no vendor lock-in
About RAGFlow
RAGFlow is open-source rag orchestration engine for document ai. Open-source RAG engine with deep document understanding, hybrid retrieval, and template-based chunking for extracting knowledge from complex formatted data. Founded in 2024, headquartered in Global (Open Source), the platform has established itself as a reliable solution in the RAG space.
Overall Rating
80/100
Starting Price
Custom
About Supavec
Supavec is the open source rag as a service platform. SupaVec is an open-source RAG platform that serves as an alternative to Carbon.ai. Built on transparency and data sovereignty, it allows developers to build powerful RAG applications with complete control over their infrastructure, supporting any data source at any scale. Founded in 2024, headquartered in Remote, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
84/100
Starting Price
Custom
Key Differences at a Glance
In terms of user ratings, both platforms score similarly in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: RAG Platform versus RAG Platform. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
RAGFlow
Supavec
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
Supported Formats: PDFs, Word documents (.docx), Excel spreadsheets, PowerPoint slides, plain text, images, scanned PDFs with OCR
Deep Document Understanding: Template-based chunking with layout recognition model preserving document structure, sections, headings, and formatting
External Data Connectors: Confluence pages, AWS S3 buckets, Google Drive folders, Notion workspaces, Discord channels
Scheduled Syncing: Automated refresh frequencies for continuous data ingestion from external sources
Scalability: Built on Elasticsearch/Infinity vector store - handles virtually unlimited tokens and millions of documents
Manual Upload: Via Admin UI or API for individual file ingestion
Complex Format Support: Advanced parsing for richly formatted documents, scanned PDFs, and image-based content
Self-Hosted Infrastructure: User manages scaling by allocating sufficient servers/cluster resources
No one-click Google Drive or Notion connectors—you’ll script the fetch and hit the API yourself.
Because it’s open source, you can build connectors to anything—Postgres, Mongo, S3, you name it.
Runs on Supabase and scales sideways, chunking millions of docs for fast retrieval.
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
Native Integrations: None - no pre-built connectors for Slack, Teams, WhatsApp, Telegram
Multi-Lingual Support: Depends on chosen LLM - language-agnostic retrieval engine. Chinese UI supported natively
Conversation Context: Session-based conversation API (v0.22+) maintains multi-turn dialogue context
Grounded Citations: Answers backed by source citations with reduced hallucinations
Lead Capture: Not built-in - would require custom implementation in frontend
Analytics Dashboard: Not provided out-of-box - developers must build or integrate external tools
Human Handoff: Not native - custom logic required to detect low-confidence answers and redirect to human agents
Q&A Foundation: Core focus on accurate retrieval-augmented answers with source transparency
Customer Engagement: Business features (lead capture, handoff, analytics) left to user implementation
Stateless RAG Architecture: Pure retrieval and generation without built-in conversation state—developers implement multi-turn context and session management in application layer
Model-Agnostic Generation: Defaults to GPT-3.5 but supports GPT-4, self-hosted LLMs (Llama, Mistral), and any OpenAI-compatible models—no vendor lock-in for generation
Postgres Vector Search: Fast approximate nearest neighbor search using pgvector extension with cosine similarity—handles millions of chunks efficiently at enterprise scale
Metadata Filtering: Custom metadata tagging and filtering capabilities enabling organized knowledge management and multi-tenant architectures
Real-Time Re-Indexing: Almost instant document re-embedding when updating or overwriting knowledge sources—no lengthy reprocessing delays
REST API Foundation: Straightforward endpoints for file uploads, text uploads, and search with plain-JSON responses—easy integration from any programming language
Supabase Integration: Built on Supabase infrastructure leveraging PostgreSQL, Row-Level Security (RLS), and battle-tested backend for familiar deployment
LIMITATION - No Built-In Chat UI: API-only platform requiring developers to build custom chat interfaces—not a turnkey chatbot solution with widgets
LIMITATION - No Lead Capture: No built-in lead generation, email collection, or CRM integration capabilities—must be implemented at application layer
LIMITATION - No Human Handoff: No escalation workflows, live agent transfer, or fallback mechanisms—conversational features are developer responsibility
LIMITATION - No Multi-Channel Integrations: No native Slack, Teams, WhatsApp, or messaging platform connectors—developers build integration layer
LIMITATION - No Session Management: Stateless API design without conversation history tracking or multi-turn context retention—application must manage state
LIMITATION - No Advanced RAG: Missing hybrid search, reranking, knowledge graphs, multi-query retrieval, query expansion found in enterprise platforms
LIMITATION - No Observability Dashboard: No analytics, conversation metrics, or performance monitoring UI—must integrate external logging tools
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
Customization & Branding
UI Customization: Full control via source code modification - Admin UI can be styled/rebranded
Scalability Model: Horizontal (add servers) and vertical (upgrade hardware) scaling
Database Backend: Elasticsearch or Infinity vector store for document indexing
Resource Management: User provisions CPU, memory, storage, GPU (for local models)
No SaaS Option: Self-hosted only - no managed cloud service available
High Availability: User configures load balancing, redundancy, failover
Maintenance Burden: User handles updates, patches, monitoring, backups
Enterprise Capability: Can scale to enterprise demands with proper infrastructure investment
N/A
N/A
Additional Considerations
Platform Type Clarity: TRUE RAG PLATFORM (Open-Source Engine) - self-hosted infrastructure platform, NOT SaaS - requires DevOps expertise for deployment and maintenance
Target Audience: Developer teams, enterprises with DevOps capabilities, research organizations requiring complete control and customization vs turnkey SaaS solutions
Primary Strength: Open-source freedom with zero licensing costs, complete customization, cutting-edge RAG innovation (GraphRAG, RAPTOR, agentic workflows) often implemented before commercial platforms
State-of-the-Art RAG Capabilities: Hybrid retrieval (full-text + vector + re-ranking) with deep document understanding, layout recognition, structure preservation, multiple recall strategies, and grounded citations
Complete Data Control: Self-hosted architecture means data never leaves your infrastructure - suitable for government/corporate secrets, strict data governance, air-gapped operation with local LLMs
CRITICAL LIMITATION - DevOps Expertise Required: Not suitable for teams without technical infrastructure and container orchestration skills - steep learning curve for setup, maintenance, scaling, and monitoring
CRITICAL LIMITATION - No Managed Service: Self-hosted only with NO SaaS option for teams wanting turnkey deployment without infrastructure management - ongoing operational overhead
CRITICAL LIMITATION - Maintenance Burden: User handles Docker updates, security patches, monitoring, backups, disaster recovery, and scaling - continuous hands-on technical work required
Business Feature Gaps: Lead capture, human handoff, sentiment analysis, analytics dashboards not built-in - custom development required for customer engagement features
Infrastructure Costs Variability: Cloud hosting, storage, bandwidth, and engineering costs can exceed SaaS pricing for smaller deployments - unpredictable vs fixed subscriptions
No Commercial SLA: Community support without guaranteed response times or uptime commitments - not suitable for mission-critical 24/7 requirements requiring formal support agreements
Production Readiness Effort: Requires significant effort to operationalize with monitoring, logging, alerting, security hardening, disaster recovery vs instant SaaS deployment
Use Case Fit: Ideal for enterprises prioritizing control, compliance, and customization over convenience; poor fit for non-technical teams or rapid deployment needs
No vendor lock-in: transparent code, offline option, host wherever you like.
Focuses on core RAG—no SSO, dashboards, or fancy UI included.
Great for devs who want full control or must keep data in-house.
Conversation flow, advanced prompts, fancy UI—all yours to build.
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
Core Chatbot Features
Q&A Foundation: Core focus on accurate retrieval-augmented answers with source transparency and grounded citations reducing hallucinations
Multi-Lingual Support: Depends on chosen LLM - language-agnostic retrieval engine with Chinese UI supported natively for Asian markets
Conversation Context: Session-based conversation API (v0.22+) maintains multi-turn dialogue context and conversation history across interactions
Reference Chat UI: Demo interface included in repository - can be embedded or customized as starting point for custom implementations
Grounded Citations: Answers backed by source citations with specific text chunks dramatically reducing hallucinations through evidence transparency
Lead Capture: Not built-in - would require custom implementation in frontend application layer vs native platform features
Analytics Dashboard: Not provided out-of-box - developers must build or integrate external tools (Prometheus, Grafana, Datadog) for metrics
Human Handoff: Not native - custom logic required to detect low-confidence answers and redirect to human agents with context transfer
Customer Engagement Features: Business features (lead capture, handoff, analytics, sentiment tracking) left to user implementation vs turnkey chatbot platforms
Developer-First Philosophy: Provides building blocks (APIs, libraries, retrieval engine) but no turnkey channel deployment or business user dashboards
Just the essentials: retrieve chunks + LLM answer. Calls are stateless, no baked-in chat history.
No lead capture or human handoff—add those in your own layer.
Pulls the right text fast, then lets your LLM craft the reply.
Perfect if you only need raw RAG and will build the conversation bits yourself.
Reduces hallucinations by grounding replies in your data and adding source citations for transparency.
Benchmark Details
Handles multi-turn, context-aware chats with persistent history and solid conversation management.
Speaks 90+ languages, making global rollouts straightforward.
Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Knowledge Updates: Add/remove files anytime via Admin UI or API - continuous indexing without downtime for always-current knowledge bases
External Sync: Automated data source refresh from Google Drive, S3, Confluence, Notion with near real-time updates eliminating manual re-uploads
Behavior Customization: Edit prompt templates and system logic for tone, personality, response handling through configuration files or code modifications
Chunking Strategies: Template-based chunking configurable per document type - paragraph-sized for FAQs, larger with overlap for narratives preserving context
No GUI Toggles: Customization requires editing config files or source code vs point-and-click dashboards - technical expertise assumed
Ultimate Freedom: Integrate translation services, custom re-ranking algorithms, specialized embeddings, or proprietary retrieval mechanisms through code modifications
Deep Tuning Potential: Modify retrieval pipeline, add custom modules, extend functionality at source code level - complete architectural flexibility
Developer Dependency: Specialized behavior changes assume technical expertise and comfort with Python, Docker, API development, and system architecture
Admin UI (v0.22+): Basic graphical interface for file upload, dataset management, data source connections - power users can maintain content after developer setup
No Role-Based Access: Single admin login by default - multi-user management and role-based access control require custom implementation
Upload or overwrite docs any time—re-embeds almost instantly.
Behavior lives in your prompts; there’s no GUI for personas.
Multi-lingual works fine—just tell the LLM in your prompt.
Add metadata, tweak chunking—then build logic around it as needed.
Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus.
Learn How to Update Sources
Supports multiple agents per account, so different teams can have their own bots.
Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Community & Innovation
GitHub Stars: 68,000+ stars - top open-source RAG project
Growth Recognition: GitHub Octoverse 2024 - fastest-growing open-source AI project
Active Development: Frequent releases, rapid feature additions, responsive maintainers
Community Contributions: Plugins, integrations, tutorials from global developer community
Innovation Leadership: Introduces cutting-edge RAG techniques (hybrid retrieval, deep parsing) early
Transparency: Open-source codebase enables full audit and understanding of retrieval logic
Learning Resource: Serves as reference implementation for RAG best practices
Ecosystem Growth: Third-party tools, wrappers, and integrations emerging from community
Research Alignment: Implements latest academic RAG research in production-ready form
Platform Type: TRUE RAG-AS-A-SERVICE API - Lightweight MIT-licensed open-source RAG backend built on Supabase with self-hosting capability and minimal API surface
Core Mission: Provide transparent, open-source alternative to proprietary RAG services (Carbon.ai shutdown response) with full cost control and no vendor lock-in
Target Market: Developers building custom RAG applications on budget, startups minimizing costs with self-hosting, organizations requiring data sovereignty with Supabase infrastructure
RAG Implementation: Standard RAG architecture with document chunking, OpenAI embeddings, Postgres pgvector semantic search—focused on simplicity over advanced techniques
API-First Design: Pure REST API for retrieval and generation without GUI, widgets, or conversational features—intentionally minimal abstraction for developer control
Self-Hosting Advantage: MIT license enables complete on-premises deployment keeping all data on your servers—ideal for GDPR, HIPAA, data residency compliance
Managed Service Option: Cloud-hosted plans (Free: 100 calls/month, Basic: $190/year for 750 calls/month, Enterprise: $1,490/year for 5K calls/month) eliminate infrastructure management
Pricing Model: Free self-hosting (MIT license) or extremely affordable hosted plans—40-90% cheaper than commercial RAG platforms with no per-document charges or user seat fees
Data Sources: File uploads (PDF, Markdown, TXT) via REST API or raw text ingestion—NO pre-built Google Drive, Notion, or cloud storage connectors (manual scripting required)
Model Flexibility: Model-agnostic with GPT-3.5 default, GPT-4, or self-hosted LLM support—users connect own OpenAI API keys without Supavec markup on AI costs
Security Foundation: Supabase Row-Level Security (RLS) for multi-tenant data isolation, HTTPS encryption, AES-256 at-rest encryption—self-hosting enables GDPR/HIPAA compliance
Support Model: Community GitHub/Discord support for free tier, email support for paid plans—no dedicated CSMs, SLAs, or enterprise account management
Open-Source Ecosystem: Transparent code on GitHub welcoming PRs, forks, and community contributions—no proprietary components or vendor lock-in
LIMITATION - Developer-Only Platform: Requires coding skills for setup, integration, and maintenance—non-technical teams cannot use without developer support
LIMITATION - Basic RAG Features: Standard retrieval without hybrid search, reranking, knowledge graphs, multi-query fusion, or hallucination detection—advanced features require custom development
LIMITATION - No Turnkey Features: No GUI dashboard, conversation management, lead capture, analytics, or multi-channel integrations—pure RAG API requiring application layer development
Comparison Validity: Architectural comparison to full-featured chatbot platforms like CustomGPT.ai requires context—Supavec is lightweight RAG backend API vs complete no-code chatbot builder
Use Case Fit: Perfect for developers wanting lightweight RAG backend without heavy frameworks, startups minimizing costs with Supabase self-hosting, teams building custom chatbots needing simple REST API for retrieval without paying for unused dashboard features
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Competitive Positioning
Primary Advantage: Open-source freedom with zero licensing costs and complete customization
Technical Superiority: State-of-the-art hybrid retrieval often exceeds commercial RAG accuracy
Data Sovereignty: Self-hosted deployment ensures complete data control and privacy
Innovation Speed: Cutting-edge features (GraphRAG, agentic workflows) before many commercial platforms
Primary Challenge: Requires DevOps expertise - not suitable for teams without technical resources
Cost Trade-Off: No license fees but infrastructure and engineering costs can be significant
Market Position: Developer-first alternative to SaaS RAG platforms for technical organizations
Use Case Fit: Ideal for enterprises prioritizing control, compliance, and customization over convenience
Community Strength: Largest open-source RAG community provides validation and ongoing innovation
Market position: MIT-licensed open-source RAG API built on Supabase, offering lightweight alternative to Carbon.ai with self-hosting capability and minimal API surface
Target customers: Developers building custom RAG applications on budget, startups wanting to avoid RAG platform costs, and organizations requiring self-hosted solutions with Supabase infrastructure for data sovereignty
Key competitors: Carbon.ai, LangChain, SimplyRetrieve, and hosted RAG APIs like CustomGPT/Pinecone Assistant
Competitive advantages: MIT open-source license with no vendor lock-in, Supabase foundation for familiar infrastructure, model-agnostic with easy LLM swapping (GPT-3.5, GPT-4, self-hosted), REST API simplicity with straightforward endpoints, privacy-focused with self-hosting option keeping data on your servers, and minimal abstraction enabling deep customization
Pricing advantage: Free (MIT license) for self-hosting; hosted plans extremely affordable ($190/year Basic for 750 calls/month, $1,490/year Enterprise for 5K calls/month); best value for low-volume applications or teams with Supabase expertise wanting to avoid expensive RAG platforms; 40-90% cheaper than commercial alternatives
Use case fit: Perfect for developers wanting lightweight RAG backend without heavy frameworks, startups minimizing costs with self-hosting on existing Supabase infrastructure, and teams building custom chatbot front-ends needing simple REST API for retrieval without paying for unused dashboard features
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
OpenAI Models: Full support for GPT-4, GPT-4o, GPT-4o-mini, GPT-3.5-turbo, and all OpenAI API-compatible models
Anthropic Claude: Native integration with Claude 3.5 Sonnet, Claude 3 Opus, Claude 3 Haiku through dedicated provider
Google Gemini: Support for Gemini Pro and Gemini Ultra via Google Cloud integration
Local Model Deployment: Deploy locally using Ollama, Xinference, IPEX-LLM, or Jina for complete offline operation
Popular Open-Source Models: Embed Llama 2, Llama 3, Mistral, DeepSeek, WizardLM, Vicuna, and other Hugging Face models
OpenAI-Compatible APIs: Configure any model with OpenAI-compatible APIs through universal OpenAI-API-Compatible provider
Embedding Models: Switchable embedding models with safeguards for vector space integrity - supports Voyage AI embeddings
Model Agnostic Architecture: Not tied to single vendor - swap providers freely without vendor lock-in
Model-agnostic architecture: Defaults to GPT-3.5 Turbo for cost-effectiveness, with full support for GPT-4, GPT-4-turbo, and any OpenAI-compatible models
Self-hosted model support: Bring your own LLM - compatible with self-hosted models like Llama, Mistral, or custom fine-tuned models via API endpoints
No model lock-in: Switch between models by changing configuration or prompt path in code without platform restrictions
No markup on AI costs: Users connect their own OpenAI API keys or self-hosted endpoints, paying providers directly without Supavec markup
Note: No built-in model routing: No automatic model selection or load balancing - developers must implement routing logic manually
Note: No prompt optimization layer: Plain RAG implementation without advanced prompt engineering or anti-hallucination guardrails
Quality dependency: Output quality rests entirely on chosen LLM and developer's prompt engineering skills
Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request
Model Selection Details
Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
Elasticsearch Backend: Production-grade vector store handling virtually unlimited tokens and millions of documents
Infinity Vector Store: Alternative vector storage option for massive-scale document indexing
Multi-Repository Federation: Unified retrieval across multiple data sources with comprehensive context assembly
Cutting-Edge Research: Implements latest academic RAG techniques in production-ready form before commercial platforms
Standard RAG architecture: Document chunking with vector embeddings stored in Postgres pgvector extension for semantic search
Embedding generation: Automatic embedding creation during document upload using OpenAI embedding models or custom embedding endpoints
Vector search: Postgres vector search with cosine similarity for retrieval, handling millions of chunks efficiently
Re-indexing speed: Almost instant document re-embedding when updating or overwriting knowledge sources
Metadata support: Custom metadata tagging and filtering capabilities for organized knowledge management
Note: No advanced RAG features: No hybrid search (semantic + keyword), no reranking, no multi-query retrieval, no query expansion
Note: No hallucination detection: No built-in citation validation, factual consistency scoring, or confidence thresholds - developers must implement manually
Note: No retrieval parameter controls: Chunking strategy, similarity thresholds, and top-k configuration require code-level changes
Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks
RAG Performance
Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content
Benchmark Details
Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
Source verification: Always cites sources so users can verify facts on the spot
Use Cases
Enterprise Document Analysis: Financial risk analysis, fraud detection, investment research by retrieving and analyzing reports, financial statements, and regulatory documents with verifiable insights
Customer Support Chatbots: Accurate, citation-backed responses for customer inquiries - integrate into virtual assistants to reduce dependency on human agents while improving satisfaction
Legal Document Processing: Complex legal document analysis with structure preservation, citation tracking, and relationship mapping across case law and statutes
Healthcare Documentation: Medical literature review, clinical decision support, patient record analysis with strict data privacy through self-hosted deployment
Research & Development: Scientific paper analysis, patent research, literature review with relationship extraction and knowledge graph construction
Internal Knowledge Management: Enterprise-level low-code tool for managing personal and organizational data with integration into company knowledge bases
Compliance & Regulatory: Compliance document tracking, regulatory analysis, audit support with complete data control and citation trails
Financial Services: Investment research, market analysis, risk assessment by querying vast financial data repositories with accuracy
Technical Documentation: API documentation, product manuals, troubleshooting guides with structure-aware retrieval for developers
Education & Training: Course material organization, student question answering, academic research support with multi-turn dialogue capabilities
Government & Defense: Classified document analysis, intelligence gathering, policy research with complete on-premise deployment and air-gapped operation
Custom chatbot backends: Ideal for developers building custom chat interfaces needing simple RAG API without heavy platform overhead
Self-hosted knowledge retrieval: Perfect for organizations requiring data sovereignty with Supabase infrastructure for compliance (GDPR, HIPAA when self-hosted)
Budget-conscious RAG applications: Startups and small teams minimizing costs with MIT open-source license and affordable hosted plans ($190-$1,490/year)
Supabase-native projects: Teams already using Supabase can integrate Supavec seamlessly without additional infrastructure complexity
Developer-first RAG: Code-first teams wanting full control over RAG implementation, eschewing GUI dashboards for API-driven workflows
Not ideal for: Non-technical users requiring no-code interfaces, enterprises needing advanced RAG features (hybrid search, reranking), or teams requiring built-in analytics/monitoring
Not ideal for: Production applications requiring hallucination detection, citation validation, or confidence scoring without custom development
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
Complete Data Control: Self-hosted architecture means data never leaves your infrastructure - suitable for government/corporate secrets
On-Premise Deployment: Full air-gapped operation possible - no external API dependencies when using local LLMs
Zero Third-Party Risk: Using local models (Ollama, Xinference) eliminates external API data exposure entirely
User-Configured Encryption: Deploy with TLS/SSL for transit encryption, VPN tunneling, and OS-level disk encryption (AES-256)
Access Control: User implements via network security, firewall rules, reverse proxies, and authentication layers
No Formal Certifications: Community-driven project without SOC 2, ISO 27001, or HIPAA certifications - compliance achieved through proper deployment
Open-Source Auditing: Full code transparency enables security audits and community vulnerability patching - no black-box systems
Multi-Tenancy Implementation: User must implement isolation through separate instances or custom segregation logic
Data Residency: Complete control over data location - deploy in any geography meeting regulatory requirements
Compliance Frameworks: Can be configured to meet GDPR, HIPAA, SOC 2, FedRAMP through proper deployment and operational procedures
Audit Trails: User configures logging, monitoring, and audit mechanisms through application and infrastructure layers
Single-Tenant by Default: Each deployment isolated - no cross-tenant data leakage risk
Network Isolation: Can be deployed in isolated networks, behind firewalls, with VPN-only access
Self-hosting advantage: MIT license enables complete data sovereignty - all data stays on your servers for strict compliance requirements
[Privacy note]
Supabase security foundation: Row-level security (RLS) fences off each team's data when using hosted Supavec on Supabase infrastructure
No model training: Your documents never used for LLM training - data remains yours with zero retention by OpenAI or other providers
GDPR/HIPAA ready: Self-hosting enables GDPR and HIPAA compliance when deployed on compliant infrastructure - enterprises can go dedicated or on-premises
Encryption: Standard HTTPS encryption for API calls; at-rest encryption depends on hosting infrastructure (Supabase provides AES-256)
Note: No SOC 2 certification: Open-source project lacks formal SOC 2 Type II, ISO 27001, or other enterprise compliance certifications for hosted plans
Note: No built-in access controls: Authentication, authorization, and RBAC must be implemented by developers in their application layer
Note: Limited hosted security features: Hosted plans lack SSO/SAML, IP whitelisting, or advanced security controls without custom configuration
Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
SOC 2 Type II certification: Industry-leading security standards with regular third-party audits
Security Certifications
GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
Data isolation: Customer data stays isolated and private - platform never trains on user data
Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
License Cost: $0 - Apache 2.0 open-source license, completely free to use, modify, and distribute
No Subscription Fees: Zero ongoing licensing costs - no per-user, per-query, or per-document charges
Infrastructure Costs: User pays for cloud VMs (AWS, GCP, Azure), on-premise servers, or Kubernetes cluster resources
Compute Requirements: CPU, memory, storage, optional GPU for local model inference - costs scale with usage
LLM API Costs: Separate charges for third-party APIs (OpenAI, Anthropic) if used - can be eliminated with local models
Engineering Costs: Developer/DevOps salaries for installation, configuration, maintenance, monitoring, security, and updates
Network Costs: Bandwidth for data ingestion, API calls, cross-region data transfer if applicable
Horizontal Scalability: Add servers/nodes to handle increased load - no predefined plan limits or caps
Vertical Scalability: Upgrade hardware (CPU, RAM, GPU) for improved performance per node
Cost Predictability Challenges: Usage spikes require rapid resource allocation - costs can be unpredictable vs fixed SaaS pricing
TCO Considerations: Often competitive for large organizations with existing infrastructure, higher for those without DevOps capabilities
Enterprise Scale: Can handle hundreds of millions of words with sufficient infrastructure investment - no artificial limits
Commercial Support: May be available from InfiniFlow team on request for paid support agreements (unofficial)
Open-source (Free): MIT-licensed for self-hosting - pay only your infrastructure costs (Supabase, server, storage) with unlimited API calls and no vendor fees
Hosted Free tier: 100 API calls per month for development and testing
[Pricing]
Basic Plan: $190/year ($15.83/month equivalent) - 750 API calls per month, hosted infrastructure, automatic backups, email support
Enterprise Plan: $1,490/year ($124.17/month equivalent) - 5,000 API calls per month, priority support, SLA guarantees, dedicated resources
No per-document charges: Storage not metered separately - only query volume counts toward plan limits
No user seat fees: Pricing based purely on API call volume, not team size or number of developers
Need more calls? Negotiate custom limits with hosted provider or self-host to eliminate caps entirely
Value proposition: 40-90% cheaper than commercial RAG platforms - Basic plan costs less than 1 month of competing platforms while providing annual service
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
Community Support: Very active GitHub community (68,000+ stars) with discussions, issues, and community contributions
Discord Server: Active Discord community for real-time help, discussions, and troubleshooting from users and maintainers
Official Documentation: Comprehensive guides at ragflow.io/docs covering Get Started, configuration, deployment, API reference
Limited Ecosystem: Smaller ecosystem of third-party integrations, plugins, and turnkey solutions vs commercial platforms
Production Readiness: Requires significant effort to operationalize (monitoring, logging, alerting, security hardening, disaster recovery)
No GUI/dashboard: Everything via API or CLI - no business-user interface for content management, analytics, or configuration
Developer-only tool: Requires coding skills for setup, integration, and maintenance - non-technical teams cannot use without developer support
Basic RAG only: Standard retrieval-augmented generation without advanced features like hybrid search, query reranking, multi-query fusion, or query expansion
No observability built-in: No metrics dashboard, conversation analytics, or performance monitoring - must wire up your own logging layer
Manual hallucination handling: No built-in citation validation, confidence scoring, or factual consistency checks - developers must implement safeguards
Limited connectors: No one-click Google Drive, Notion, or cloud storage integrations - must script data fetching and API uploads manually
No conversation management: Stateless API calls without chat history, multi-turn context, or session management - build conversation layer yourself
Infrastructure knowledge required: Self-hosting requires Supabase, Postgres, and vector database expertise - not plug-and-play for non-DevOps teams
Minimal abstraction: Intentionally low-level API design provides control but requires more integration work than higher-level RAG platforms
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
After analyzing features, pricing, performance, and user feedback, both RAGFlow and Supavec are capable platforms that serve different market segments and use cases effectively.
When to Choose RAGFlow
You value truly open-source (apache 2.0) with 68k+ github stars - vibrant community
State-of-the-art hybrid retrieval with multiple recall + fused re-ranking
Deep document understanding extracts knowledge from complex formats (OCR, layouts)
Best For: Truly open-source (Apache 2.0) with 68K+ GitHub stars - vibrant community
When to Choose Supavec
You value 100% open source with no vendor lock-in
Complete control over data and infrastructure
Strong privacy with Supabase RLS integration
Best For: 100% open source with no vendor lock-in
Migration & Switching Considerations
Switching between RAGFlow and Supavec requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
RAGFlow starts at custom pricing, while Supavec begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between RAGFlow and Supavec comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 11, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...