In this comprehensive guide, we compare SimplyRetrieve and UChat across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between SimplyRetrieve and UChat, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose SimplyRetrieve if: you value completely free and open source
Choose UChat if: you value exceptional value - $10/month for 12+ channels vs manychat's $15/month for 4 channels
About SimplyRetrieve
SimplyRetrieve is lightweight retrieval-centric generative ai platform. SimplyRetrieve is an open-source tool providing a fully localized, lightweight, and user-friendly GUI and API platform for Retrieval-Centric Generation (RCG). It emphasizes privacy and can run on a single GPU while maintaining clear separation between LLM context interpretation and knowledge memorization. Founded in 2019, headquartered in Tokyo, Japan, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
82/100
Starting Price
Custom
About UChat
UChat is no-code omnichannel chatbot builder for social commerce. UChat is a no-code omnichannel chatbot platform optimized for social commerce and customer engagement across 15+ messaging channels including WhatsApp, Facebook Messenger, Instagram, Telegram, and more. Built for agencies with comprehensive white-labeling at $199/month. Founded in 2018, headquartered in Australia, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
98/100
Starting Price
$10/mo
Key Differences at a Glance
In terms of user ratings, UChat in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: RAG Platform versus Chatbot Platform. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
SimplyRetrieve
UChat
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
Uses a hands-on, file-based flow: drop PDFs, text, DOCX, PPTX, HTML, etc. into a folder and run a script to embed them.
A new GUI Knowledge-Base editor lets you add docs on the fly, but there’s no web crawler or auto-refresh yet.
OpenAI Assistant API integration (not native RAG architecture)
Upload documents up to 200MB per file to OpenAI's embedding system
Supported formats: PDF, DOCX, TXT, CSV, HTML
Note: No native website crawling - content must be extracted and uploaded manually
Note: No YouTube transcript ingestion
Note: No direct Google Drive, Dropbox, or Notion integrations for knowledge sources
Cloud storage access possible via Zapier, Make, Pabbly Connect middleware (manual workflow)
Note: No auto-sync or scheduled refresh - all knowledge updates require manual file re-upload
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
Ships with a local Gradio GUI and Python scripts for queries—no out-of-the-box Slack or site widget.
Want other channels? Write a small wrapper that forwards messages to your local chatbot.
15+ messaging channels: WhatsApp (Cloud API + 360Dialog), Facebook Messenger, Instagram, Telegram, Line, Viber, WeChat, VK, Google Business Messenger
Omnichannel deployment: Build once, launch on 8 channels simultaneously with unified inbox
QR code channel switching: Start web chat, continue on WhatsApp by scanning code with context preservation
Zapier integration: 10 triggers + 10 actions via Pabbly Connect
Webhook system: Up to 5 inbound webhooks per bot with full JSON payload logging
Partner webhooks: Trigger on user_registered, workspace_created, plan_changed, plan_renewed, overdue events
HTTP request nodes: Support all methods (GET, POST, PUT, DELETE, PATCH, HEAD, OPTIONS) with JSON/form/multipart/raw body formats
Website embedding via script injection with domain verification required
Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more.
Explore API Integrations
Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc.
Read more here.
Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast.
Developer Docs
Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs.
Enterprise Solutions
Benefits from an active user community plus integrations through Zapier and GitHub resources.
Additional Considerations
Great for offline / on-prem labs where data never leaves the server—perfect for tinkering.
Takes more hands-on upkeep and won’t match proprietary giants in sheer capability out of the box.
Platform still young: Room for improvement including server resource limits that some users encounter
Asset limitations: Times when limitations on assets were forced by the group affecting flexibility
Channel integration structure: Users desire integrated omnichannel structure instead of separate channels - would reduce building time and allow interaction from single inbox regardless of channel
Current multi-channel management: Need to login to each individual channel rather than unified interface for all customer interactions
Control and management tradeoffs: Less control over system performance, updates, and configurations compared to self-hosted solutions
Internet connectivity dependency: Heavily relies on internet connectivity - may experience unpredictable quality of service (QoS) especially for voice and video
BYOC integration challenges: Bring-your-own-carrier (BYOC) approach may encounter integration or configuration challenges when connecting existing telephony services
Multi-vendor troubleshooting: Troubleshooting across multiple vendors can complicate support and increase time to resolution
Integration compatibility: Not all solutions seamlessly integrate particularly during collaborative sessions like virtual meetings
Security alignment: Need to align provider practices with internal security policies for voice and video application vulnerabilities
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No- Code Interface & Usability
Basic Gradio UI is developer-focused; non-tech users might find the settings overwhelming.
No slick, no-code admin—if you need polish or branding, you'll build your own front end.
Visual builder: Drag-and-drop Visual flow builder with no coding required; multi-agent orchestration with role-based task routing; conversation context handoff between agents without technical implementation
Setup complexity: Script tag website embedding with domain verification; build once, launch on 8 channels simultaneously with unified inbox; 160+ template library (vs ManyChat's 35 templates) reduces time-to-deployment
Learning curve: UChat Academy 4-module structured training program with certifications (Certified Chatbot Builder, Mini App Builder Certification); specialized courses for Dialogflow, WooCommerce, Shopify, WhatsApp commerce; 700+ YouTube tutorial videos for visual learning
Pre-built templates: 160+ template library covering e-commerce, customer service, lead generation, appointment scheduling, and industry-specific scenarios; significantly more comprehensive than competitors (ManyChat: 35 templates)
No-code workflows: JavaScript function nodes for custom code execution within flows (documentation via video tutorials); 6 variable types (text, number, boolean, date, datetime, JSON); Mathematical formulas (abs(), ceil(), floor(), log(), pow(), sqrt(), trigonometric functions); HTTP request nodes support all methods (GET, POST, PUT, DELETE, PATCH, HEAD, OPTIONS) with JSON/form/multipart/raw body formats
User experience: 4.9/5 overall Capterra rating (72 reviews) with 4.8/5 customer service rating; Facebook community 75,000+ members (claimed) demonstrates active user engagement; Partner-exclusive Discord channel for advanced users
Target audience: Optimized for agencies and resellers with Partner plan ($199/month) offering full white-labeling, custom pricing, 100% profit retention; Mini-App ecosystem (119 third-party apps) extends functionality without technical development
STRENGTH: Best value in market at $10/month for 12+ omnichannel deployment vs ManyChat $15/month for 4 channels, Chatfuel $49.49/month WhatsApp only
Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing.
User Experience Review
Uses role-based access so business users and devs can collaborate smoothly.
Competitive Positioning
Market position: MIT-licensed open-source local RAG solution running entirely on-premises with open-source LLMs (no cloud dependency), designed for developers and tinkerers
Target customers: Developers experimenting with RAG locally, organizations with strict data isolation requirements (healthcare, government, defense), and teams wanting complete control without cloud costs or vendor dependencies
Key competitors: LangChain/LlamaIndex (frameworks), PrivateGPT, LocalGPT, and cloud RAG platforms for teams needing simplicity
Competitive advantages: Completely free and open-source (MIT license) with no fees or subscriptions, 100% local execution keeping all data on-premises, full control over model choice (any Hugging Face model), Python-based with full source code access for customization, "Retrieval Tuning Module" for transparency into answer generation, and zero external dependencies beyond local compute
Pricing advantage: Completely free with MIT license; only cost is GPU hardware or cloud compute; best value for teams with existing GPU infrastructure wanting to avoid subscription costs; requires technical expertise and hands-on maintenance
Use case fit: Ideal for offline/air-gapped environments requiring complete data isolation (defense, healthcare with strict PHI requirements), developers learning RAG internals and experimenting locally, and organizations with GPU infrastructure wanting zero cloud costs and complete control over LLM stack without vendor dependencies
Market position: Mid-market omnichannel automation platform positioned as affordable alternative to ManyChat and Chatfuel with superior channel coverage (15+ messaging platforms vs 4-5 in competitors); strong agency/reseller focus with Partner plan white-labeling
Target customers: Agencies and resellers requiring white-label capabilities and multi-client management; e-commerce businesses needing WhatsApp Product Catalogue and native checkout; businesses requiring voice/IVR capabilities alongside chat automation
Competitive advantages: $10/month for 12+ channels vs ManyChat $15/month for 4 channels represents 40% lower cost with 3x channel coverage; 160+ template library vs ManyChat 35 templates; voice payment processing during IVR calls (unique capability); Partner plan with 100% profit retention for resellers; QR code channel switching (start web chat, continue on WhatsApp with context preservation); Mini-App ecosystem (119 third-party apps) extends functionality
Pricing advantage: Best value proposition in market - Business plan $10/month for 1,000 users across 8 channels with AI Hub and omnichannel deployment vs competitors charging $15-50/month for fewer channels; no AI cost markup - users connect their own API keys directly to OpenAI/Anthropic/Google
Use case fit: Best for agencies requiring white-label reselling capabilities; e-commerce businesses needing WhatsApp commerce and voice payment processing; multi-channel customer engagement across messaging platforms (WhatsApp, Facebook, Instagram, Telegram, Line, Viber, WeChat, VK); businesses requiring 99.7% uptime SLA commitment with maximum 10 hours scheduled maintenance annually
Limitations vs. competitors: Analytics described as "pretty basic" vs ManyChat's pixel tracking and advanced funnel analytics; no SOC 2 Type II, HIPAA, or ISO 27001 certifications limiting enterprise adoption in regulated industries; limited RBAC with only 3 roles (Owner, Admin, Member) insufficient for complex enterprise needs; no SSO/SAML support constrains identity management integration
Strategic positioning: Competes on price and channel breadth rather than enterprise features or compliance certifications; targets SMBs, agencies, and resellers prioritizing affordability and multi-channel reach over regulatory compliance and advanced analytics
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
Hugging Face Compatibility: Swap in any Hugging Face model with sufficient GPU resources (Llama 2, Falcon, Mistral, etc.)
Full Local Control: Models run entirely on-premises with no external API calls or cloud dependencies
Embedding Model: Default multilingual-e5-base for retrieval with option to swap for other embedding models
Model Customization: Fine-tune or quantize models for specific use cases and hardware constraints
No Vendor Lock-In: Complete flexibility to use any open-source LLM without subscription fees or API limits
GPU Requirements: Smaller models may not match GPT-4 depth but enable complete data isolation and zero operational costs
Multi-model support: GPT-4-turbo, GPT-4-vision, GPT-4-32k, GPT-3.5-turbo-1106, Claude (Anthropic), Google Gemini, DeepSeek, Grok (X.AI), Coze
Manual model selection: Per-agent model configuration - no automatic routing or intelligent model switching based on query complexity
OpenAI Assistant API integration: Knowledge retrieval powered by OpenAI's embedding system (not native RAG architecture) with 200MB per file upload limit
Function calling (AI Functions): AI agents can trigger real-time actions during conversations for dynamic workflow automation
Temperature control: Configurable temperature settings per agent for balancing creativity vs predictability in responses
Token limits: 500 tokens for general text generation, 1,000 tokens for complex tasks (configurable per agent)
No AI cost markup: Users connect their own API keys directly to OpenAI/Anthropic/Google - pay providers directly without UChat fees
BYOK (Bring Your Own Key): All LLM costs pass-through to users' own accounts enabling cost transparency and control
Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request
Model Selection Details
Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
Retrieval-Centric Generation (RCG): Research-backed approach explicitly separating LLM roles from knowledge memorization for more efficient implementation
Retrieval Tuning Module: Transparency into answer generation showing which documents were retrieved and how queries were built
Mixtures-of-Knowledge-Bases (MoKB): Multiple selectable knowledge bases with intelligent routing between knowledge sources
Explicit Prompt-Weighting (EPW): Control over retrieved knowledge base weighting in final answer generation
FAISS Vector Search: Fast approximate nearest neighbor search using Facebook's FAISS library for efficient retrieval
On-the-Fly Knowledge Base Creation: Drag-and-drop documents in GUI to create knowledge bases without manual preprocessing
Analysis Tab: Visual debugging showing document retrieval process and query construction for transparency
Multiple Document Support: Handles PDFs, text files, DOCX, PPTX, HTML, and other common formats
OpenAI Assistant API integration: Document upload via OpenAI's embedding system (not native RAG infrastructure) - relies on OpenAI's vector search capabilities
Document support: PDF, DOCX, TXT, CSV, HTML up to 200MB per file uploaded to OpenAI's knowledge base
LIMITATION: No native website crawling: Content must be extracted and uploaded manually - no automatic URL ingestion or sitemap processing
LIMITATION: No YouTube transcript ingestion: Video content requires manual transcription and text upload
LIMITATION: No cloud storage integrations: No direct Google Drive, Dropbox, or Notion integrations for knowledge sources - possible via Zapier/Make middleware with manual workflow
LIMITATION: No auto-sync: All knowledge updates require manual file re-upload - no scheduled refresh or continuous ingestion
LIMITATION: No RAG parameter controls: Cannot configure chunking strategy, embedding models, similarity thresholds, or retrieval settings - controlled by OpenAI API
Multi-agent orchestration: Role-based task routing with conversation context handoff between specialized agents for complex workflows
Conversation summarization: Automatic summarization after 10-100 messages to maintain context within token limits
Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks
RAG Performance
Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content
Benchmark Details
Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
Source verification: Always cites sources so users can verify facts on the spot
Use Cases
Air-Gapped Environments: Defense, classified research, and secure facilities requiring complete offline operation without external connectivity
Healthcare PHI Compliance: HIPAA-regulated organizations needing 100% data isolation for protected health information
RAG Research & Education: Developers learning RAG internals with full visibility into retrieval and generation processes
Local Experimentation: Prototype RAG applications locally before committing to cloud infrastructure and subscription costs
Data Sovereignty: Organizations with strict data residency requirements preventing cloud storage or processing
Zero-Cost RAG: Teams with existing GPU infrastructure wanting to avoid subscription fees for RAG capabilities
Custom Model Development: Research teams fine-tuning and testing custom LLMs and embedding models for specific domains
Agency/reseller white-labeling: Partner plan ($199/month) with full white-labeling, custom domain, branded login/signup pages, 100% profit retention for multi-client management
Omnichannel customer engagement: 15+ messaging platforms (WhatsApp, Facebook, Instagram, Telegram, Line, Viber, WeChat, VK, Google Business Messenger) with unified inbox
E-commerce automation: WhatsApp Product Catalogue, native checkout within conversations, abandoned cart recovery, Shopify/WooCommerce/Stripe integration for order management
Lead generation: Conversational marketing bots with form-based data collection, CRM sync (Salesforce, HubSpot, Pipedrive), qualification workflows
Multi-step workflow automation: Visual flow builder with 160+ templates, JavaScript function nodes, HTTP requests (GET/POST/PUT/DELETE/PATCH), 6 variable types, mathematical formulas
NOT ideal for: Advanced RAG use cases (no native vector database or embedding controls), enterprise compliance needs (no SOC 2/HIPAA/ISO 27001), complex RBAC requirements (only 3 roles), organizations requiring SSO/SAML integration
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
Compliance Flexibility: Can be configured to meet HIPAA, FedRAMP, GDPR, or other regulatory requirements through deployment architecture
GDPR compliance: Technical and organizational measures with Data Processing Agreement (DPA) available for EU data protection
Personal data encryption: Encryption at rest and in transit for customer information security
3-month data retention: User data retained for 3 months, deletion within 3 days on customer request
IP whitelisting: Available as paid add-on for Partner plan subscribers for network security controls
LIMITATION: No SOC 2 Type II certification: Lacks formal SOC 2 audit demonstrating enterprise security controls
LIMITATION: No HIPAA compliance: Not suitable for healthcare applications handling protected health information (PHI)
LIMITATION: No ISO 27001 certification: Missing international information security management standard certification
LIMITATION: Data center locations not documented: Specific geographic data residency details not publicly available
LIMITATION: No SSO/SAML support: Cannot integrate with enterprise identity providers (Okta, Azure AD) for centralized authentication
Limited RBAC: Only 3 roles (Owner, Admin, Member) insufficient for complex enterprise permission structures and departmental segregation
Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
SOC 2 Type II certification: Industry-leading security standards with regular third-party audits
Security Certifications
GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
Data isolation: Customer data stays isolated and private - platform never trains on user data
Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
Completely Free: MIT open-source license with no subscription fees, API charges, or usage limits
Infrastructure Costs Only: GPU hardware or cloud compute (AWS/GCP/Azure GPU instances) are the only expenses
No Per-Query Charges: Unlimited queries without per-request pricing or rate limits
No Vendor Fees: Zero payments to SaaS providers or LLM API vendors (OpenAI, Anthropic, etc.)
GPU Requirements: Single GPU sufficient for development; scale hardware based on throughput needs
Open-Source Ecosystem: Leverage free Hugging Face models, FAISS library, and PyTorch without licensing costs
Best Value For: Teams with existing GPU infrastructure or ability to provision cloud GPU instances economically
Free plan: 1 bot, 200 users, 1 member, basic features, 1 channel for development and testing
Business ($10/mo): 1 bot, 1,000 users, 5 members, omnichannel (8 channels), AI Hub with multi-model support, all pro features
Partner ($199/mo): 5 bots, 10,000 users, 5 members, full white-labeling with custom domain, custom pricing capability, 100% profit retention for resellers
Add-ons Business/Partner: Extra bot $10/$5, extra member $10/$5, extra 1K users $5/$5, extra 10K users $30, IP whitelisting (Partner only, paid addon)
Auto-scaling: Plans automatically upgrade when usage limits exceeded to prevent service interruption
No AI cost markup: Users pay OpenAI/Anthropic/Google directly via their own API keys - no UChat margin on LLM costs
No channel fees markup: WhatsApp, SMS, voice costs paid directly to providers (Twilio, Meta, carriers) without UChat markup
Value proposition: $10/month for 12+ channels vs ManyChat $15/month for 4 channels, Chatfuel $49.49/month WhatsApp only - 40-90% cheaper with broader channel support
14-day free trial: No credit card required, access to all features for evaluation before purchase commitment
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
GitHub Repository: Open-source at github.com/RCGAI/SimplyRetrieve with code, documentation, and examples
Research Paper: Academic publication on arXiv (2308.03983) explaining RCG approach and architecture
Community Support: GitHub Issues for bug reports, feature requests, and community troubleshooting
Lightweight Documentation: README and docs directory with setup instructions and usage examples
No Paid Support: Community-driven support only; no SLAs or enterprise help desk available
Code Examples: Example scripts and Jupyter notebooks demonstrating core functionality
Academic Background: Built on established libraries (Hugging Face, Gradio, PyTorch, FAISS) with extensive external documentation
Email support: ticket@uchat.com.au with typically 1-day response time across all paid plans
Facebook community: 75,000+ members (claimed) with highly active user engagement for peer support and best practice sharing
Confluence knowledge base: docs.uchat.com.au with comprehensive setup guides, feature documentation, and troubleshooting articles
700+ YouTube tutorial videos: Extensive video library covering platform features, integration setup, and workflow creation
Partner-exclusive Discord channel: Private Discord server for Partner plan subscribers with direct access to UChat team and advanced users
UChat Academy: 4-module structured training program with certifications (Certified Chatbot Builder, Mini App Builder Certification)
Active community: User community plus 5,000+ app integrations through Zapier ecosystem
Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
Developer-Only Tool: Requires Python expertise, GPU knowledge, and technical setup—not suitable for non-technical users
GPU Infrastructure Required: Needs dedicated GPU hardware or cloud GPU instances with associated costs and management overhead
Basic UI: Gradio interface is functional but not polished—requires custom front-end development for production use
Limited Scalability: Scaling requires manual infrastructure management and load balancing vs auto-scaling cloud platforms
No Enterprise Features: Missing multi-tenancy, user management, advanced analytics, and production-grade monitoring
Slower Inference: Open-source models on single GPU (few to 10+ seconds per reply) vs sub-second cloud API responses
Manual Knowledge Base Updates: No automatic web crawling, syncing, or scheduled reindexing capabilities
No Pre-Built Integrations: Requires custom development to integrate with Slack, websites, or support platforms
Limited Context Memory: Primarily single-turn Q&A with minimal conversation history retention
Maintenance Burden: User responsible for updates, model management, troubleshooting, and infrastructure maintenance
Basic analytics: Metrics described as "pretty basic" vs ManyChat's pixel tracking - no open rate/click rate tracking for individual messages, no unrecognized input analytics
OpenAI dependency for RAG: Knowledge retrieval relies on OpenAI Assistant API (not native RAG) - accuracy limited by OpenAI's embedding system and retrieval quality
No native knowledge connectors: Must manually upload documents - no Google Drive, Notion, Confluence, Zendesk integrations for automatic knowledge sync
Limited compliance certifications: No SOC 2 Type II, HIPAA, ISO 27001 restricting adoption in regulated industries (healthcare, finance, government)
Basic RBAC: Only 3 roles (Owner, Admin, Member) insufficient for enterprise departmental segregation and granular permission controls
No SSO/SAML: Cannot integrate with enterprise identity providers (Okta, Azure AD, OneLogin) for centralized authentication and user provisioning
No official SDKs: No programming language SDKs (Python, JavaScript, Node.js) - requires direct HTTP calls to REST API for programmatic integrations
Data center transparency: Specific geographic data residency locations not documented publicly - may concern organizations with strict data sovereignty requirements
Manual model selection: No automatic LLM routing based on query complexity - users must configure model per agent manually
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
Retrieval-Centric Generation (RCG): Research-backed approach separating LLM reasoning capabilities from knowledge memorization—more efficient than traditional RAG architectures
Retrieval Tuning Module: Developer-focused transparency layer showing which documents were retrieved, how queries were constructed, and how answers were generated
Knowledge Base Mixing (MoKB): Route queries across multiple selectable knowledge bases with intelligent source selection and weighting
Explicit Prompt Weighting (EPW): Fine-grained control over retrieved knowledge base influence in final answer generation
Single-Turn Q&A Focus: Primarily designed for single-turn question answering—limited multi-turn conversation and context memory
Analysis Tab Transparency: Visual debugging interface showing document retrieval process and query construction for answer inspection
Local Agent Execution: All agent processing happens on-premises with zero external API calls—complete control over agent behavior and data
LIMITATION - No Chatbot UI: Gradio interface for developers only—no polished conversational interface for end users or production deployment
LIMITATION - No Lead Capture: No built-in lead generation, email collection, or CRM integration capabilities—manual implementation required
LIMITATION - No Human Handoff: No escalation workflows, live agent transfer, or fallback mechanisms for complex queries—developer must build these features
LIMITATION - No Multi-Channel Support: No native integrations with Slack, Teams, WhatsApp, or website widgets—requires custom wrapper development
LIMITATION - No Session Management: Stateless interactions without conversation history tracking or multi-turn context retention
AI-driven workflows: Deploy AI-driven workflows with visual drag-and-drop builder to automate sales, support, and engagement across 15+ social channels
Multi-channel deployment: WhatsApp, Instagram, Messenger and 12+ other platforms with unified management
Smart AI agents: Build and deploy smart AI agents with visual flows for no-code automation
Omnichannel messaging: Manage messaging across all channels from single platform
5,000+ app integrations: Connect with thousands of apps through native integrations and middleware (Zapier, Pabbly Connect, Make)
No coding needed: Visual interface allows both developers and business owners to enhance chatbot capabilities without programming
Core skill sets: Scheduling, data collection, and other configurable agent capabilities
AI Actions integration: Integrate AI agents into workflows through Flow Builder by selecting "AI Actions" and choosing primary AI agent
Secondary agent enrichment: Add secondary agents (Customer Support, CRM Manager) to enrich primary agent with additional functionalities
Multi-agent connectivity: Connect multiple agents using "Plus Additional AI Agents" for complex workflows
Dynamic routing: Ensures relevant responses based on user needs with context-aware conversation management
Live agent handoff: Instant transfer of complex queries to live agents when automation reaches limits
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
R A G-as-a- Service Assessment
Platform Type: NOT A RAG-AS-A-SERVICE PLATFORM - Open-source academic research project for local Retrieval-Centric Generation experimentation and learning
Core Mission: Provide localized, lightweight, user-friendly interface to Retrieval-Centric Generation (RCG) approach for machine learning community exploration and research
Academic Foundation: Published research tool from RCGAI with arXiv paper (2308.03983) explaining RCG methodology and architectural design decisions
Target Market: Researchers, developers, and organizations experimenting with RAG locally without cloud dependencies—NOT commercial service users
Self-Hosted Infrastructure: MIT-licensed tool requiring user-managed GPU hardware or cloud compute—no managed infrastructure, APIs, or service-level agreements
Developer-First Design: Python-based with Gradio GUI and script execution—intended for technical users comfortable with GPU infrastructure and model management
RAG Implementation: Retrieval-Centric Generation (RCG) philosophy emphasizing retrieval over memorization—FAISS vector search with open-source LLMs (WizardVicuna-13B default, any Hugging Face model supported)
API Availability: NO formal REST API or SDKs—interaction via Python scripts and local Gradio interface requiring subprocess calls or custom wrappers
Data Privacy Advantage: 100% local execution with zero external transmission—ideal for classified, PHI, PII, or confidential data requiring air-gapped processing
Pricing Model: Completely free (MIT license) with no subscription fees—only cost is GPU hardware or cloud compute infrastructure
Support Model: Community-driven GitHub Issues and lightweight documentation—no paid support, SLAs, or customer success teams
LIMITATION vs Managed Services: NO managed infrastructure, automatic scaling, production-grade monitoring, enterprise security controls, or commercial support—users responsible for all operational aspects
LIMITATION - No Service Features: NO authentication systems, multi-tenancy, user management, analytics dashboards, or SaaS conveniences—pure research/development tool
Comparison Validity: Architectural comparison to commercial RAG-as-a-Service platforms like CustomGPT.ai is MISLEADING—SimplyRetrieve is open-source research tool for on-premises experimentation, not production service
Use Case Fit: Perfect for offline/air-gapped RAG research, developers learning RAG internals with full transparency, organizations with strict data isolation requirements (defense, healthcare PHI compliance), and teams wanting zero cloud costs with existing GPU infrastructure
Platform type: CONVERSATIONAL AI PLATFORM WITH OPENAI ASSISTANT API (not pure RAG-as-a-Service) - chatbot builder with OpenAI-powered knowledge retrieval
RAG architecture: OpenAI Assistant API integration (not native RAG) - relies on OpenAI's embedding and retrieval system
Document support: PDF, DOCX, TXT, CSV, HTML with 200MB per file upload limit
Knowledge limitations: No native website crawling, no YouTube transcript ingestion, no direct cloud storage integrations (Google Drive, Dropbox, Notion)
Manual knowledge management: All knowledge updates require manual file re-upload - no auto-sync or scheduled refresh capabilities
Cloud storage workaround: Zapier, Make, Pabbly Connect middleware required for accessing cloud storage as knowledge sources
Multi-agent orchestration: Good - Role-based task routing with conversation context handoff between agents for complex workflows
LLM flexibility: Excellent - OpenAI (GPT-4, GPT-3.5), Claude (Anthropic), Gemini (Google) with configurable temperature and token limits per agent
Compliance gaps: Poor - No SOC 2 Type II, HIPAA, ISO 27001 certifications blocking regulated industry adoption
Enterprise features: Limited - Basic RBAC (3 roles only), no SSO/SAML, no official SDKs for programmatic integration
Best for: Multi-channel customer engagement (WhatsApp, Instagram, Messenger focus), SMBs and agencies prioritizing omnichannel deployment over enterprise RAG features
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Mini- App Ecosystem
N/A
119 third-party apps available in Mini-App Store
Two development approaches: JSON-based (v1) with explicit auth/API definitions, flow-based (v2) with visual drag-and-drop
Private app stores for Partners
Third-party developer community contributing extensions
N/A
Human Handoff & Live Chat
N/A
Native UChat mobile apps: iOS ("UChat Live Chat"), Android ("UChat")
After analyzing features, pricing, performance, and user feedback, both SimplyRetrieve and UChat are capable platforms that serve different market segments and use cases effectively.
When to Choose SimplyRetrieve
You value completely free and open source
Strong privacy focus - fully localized
Lightweight - runs on single GPU
Best For: Completely free and open source
When to Choose UChat
You value exceptional value - $10/month for 12+ channels vs manychat's $15/month for 4 channels
Industry-leading white-label capabilities at $199/month with 100% profit retention for agencies
QR code channel switching enables seamless web-to-WhatsApp handoff with conversation context
Best For: Exceptional value - $10/month for 12+ channels vs ManyChat's $15/month for 4 channels
Migration & Switching Considerations
Switching between SimplyRetrieve and UChat requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
SimplyRetrieve starts at custom pricing, while UChat begins at $10/month. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between SimplyRetrieve and UChat comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 13, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...