SimplyRetrieve vs Yellow.ai

Make an informed decision with our comprehensive comparison. Discover which RAG solution perfectly fits your needs.

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT.ai

Fact checked and reviewed by Bill Cava

Published: 01.04.2025Updated: 25.04.2025

In this comprehensive guide, we compare SimplyRetrieve and Yellow.ai across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.

Overview

When choosing between SimplyRetrieve and Yellow.ai, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.

Quick Decision Guide

  • Choose SimplyRetrieve if: you value completely free and open source
  • Choose Yellow.ai if: you value genuinely comprehensive 35+ channel coverage: whatsapp bsp, messenger, instagram, telegram, slack, teams, voice, sms

About SimplyRetrieve

SimplyRetrieve Landing Page Screenshot

SimplyRetrieve is lightweight retrieval-centric generative ai platform. SimplyRetrieve is an open-source tool providing a fully localized, lightweight, and user-friendly GUI and API platform for Retrieval-Centric Generation (RCG). It emphasizes privacy and can run on a single GPU while maintaining clear separation between LLM context interpretation and knowledge memorization. Founded in 2019, headquartered in Tokyo, Japan, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
82/100
Starting Price
Custom

About Yellow.ai

Yellow.ai Landing Page Screenshot

Yellow.ai is enterprise conversational ai platform with multi-llm orchestration. Enterprise conversational AI platform with embedded RAG capabilities processing 16 billion+ conversations annually. Multi-LLM orchestration across 35+ channels and 135+ languages with proprietary YellowG LLM claiming <1% hallucination rates. Founded in 2016, headquartered in San Mateo, CA, USA / Bengaluru, India, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
85/100
Starting Price
Custom

Key Differences at a Glance

In terms of user ratings, both platforms score similarly in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: RAG Platform versus Conversational AI. These differences make each platform better suited for specific use cases and organizational requirements.

⚠️ What This Comparison Covers

We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.

Detailed Feature Comparison

logo of simplyretrieve
SimplyRetrieve
logo of yellow
Yellow.ai
logo of customGPT logo
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
  • Uses a hands-on, file-based flow: drop PDFs, text, DOCX, PPTX, HTML, etc. into a folder and run a script to embed them.
  • A new GUI Knowledge-Base editor lets you add docs on the fly, but there’s no web crawler or auto-refresh yet.
  • Document Cognition (DocCog) Engine: 75-85% accuracy depending on document complexity using T5 model fine-tuned on SQuAD/TriviaQA
  • Supported Formats: PDF, DOCX, DOC, PPTX, PPT, TXT via manual upload through platform UI only (no API upload)
  • Enterprise Integrations: Salesforce, ServiceNow, Confluence, SharePoint, AWS S3, Prismic with bi-directional sync
  • Automatic Synchronization: Configurable intervals - hourly, daily, weekly for external knowledge base updates
  • Website Crawling: URL ingestion and sitemap.xml parsing for structured site content extraction
  • Missing Integrations: No Google Drive, Dropbox, or Notion support - significant gap vs competitors
  • YouTube Limitation: Transcript ingestion not natively supported
  • API Gap: No programmatic document upload or knowledge base management via API
  • Q&A Extraction: T5 model-based question-answer pair generation from ingested documents
  • Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
  • Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
  • Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text. View Transcription Guide
  • Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier. See Zapier Connectors
  • Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
  • Ships with a local Gradio GUI and Python scripts for queries—no out-of-the-box Slack or site widget.
  • Want other channels? Write a small wrapper that forwards messages to your local chatbot.
  • Messaging Platforms (35+ channels): WhatsApp (BSP provider status), Facebook Messenger, Instagram, Telegram, Slack, Microsoft Teams, Line, Viber, WeChat, Zalo, Google Chat
  • Voice Channels: IVR integration, Google Assistant, Amazon Alexa, telephony systems with voice analytics
  • SMS & Email: Full support for text messaging and email communication channels
  • Enterprise Systems: Salesforce, ServiceNow, Confluence, SharePoint, AWS S3, Prismic for knowledge and workflow integration
  • Web Embedding: JavaScript widget (CDN-hosted, no npm package - script tag injection only), Progressive Web App with shareable links, iframe support
  • Mobile SDKs: Well-documented Android, iOS, React Native, Flutter, Cordova SDKs with complete code examples and demo apps
  • Webhooks: Fully supported for custom workflow integration, event triggers, and external system connectivity
  • SDK Limitation: No Python SDK - only mobile SDKs available (major gap for backend developers)
  • Documentation Issues: Web SDK documentation criticized as "hit and miss" by G2 reviewers
  • Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
  • Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more. Explore API Integrations
  • Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
  • Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
  • Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc. Read more here.
  • Supports OpenAI API Endpoint compatibility. Read more here.
Core Chatbot Features
  • Runs a retrieval-augmented chatbot on open-source LLMs, streaming tokens live in the Gradio UI.
  • Primarily single-turn Q&A; long-term memory is limited in this release.
  • Includes a “Retrieval Tuning Module” so you can see—and tweak—how answers are built from the data.
  • Multi-Turn Conversations: Super Agent maintains conversation context across turns with intent detection, entity extraction, slot filling, and dialogue state management
  • 150+ Language Support: Automatic language detection with native multilingual processing across all 150+ supported languages reducing accuracy loss vs translation-based systems
  • Human Handoff: Configurable escalation triggers with full conversation history transfer, agent workload balancing, queue management, and SLA tracking
  • Analytics & Insights: Comprehensive dashboards with containment rates, CSAT scores, conversation flows, drop-off points, user journey analytics, and business KPI tracking
  • Agent Performance Monitoring: Bot accuracy scoring, user satisfaction metrics, conversation success rates, A/B testing capabilities for continuous improvement
  • Voice AI Capabilities: Real-time voice agents in 50+ languages with sentiment analysis during calls, IVR integration, call deflection, automated transcription
  • Lead Capture & Qualification: Real-time lead scoring, CRM integration (Salesforce, HubSpot, Zoho), automatic contact creation, lead routing based on firmographics
  • Workflow Automation: 170+ enterprise integrations enabling complex multi-step workflows beyond simple Q&A - ticket creation, order tracking, appointment scheduling, payment processing
  • Safety & Conduct Controls: Configurable filters ensuring ethical communication, avoiding harmful topics, handling sensitive data responsibly with compliance guardrails
  • Conversational Behavior Rules: Define conversation rules guiding agent responses in different situations ensuring consistent interactions across channels and use cases
  • Reduces hallucinations by grounding replies in your data and adding source citations for transparency. Benchmark Details
  • Handles multi-turn, context-aware chats with persistent history and solid conversation management.
  • Speaks 90+ languages, making global rollouts straightforward.
  • Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Customization & Branding
  • Default Gradio interface is pretty plain, with minimal theming.
  • For a branded UI you’ll tweak source code or build your own front end.
  • Visual Studio: Drag-and-drop conversation flow builder with no-code interface for business users
  • White-Labeling: Custom branding, domains, widget appearance on Enterprise plan
  • Agent Personality: Configurable tone, behavior, response style for brand voice consistency
  • Orchestration Flows: Multi-checkpoint validation workflows with custom policy compliance rules
  • Regional Control: Customer-selected data residency across 6 regions (US, EU, Singapore, India, Indonesia, UAE)
  • RBAC: Six permission levels for granular access control across teams and departments
  • Widget Customization: JavaScript configuration for appearance, behavior, proactive triggers
  • PWA Customization: Progressive Web App with shareable links and custom branding for conversational landing pages
  • Webhook Integration: Custom workflow triggers and event-driven automation for external system connectivity
  • Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand. White-label Options
  • Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
  • Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
  • Uses domain allowlisting to ensure the chatbot appears only on approved sites.
L L M Model Options
  • Defaults to WizardVicuna-13B, but you can swap in any Hugging Face model if you have the GPUs.
  • Full control over model choice, though smaller open models won’t match GPT-4 for depth.
  • Proprietary YellowG LLM: Claims <1% hallucination rate vs GPT-3's 22.7% (vendor benchmarks), 0.6s avg response time
  • Orchestrator LLM: Context switching, multi-intent detection, zero-training deployment capabilities
  • Komodo-7B: Indonesia-focused with 11+ regional language variants for Southeast Asian market
  • T5 Fine-Tuned: SQuAD/TriviaQA training for Document Cognition Q&A extraction (75-85% accuracy)
  • GPT Integration: GPT-3 and GPT-3.5 integrations documented in platform materials
  • GPT-4/Claude: Support not explicitly confirmed in documentation - unclear availability
  • Dynamic Model Routing: Automatic selection via Dynamic AI Agent based on query complexity and context requirements
  • Enterprise Tuning: Proprietary models trained on anonymized customer interactions with PII masking at data layer
  • Focus: Enterprise-specific tuning prioritized over raw model access and flexibility
  • Abstracted Selection: Model routing handled automatically - minimal user control over specific model choice
  • Taps into top models—OpenAI’s GPT-5.1 series, GPT-4 series, and even Anthropic’s Claude for enterprise needs (4.5 opus and sonnet, etc ).
  • Automatically balances cost and performance by picking the right model for each request. Model Selection Details
  • Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
  • Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Developer Experience ( A P I & S D Ks)
  • Interaction happens via Python scripts—there’s no formal REST API or SDK.
  • Integrations usually call those scripts as subprocesses or add your own wrapper.
  • Platform-First Architecture: Designed for UI-based development with APIs serving supplementary functions (not primary access)
  • Available via API: User management (create/update/delete/list), event pushing for custom triggers, outbound notifications, webhook integrations
  • NOT Available via API: Bot/agent creation or management, document upload, knowledge base management, direct RAG query endpoints, embedding/vector store access, analytics data export
  • Mobile SDKs: Well-documented Android (Java), iOS (Swift), React Native, Flutter, Cordova with complete code examples, Postman collections, demo applications
  • Python SDK: Does not exist - major limitation for backend developers and data science teams
  • Web SDK: Script tag injection only (no npm package) - documentation criticized as incomplete by G2 reviewers
  • Rate Limits: Not publicly documented - no transparency for production capacity planning
  • OpenAPI Spec: Not published - no Swagger documentation for API exploration
  • Critical Limitation: Cannot use Yellow.ai as RAG backend - queries must flow through platform conversation flows vs direct API calls
  • Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat. API Documentation
  • Offers open-source SDKs—like the Python customgpt-client—plus Postman collections to speed integration. Open-Source SDK
  • Backs you up with cookbooks, code samples, and step-by-step guides for every skill level.
Performance & Accuracy
  • Open-source models run slower than managed clouds—expect a few to 10 + seconds per reply on a single GPU.
  • Accuracy is fine when the right doc is found, but smaller models can struggle on complex, multi-hop queries.
  • YellowG Hallucination Rate: Vendor claims <1% vs GPT-3's 22.7% (Yellow.ai internal benchmarks - no independent validation)
  • Response Latency: 0.6-second average response time (YellowG LLM performance claim)
  • Document Cognition: 75-85% accuracy depending on complexity (T5 model fine-tuned on SQuAD/TriviaQA)
  • Multi-Checkpoint Validation: Input validation, context verification, policy compliance, response relevance scoring for quality assurance
  • Automatic Guardrails: Hallucination prevention through proprietary model training vs exposing raw retrieval controls
  • Scale Validation: 16 billion+ conversations annually proves production reliability at enterprise scale
  • Case Study Results: Lulu Hypermarket 3M+ unique users in 4 weeks, Sony 21,000+ voice calls in 2 months
  • Benchmark Gap: No published RAGAS scores, independent accuracy measurements, or third-party analyst validation
  • Gartner Recognition: Magic Quadrant 'Challenger' status (2023/2025) validates enterprise positioning
  • G2 Ratings: 4.4/5 overall (106 reviews), 8.6 omnichannel, 9.3 customization, 9.2 proactive engagement
  • Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
  • Independent tests rate median answer accuracy at 5/5—outpacing many alternatives. Benchmark Results
  • Always cites sources so users can verify facts on the spot.
  • Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
Customization & Flexibility ( Behavior & Knowledge)
  • Lets you tweak everything—KnowledgeBase weight, retrieval params, system prompts—for deep control.
  • Encourages devs to swap embedding models or hack the pipeline code as needed.
  • Agent Profile & Persona: Configure name, role, scope, tone (formal/friendly/witty), communication style, expertise areas defining core agent identity
  • Conversation Rules: Define custom rules guiding agent behavior in specific situations ensuring consistent interactions and brand voice compliance
  • Knowledge Base Agent Configuration: Pre-search interactions, metadata mapping, summarization guidelines, retrieval scope control, confidence thresholds
  • Welcome Messages & Greetings: Personalized welcome messages for different channels, user segments, and conversation contexts with dynamic variable substitution
  • Fallback Behaviors: Configurable responses for knowledge gaps, API failures, validation errors, low-confidence scenarios with escalation path options
  • Multi-KB Support: Multiple knowledge bases per organization with role-based access, departmental segregation, and cross-KB search capabilities
  • Auto-Reindexing: Automatic knowledge base refresh when source content changes in connected systems ensuring always-current information
  • Dynamic Prompt Engineering: Custom system prompts, temperature controls, response length limits, creativity settings configurable per use case
  • Channel-Specific Customization: Different agent behaviors, response formats, media handling per channel (WhatsApp, voice, web, email)
  • CRITICAL LIMITATION - Opaque RAG Implementation: Retrieval mechanisms, embedding models, chunking strategies, similarity thresholds not exposed for developer configuration
  • CRITICAL LIMITATION - NO Programmatic Knowledge API: Knowledge base management requires UI interaction - no API for document upload, embedding updates, or retrieval tuning
  • Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
  • Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus. Learn How to Update Sources
  • Supports multiple agents per account, so different teams can have their own bots.
  • Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Pricing & Scalability
  • Free, MIT-licensed open source—no fees, but you supply the GPUs or cloud servers.
  • Scaling means spinning up more hardware and managing it yourself.
  • Free Tier: $0, 1 bot, 2 channels, 100 MTUs (Monthly Transacting Users), 2 agents - extremely limited, evaluation only
  • Basic (AWS Marketplace): ~$10,000/year for single use case implementation
  • Standard: ~$25,000/year for up to 4 use cases with expanded capabilities
  • Enterprise: Custom pricing with unlimited bots, channels, integrations, on-premise options
  • Implementation Timeline: Typically 4 months from start to full deployment (G2 data)
  • Additional Costs: Voice AI and advanced generative features incur separate charges beyond base platform
  • Sales Engagement: Enterprise pricing requires sales contact - no self-service beyond free tier
  • Enterprise Scale: 16 billion+ conversations annually validates ability to handle massive production workloads
  • Case Study Scale: Lulu Hypermarket 3M+ users in 4 weeks, Sony 21,000+ calls in 2 months demonstrate scalability
  • Entry Barrier: ~$10K minimum annual spend limits accessibility for small businesses and startups
  • Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
  • Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates. View Pricing
  • Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
  • Entirely local: all docs and chat data stay on your own machine—great for sensitive use cases.
  • No built-in auth or enterprise security—lock things down in your own deployment setup.
  • SOC 2 Type II: Independently audited security controls and compliance certification
  • ISO Certifications: ISO 27001 (Information Security), ISO 27018 (Cloud Privacy), ISO 27701 (Privacy Management)
  • HIPAA Compliant: Suitable for healthcare use cases requiring protected health information handling
  • GDPR Compliant: Data protection and privacy rights for European users
  • PCI DSS Certified: Payment card industry data security standard compliance for financial transactions
  • FedRAMP Authorized: Federal Risk and Authorization Management Program for US government deployments
  • Encryption: AES-256 at rest, TLS 1.3 in transit for maximum data protection
  • Regional Data Centers: US, EU, Singapore, India, Indonesia, UAE with customer-selected data residency
  • SSO/SAML: Integration with Google, Microsoft, Azure AD, LDAP for enterprise identity management
  • RBAC: Six permission levels for granular access control across teams
  • IP Whitelisting: Network-level access restrictions for enhanced security
  • Audit Logs: 15-day retention for API activity tracking and compliance reporting
  • On-Premise Options: Private cloud and on-premise deployment for complete data sovereignty
  • Infrastructure Security: WAF (Web Application Firewall), DDoS mitigation, annual penetration testing
  • AI Training Privacy: Proprietary models trained on anonymized customer interactions with PII masking at data layer
  • Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
  • Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private. Security Certifications
  • Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Observability & Monitoring
  • An “Analysis” tab shows which docs were pulled and how the query was built; logs print to the console.
  • No fancy dashboard—add your own logging or monitoring if you need broader stats.
  • Analytics Dashboard: Comprehensive conversation metrics, user engagement tracking across 35+ channels
  • Deflection Metrics: Automation success rates and ticket deflection measurement
  • Voice Analytics: IVR and telephony integration performance tracking
  • Audit Logs: 15-day retention for API activity with compliance reporting capabilities
  • Case Study Benchmarks: Lulu Hypermarket 3M+ unique users in 4 weeks, Sony 21,000+ calls in 2 months
  • G2 Performance Ratings: 8.6 omnichannel capabilities, 9.3 customization options, 9.2 proactive engagement features
  • Channel-Specific Metrics: Performance tracking across messaging, voice, web, mobile channels independently
  • User Engagement Tracking: MTU (Monthly Transacting Users) monitoring and conversation volume analytics
  • API Analytics: Not publicly documented - no programmatic access to analytics data
  • Export Limitation: Analytics data export via API not available - UI-based reporting only
  • Real-Time Monitoring: Live dashboard visibility but specific alerting capabilities not emphasized
  • Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
  • Lets you export logs and metrics via API to plug into third-party monitoring or BI tools. Analytics API
  • Provides detailed insights for troubleshooting and ongoing optimization.
Support & Ecosystem
  • Open-source on GitHub; support is community-driven via issues and lightweight docs.
  • Smaller ecosystem: you’re free to fork or extend, but there’s no paid SLA or enterprise help desk.
  • Multi-Channel Support: Email, chat, phone support with tier-based access levels
  • Enterprise Support: Dedicated customer success managers, priority support, SLA guarantees on Enterprise plan
  • Implementation Services: Professional services included with typical 4-month deployment timeline
  • Documentation: Available at docs.yellow.ai with API references, mobile SDK guides, Postman collections
  • Training & Onboarding: Included in enterprise packages with dedicated resources
  • Community Forums: Available for peer support and knowledge sharing
  • G2 Feedback: Mixed support quality post-onboarding noted by reviewers, documentation gaps cited
  • Gartner Recognition: Magic Quadrant 'Challenger' status (2023/2025) provides analyst validation
  • Customer Base: Enterprise brands including Sony, Domino's, Hyundai, Volkswagen, Ferrellgas across 85+ countries
  • Learning Curve: Steep curve noted - one G2 reviewer: "Setup felt akin to solving a Rubik's cube blindfolded"
  • Developer Resources: Mobile SDK documentation praised, web SDK documentation criticized as incomplete
  • Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast. Developer Docs
  • Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs. Enterprise Solutions
  • Benefits from an active user community plus integrations through Zapier and GitHub resources.
Additional Considerations
  • Great for offline / on-prem labs where data never leaves the server—perfect for tinkering.
  • Takes more hands-on upkeep and won’t match proprietary giants in sheer capability out of the box.
  • Platform Classification: ENTERPRISE CONVERSATIONAL AI PLATFORM with RAG capabilities, NOT a pure RAG-as-a-Service API platform - emphasis on multi-channel automation and workflow orchestration
  • Target Audience: Mid-market to enterprise organizations (1,000+ employees) with complex conversational workflows vs individual developers or SMBs requiring simple knowledge retrieval
  • Primary Strength: Exceptional for enterprise-grade conversational AI across 35+ channels (WhatsApp, voice, web, social) with 150+ language support and 60%+ automation rates in regulated industries
  • Vertical Expertise: 50% customer concentration in financial services with deep BFSI (Banking, Financial Services, Insurance) domain knowledge and compliance capabilities (PCI DSS, SOC 2, ISO 27001, GDPR, HIPAA)
  • Dynamic Automation Platform (DAP): 170+ pre-built enterprise integrations (Salesforce, ServiceNow, Zendesk, SAP, Oracle) enable complex workflow automation beyond simple Q&A retrieval
  • Voice AI Excellence: Real-time voice agents in 50+ languages with sentiment analysis, IVR integration, call center deflection capabilities differentiate from text-only RAG platforms
  • CRITICAL LIMITATION - Enterprise Sales Motion: Custom pricing requires sales engagement (2-6 week cycle) with no self-serve option - unsuitable for quick testing or developer experimentation
  • CRITICAL LIMITATION - Pricing Opacity: No published pricing, user reviews report costs 'much higher than competitors', estimated $1,500-$3,500/month minimum vs $99-$299 in RAG platforms
  • CRITICAL LIMITATION - Implementation Complexity: 8-12 week implementation timelines common with mandatory professional services vs instant deployment in self-serve platforms
  • Developer API Limitations: APIs oriented toward conversation orchestration vs programmatic RAG operations (semantic search, embedding controls, retrieval configuration)
  • Lock-In Concerns: Heavy professional services dependency and complex multi-system integrations create significant switching costs vs API-first RAG platforms
  • Use Case Mismatch: Exceptional for large-scale enterprise conversational AI deployments across multiple channels; inappropriate for simple document Q&A or developer-centric RAG use cases
  • Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
  • Gets you to value quickly: launch a functional AI assistant in minutes.
  • Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
  • Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No- Code Interface & Usability
  • Basic Gradio UI is developer-focused; non-tech users might find the settings overwhelming.
  • No slick, no-code admin—if you need polish or branding, you'll build your own front end.
  • Visual Studio: Drag-and-drop conversation flow builder positioned as "no-code" platform
  • Dynamic AI Agent: Zero-training deployment with automatic model routing reduces manual configuration
  • Multi-Intent Detection: Automatic handling of complex queries without manual flow definition
  • Pre-Built Templates: Industry-specific conversation templates for faster deployment
  • Channel Configuration: Guided setup for 35+ messaging and voice channel integrations
  • Knowledge Management UI: Manual document upload and external system connection configuration
  • Policy Builder: Visual configuration for multi-checkpoint validation rules and guardrails
  • RBAC Management: Six permission levels with team access control configuration
  • Reality Check: G2 reviews contradict no-code claims - "steep learning curve", "developer effort required for journey updates"
  • User Feedback: "Setup felt akin to solving a Rubik's cube blindfolded - far from promised no-code bliss" (G2 review)
  • Customization Trade-Off: Advanced features require technical expertise despite visual builder interface
  • Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
  • Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing. User Experience Review
  • Uses role-based access so business users and devs can collaborate smoothly.
Competitive Positioning
  • Market position: MIT-licensed open-source local RAG solution running entirely on-premises with open-source LLMs (no cloud dependency), designed for developers and tinkerers
  • Target customers: Developers experimenting with RAG locally, organizations with strict data isolation requirements (healthcare, government, defense), and teams wanting complete control without cloud costs or vendor dependencies
  • Key competitors: LangChain/LlamaIndex (frameworks), PrivateGPT, LocalGPT, and cloud RAG platforms for teams needing simplicity
  • Competitive advantages: Completely free and open-source (MIT license) with no fees or subscriptions, 100% local execution keeping all data on-premises, full control over model choice (any Hugging Face model), Python-based with full source code access for customization, "Retrieval Tuning Module" for transparency into answer generation, and zero external dependencies beyond local compute
  • Pricing advantage: Completely free with MIT license; only cost is GPU hardware or cloud compute; best value for teams with existing GPU infrastructure wanting to avoid subscription costs; requires technical expertise and hands-on maintenance
  • Use case fit: Ideal for offline/air-gapped environments requiring complete data isolation (defense, healthcare with strict PHI requirements), developers learning RAG internals and experimenting locally, and organizations with GPU infrastructure wanting zero cloud costs and complete control over LLM stack without vendor dependencies
  • Primary Advantage: Complete enterprise conversational AI platform with unmatched 35+ channel coverage and 135+ language support
  • Compliance Leadership: SOC 2, ISO 27001/27018/27701, HIPAA, GDPR, PCI DSS, FedRAMP exceeds most AI platform competitors
  • Proprietary Innovation: YellowG LLM claims <1% hallucination rate, Komodo-7B for Indonesia, 0.6s response times (vendor benchmarks)
  • Enterprise Validation: Gartner Magic Quadrant 'Challenger' (2023/2025), 4.4/5 G2 rating, 90% Gartner Peer Insights recommendation
  • Proven Scale: 16 billion+ conversations annually, customers include Sony, Domino's, Hyundai, Volkswagen across 85+ countries
  • Regional Strength: Multi-region data centers (US, EU, Singapore, India, Indonesia, UAE) with Komodo-7B for Southeast Asia
  • Primary Challenge: NOT a RAG-as-a-Service platform - embedded RAG within closed conversational system blocks API-first use cases
  • Developer Friction: No Python SDK, no knowledge base API, no dedicated RAG endpoints, web SDK documentation gaps
  • Pricing Barrier: ~$10K-$25K annual minimum with 4-month implementation vs competitors with sub-$100/month self-service tiers
  • Learning Curve: G2 reviews cite steep complexity - "setup felt akin to solving a Rubik's cube blindfolded"
  • Market Position: Competes with enterprise CX platforms (Genesys, Twilio, LivePerson) vs RAG API services (CustomGPT.ai, Pinecone Assistant)
  • Use Case Fit: Exceptional for enterprises needing omnichannel CX automation at scale; poor fit for developers seeking programmable RAG capabilities
  • Architectural Mismatch: Platform-first vs API-first design makes direct RAG platform comparison fundamentally misleading
  • Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
  • Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
  • Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
  • Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
  • Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
  • Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
  • Default Model: WizardVicuna-13B-Uncensored (instruction-fine-tuned open-source model)
  • Hugging Face Compatibility: Swap in any Hugging Face model with sufficient GPU resources (Llama 2, Falcon, Mistral, etc.)
  • Full Local Control: Models run entirely on-premises with no external API calls or cloud dependencies
  • Embedding Model: Default multilingual-e5-base for retrieval with option to swap for other embedding models
  • Model Customization: Fine-tune or quantize models for specific use cases and hardware constraints
  • No Vendor Lock-In: Complete flexibility to use any open-source LLM without subscription fees or API limits
  • GPU Requirements: Smaller models may not match GPT-4 depth but enable complete data isolation and zero operational costs
  • Proprietary YellowG LLM: Custom-trained model with vendor-claimed <1% hallucination rate vs GPT-3's 22.7%, 0.6-second average response time
  • Komodo-7B: Specialized Indonesia-focused model supporting 11+ regional language variants for Southeast Asian market dominance
  • Orchestrator LLM: Context switching and multi-intent detection engine with zero-training deployment capability
  • T5 Fine-Tuned: SQuAD/TriviaQA trained model for Document Cognition with 75-85% accuracy depending on complexity
  • GPT-3 & GPT-3.5: Integration documented for supplemental processing and model routing
  • 15+ LLM Models: Multi-model architecture combining proprietary and third-party models for optimal task routing
  • Dynamic Model Routing: Automatic selection based on query complexity, language requirements, and performance optimization
  • Note: GPT-4/Claude support not explicitly confirmed - availability unclear in documentation
  • Enterprise Training: Models trained on 16 billion+ anonymized customer conversations with PII masking at data layer
  • Limited Flexibility: Users cannot manually select models - system handles routing automatically without direct control
  • Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
  • Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request Model Selection Details
  • Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
  • Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
  • Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
  • Retrieval-Centric Generation (RCG): Research-backed approach explicitly separating LLM roles from knowledge memorization for more efficient implementation
  • Retrieval Tuning Module: Transparency into answer generation showing which documents were retrieved and how queries were built
  • Mixtures-of-Knowledge-Bases (MoKB): Multiple selectable knowledge bases with intelligent routing between knowledge sources
  • Explicit Prompt-Weighting (EPW): Control over retrieved knowledge base weighting in final answer generation
  • FAISS Vector Search: Fast approximate nearest neighbor search using Facebook's FAISS library for efficient retrieval
  • On-the-Fly Knowledge Base Creation: Drag-and-drop documents in GUI to create knowledge bases without manual preprocessing
  • Analysis Tab: Visual debugging showing document retrieval process and query construction for transparency
  • Multiple Document Support: Handles PDFs, text files, DOCX, PPTX, HTML, and other common formats
  • Agentic RAG Architecture: Multi-checkpoint validation combining intelligent retrieval with reasoning and action - Yellow.ai's AI Agents don't just retrieve, they think, act, and learn
  • Document Cognition (DocCog): T5 model-based Q&A extraction with 75-85% accuracy depending on document complexity
  • Multi-Checkpoint Validation: Input validation, context verification, policy compliance checks, response relevance scoring for quality assurance
  • Hallucination Prevention: Proprietary YellowG LLM approach with vendor-claimed <1% rate vs industry averages through training optimization
  • Automatic Guardrails: Policy compliance and response filtering from deployment without manual configuration requirements
  • Knowledge Synchronization: Configurable intervals (hourly, daily, weekly) for external sources including Salesforce, ServiceNow, Confluence, SharePoint
  • Website Crawling: URL ingestion and sitemap.xml parsing for structured site content extraction and Q&A generation
  • Enterprise Integrations: Bi-directional sync with AWS S3, Prismic, and major enterprise knowledge bases
  • Note: Closed Architecture: RAG embedded within platform - no direct endpoints, embedding customization, or vector store API access for developers
  • Note: No API Upload: Document upload requires manual platform UI interaction - cannot programmatically manage knowledge base
  • Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks RAG Performance
  • Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content Benchmark Details
  • Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
  • Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
  • Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
  • Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
  • Source verification: Always cites sources so users can verify facts on the spot
Use Cases
  • Air-Gapped Environments: Defense, classified research, and secure facilities requiring complete offline operation without external connectivity
  • Healthcare PHI Compliance: HIPAA-regulated organizations needing 100% data isolation for protected health information
  • RAG Research & Education: Developers learning RAG internals with full visibility into retrieval and generation processes
  • Local Experimentation: Prototype RAG applications locally before committing to cloud infrastructure and subscription costs
  • Data Sovereignty: Organizations with strict data residency requirements preventing cloud storage or processing
  • Zero-Cost RAG: Teams with existing GPU infrastructure wanting to avoid subscription fees for RAG capabilities
  • Custom Model Development: Research teams fine-tuning and testing custom LLMs and embedding models for specific domains
  • Customer Service Automation: 90% query automation across 35+ channels with 60% operational cost reduction - handles 16 billion+ conversations annually
  • Employee Experience (EX): IT support automation (password resets, hardware requests), HR policy FAQs, leave applications, pay slip access, conference room bookings with rapid response delivery even in low bandwidth environments
  • 24/7 Support Operations: Minimal human involvement for routine queries, autonomous account issue resolution, transaction execution, multi-department coordination with full context preservation
  • E-commerce & Retail: Personal shopping assistance (inventory browsing, price comparison, order placement, returns handling), real-time transaction monitoring with suspicious activity blocking
  • Travel & Hospitality: Booking management for travel, hotels, restaurants with automatic rebooking during disruptions and 24/7 availability
  • Financial Services: Fraud detection workflows with automated investigation initiation and PCI DSS compliance for payment transactions
  • Healthcare: HIPAA-compliant patient engagement and support with protected health information handling capabilities
  • Government & Federal: FedRAMP authorized platform for US federal deployments with complete compliance and security requirements
  • Real-World Results: Lulu Hypermarket 3M+ unique users in 4 weeks, Sony 21,000+ voice calls in 2 months, Lion Parcel 85% automation rate, AirAsia employee experience transformation
  • Enterprise Scale: Customers include Sony, Domino's, Hyundai, Volkswagen, Ferrellgas across 85+ countries with billion+ conversation processing
  • Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
  • Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
  • Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
  • Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
  • Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
  • Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
  • Financial services: Product guides, compliance documentation, customer education with GDPR compliance
  • E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
  • SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
  • 100% Local Execution: All data and processing stays on-premises with zero external transmission or cloud dependencies
  • No Third-Party APIs: No external API calls to OpenAI, Anthropic, or other cloud LLM providers
  • Complete Data Isolation: Ideal for classified, PHI, PII, or confidential data requiring air-gapped processing
  • No Built-In Authentication: Security implementation is user responsibility in deployment environment
  • Open-Source Auditing: MIT license with full source code transparency for security reviews and compliance validation
  • Self-Managed Security: Organization controls all security layers (network, authentication, encryption, access control)
  • Compliance Flexibility: Can be configured to meet HIPAA, FedRAMP, GDPR, or other regulatory requirements through deployment architecture
  • SOC 2 Type II: Independently audited security controls and compliance certification with annual penetration testing validation
  • ISO Certifications: ISO 27001 (Information Security Management), ISO 27018 (Cloud Privacy Controls), ISO 27701 (Privacy Information Management)
  • HIPAA Compliant: Healthcare industry ready for protected health information (PHI) handling with Business Associate Agreement support
  • GDPR Compliant: European data protection and privacy rights with regional data centers in EU for data residency requirements
  • PCI DSS Certified: Payment Card Industry Data Security Standard Level 1 compliance for financial transaction security
  • FedRAMP Authorized: Federal Risk and Authorization Management Program certification for US government cloud deployments
  • Encryption Standards: AES-256 encryption at rest, TLS 1.3 for data in transit exceeding industry baseline requirements
  • Regional Data Centers: 6 global regions (US, EU, Singapore, India, Indonesia, UAE) with customer-selected data residency for compliance and latency optimization
  • Enterprise Identity Management: SSO/SAML integration with Google, Microsoft, Azure AD, LDAP for unified access control
  • RBAC Controls: Six permission levels for granular team access control with IP whitelisting for network-level security
  • Audit Logs: 15-day API activity retention for compliance reporting and security monitoring
  • On-Premise Options: Private cloud and complete on-premise deployment available for air-gapped environments and complete data sovereignty
  • AI Training Privacy: Models trained on anonymized customer interactions with PII masking at data layer before processing
  • Infrastructure Security: WAF (Web Application Firewall), DDoS mitigation, regular security assessments, infrastructure hardening
  • Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
  • SOC 2 Type II certification: Industry-leading security standards with regular third-party audits Security Certifications
  • GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
  • Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
  • Data isolation: Customer data stays isolated and private - platform never trains on user data
  • Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
  • Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
  • Completely Free: MIT open-source license with no subscription fees, API charges, or usage limits
  • Infrastructure Costs Only: GPU hardware or cloud compute (AWS/GCP/Azure GPU instances) are the only expenses
  • No Per-Query Charges: Unlimited queries without per-request pricing or rate limits
  • No Vendor Fees: Zero payments to SaaS providers or LLM API vendors (OpenAI, Anthropic, etc.)
  • GPU Requirements: Single GPU sufficient for development; scale hardware based on throughput needs
  • Open-Source Ecosystem: Leverage free Hugging Face models, FAISS library, and PyTorch without licensing costs
  • Best Value For: Teams with existing GPU infrastructure or ability to provision cloud GPU instances economically
  • Free Tier: $0/month - 1 bot, 2 channels, 100 MTUs (Monthly Transacting Users), 2 agents - extremely limited, evaluation purposes only
  • Basic Plan (AWS Marketplace): ~$10,000/year minimum for single use case implementation with limited channel access
  • Standard Plan: ~$25,000/year for up to 4 use cases with expanded capabilities and additional channels
  • Enterprise Plan: Custom pricing requiring sales engagement - unlimited bots, channels, integrations with dedicated support and SLA guarantees
  • Implementation Timeline: Typically 4 months from contract to full deployment with professional services included (G2 user data)
  • Additional Costs: Voice AI features and advanced generative AI capabilities incur separate charges beyond base platform subscription
  • Sales-Led Process: All paid plans beyond free tier require sales contact - no self-service purchasing or transparent public pricing
  • Payment Terms: Annual contracts standard for commercial plans with monthly billing unavailable for most tiers
  • Entry Barrier: $10K minimum annual spend creates significant barrier for small businesses, startups, and individual developers
  • On-Premise Pricing: Custom enterprise pricing for private cloud and on-premise deployments with additional implementation costs
  • Regional Variations: Pricing may vary by selected data center region and compliance requirements
  • Scale Justification: 16 billion+ conversations annually and enterprise customer base (Sony, Domino's, Hyundai) validates high-end positioning
  • Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security View Pricing
  • Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
  • Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs Enterprise Solutions
  • 7-Day Free Trial: Full access to Standard features without charges - available to all users
  • Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
  • Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
  • Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
  • GitHub Repository: Open-source at github.com/RCGAI/SimplyRetrieve with code, documentation, and examples
  • Research Paper: Academic publication on arXiv (2308.03983) explaining RCG approach and architecture
  • Community Support: GitHub Issues for bug reports, feature requests, and community troubleshooting
  • Lightweight Documentation: README and docs directory with setup instructions and usage examples
  • No Paid Support: Community-driven support only; no SLAs or enterprise help desk available
  • Code Examples: Example scripts and Jupyter notebooks demonstrating core functionality
  • Academic Background: Built on established libraries (Hugging Face, Gradio, PyTorch, FAISS) with extensive external documentation
  • Multi-Channel Support: Email, live chat, phone support with tier-based response time guarantees
  • Enterprise Support: Dedicated customer success managers, priority support queues, SLA guarantees with 1-hour response times on critical issues
  • Professional Services: Implementation services included in enterprise packages with typical 4-month deployment timeline and project management
  • Documentation Portal: Available at docs.yellow.ai with API references, integration guides, mobile SDK documentation with code examples
  • Mobile SDK Resources: Comprehensive Android, iOS, React Native, Flutter, Cordova documentation with complete code examples, Postman collections, demo applications
  • Training & Onboarding: Included in enterprise packages with dedicated training resources and guided implementation support
  • Community Forums: Available for peer support, knowledge sharing, and best practices discussion among Yellow.ai users
  • Gartner Recognition: Magic Quadrant 'Challenger' status (2023/2025) provides third-party analyst validation and market positioning
  • Customer Base: Enterprise brands including Sony, Domino's, Hyundai, Volkswagen, Ferrellgas deployed across 85+ countries
  • G2 Feedback: 4.4/5 overall (106 reviews) with 9.3/10 customization, 9.2/10 proactive engagement - mixed post-onboarding support quality noted
  • Documentation Gaps: Web SDK documentation criticized as "hit and miss" by reviewers - mobile SDKs better documented than web integration
  • Learning Curve: Steep complexity curve noted by users - G2 reviewer: "Setup felt akin to solving a Rubik's cube blindfolded"
  • Developer Resources: Strong mobile SDK documentation, weak Python SDK (doesn't exist), limited API cookbook/advanced tutorial content
  • Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding Developer Docs
  • Email and in-app support: Quick support via email and in-app chat for all users
  • Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
  • Code samples: Cookbooks, step-by-step guides, and examples for every skill level API Documentation
  • Open-source resources: Python SDK (customgpt-client), Postman collections, GitHub integrations Open-Source SDK
  • Active community: User community plus 5,000+ app integrations through Zapier ecosystem
  • Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
  • Developer-Only Tool: Requires Python expertise, GPU knowledge, and technical setup—not suitable for non-technical users
  • GPU Infrastructure Required: Needs dedicated GPU hardware or cloud GPU instances with associated costs and management overhead
  • Basic UI: Gradio interface is functional but not polished—requires custom front-end development for production use
  • Limited Scalability: Scaling requires manual infrastructure management and load balancing vs auto-scaling cloud platforms
  • No Enterprise Features: Missing multi-tenancy, user management, advanced analytics, and production-grade monitoring
  • Slower Inference: Open-source models on single GPU (few to 10+ seconds per reply) vs sub-second cloud API responses
  • Manual Knowledge Base Updates: No automatic web crawling, syncing, or scheduled reindexing capabilities
  • No Pre-Built Integrations: Requires custom development to integrate with Slack, websites, or support platforms
  • Limited Context Memory: Primarily single-turn Q&A with minimal conversation history retention
  • Maintenance Burden: User responsible for updates, model management, troubleshooting, and infrastructure maintenance
  • NOT a RAG-as-a-Service Platform: Full-stack enterprise conversational AI with embedded RAG - cannot use Yellow.ai purely as knowledge/RAG backend for custom applications
  • No API-First Development: Cannot programmatically create bots/agents, upload documents, manage knowledge bases, or directly query RAG endpoints - platform-centric architecture
  • Missing Developer Tools: No Python SDK (major gap for backend developers), no npm package for web SDK (script tag injection only), no OpenAPI specification published
  • Knowledge Ingestion Gaps: No Google Drive, Dropbox, Notion integration support - significant gap vs competitors like CustomGPT and YourGPT
  • YouTube & Audio Limitations: No YouTube transcript ingestion, no native audio/video file processing support
  • High Entry Barrier: $10K-$25K annual minimum with 4-month implementation timeline vs competitors offering $19-99/month self-service tiers
  • Steep Learning Curve: G2 reviews cite complex setup requiring developer effort despite no-code positioning - "far from promised no-code bliss"
  • Limited Model Control: No manual model selection or switching - dynamic routing handled automatically without user override capability
  • Closed RAG Architecture: No embedding customization, vector store access, or retrieval parameter tuning exposed to developers
  • Rate Limits Undocumented: No published API rate limits or capacity planning documentation - opacity for production scaling
  • Web SDK Documentation Issues: Integration documentation criticized as incomplete compared to well-documented mobile SDKs
  • Enterprise-Only Features: White-labeling, on-premise deployment, advanced compliance, regional data residency require custom enterprise contracts
  • Use Case Mismatch: Excellent for enterprises needing omnichannel CX automation; poor fit for developers seeking programmable RAG APIs or simple chatbot embedding
  • Vendor Lock-In Risk: Proprietary platform with limited portability - difficult to migrate conversation flows, knowledge bases, and integrations to alternative solutions
  • Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
  • Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
  • Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
  • Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
  • Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
  • Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
  • Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
  • Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
  • Retrieval-Centric Generation (RCG): Research-backed approach separating LLM reasoning capabilities from knowledge memorization—more efficient than traditional RAG architectures
  • Retrieval Tuning Module: Developer-focused transparency layer showing which documents were retrieved, how queries were constructed, and how answers were generated
  • Knowledge Base Mixing (MoKB): Route queries across multiple selectable knowledge bases with intelligent source selection and weighting
  • Explicit Prompt Weighting (EPW): Fine-grained control over retrieved knowledge base influence in final answer generation
  • Single-Turn Q&A Focus: Primarily designed for single-turn question answering—limited multi-turn conversation and context memory
  • Analysis Tab Transparency: Visual debugging interface showing document retrieval process and query construction for answer inspection
  • Local Agent Execution: All agent processing happens on-premises with zero external API calls—complete control over agent behavior and data
  • LIMITATION - No Chatbot UI: Gradio interface for developers only—no polished conversational interface for end users or production deployment
  • LIMITATION - No Lead Capture: No built-in lead generation, email collection, or CRM integration capabilities—manual implementation required
  • LIMITATION - No Human Handoff: No escalation workflows, live agent transfer, or fallback mechanisms for complex queries—developer must build these features
  • LIMITATION - No Multi-Channel Support: No native integrations with Slack, Teams, WhatsApp, or website widgets—requires custom wrapper development
  • LIMITATION - No Session Management: Stateless interactions without conversation history tracking or multi-turn context retention
  • Massive Scale: 16 billion+ conversations processed annually across enterprise deployments
  • Multi-Lingual: 135+ languages supported with regional variants (Komodo-7B for 11+ Indonesian languages)
  • Agentic RAG: Multi-checkpoint validation (input validation, context verification, policy compliance, response relevance scoring)
  • Hallucination Prevention: YellowG LLM claims <1% hallucination rate vs GPT-3's 22.7% in vendor benchmarks
  • Dynamic AI Agent: Zero-training deployment with automatic model routing and next-action determination
  • Multi-Intent Detection: Handles complex user queries with context-aware orchestration across conversation turns
  • Response Speed: 0.6-second average response time (YellowG LLM performance claim)
  • Automatic Guardrails: Policy compliance and response relevance filtering from deployment without manual configuration
  • Case Study Performance: Lulu Hypermarket 3M+ unique users in 4 weeks, Sony 21,000+ voice calls in 2 months
  • Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
  • Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
  • Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
  • Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions View Agent Documentation
  • Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
  • Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
  • Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
R A G-as-a- Service Assessment
  • Platform Type: NOT A RAG-AS-A-SERVICE PLATFORM - Open-source academic research project for local Retrieval-Centric Generation experimentation and learning
  • Core Mission: Provide localized, lightweight, user-friendly interface to Retrieval-Centric Generation (RCG) approach for machine learning community exploration and research
  • Academic Foundation: Published research tool from RCGAI with arXiv paper (2308.03983) explaining RCG methodology and architectural design decisions
  • Target Market: Researchers, developers, and organizations experimenting with RAG locally without cloud dependencies—NOT commercial service users
  • Self-Hosted Infrastructure: MIT-licensed tool requiring user-managed GPU hardware or cloud compute—no managed infrastructure, APIs, or service-level agreements
  • Developer-First Design: Python-based with Gradio GUI and script execution—intended for technical users comfortable with GPU infrastructure and model management
  • RAG Implementation: Retrieval-Centric Generation (RCG) philosophy emphasizing retrieval over memorization—FAISS vector search with open-source LLMs (WizardVicuna-13B default, any Hugging Face model supported)
  • API Availability: NO formal REST API or SDKs—interaction via Python scripts and local Gradio interface requiring subprocess calls or custom wrappers
  • Data Privacy Advantage: 100% local execution with zero external transmission—ideal for classified, PHI, PII, or confidential data requiring air-gapped processing
  • Pricing Model: Completely free (MIT license) with no subscription fees—only cost is GPU hardware or cloud compute infrastructure
  • Support Model: Community-driven GitHub Issues and lightweight documentation—no paid support, SLAs, or customer success teams
  • LIMITATION vs Managed Services: NO managed infrastructure, automatic scaling, production-grade monitoring, enterprise security controls, or commercial support—users responsible for all operational aspects
  • LIMITATION - No Service Features: NO authentication systems, multi-tenancy, user management, analytics dashboards, or SaaS conveniences—pure research/development tool
  • Comparison Validity: Architectural comparison to commercial RAG-as-a-Service platforms like CustomGPT.ai is MISLEADING—SimplyRetrieve is open-source research tool for on-premises experimentation, not production service
  • Use Case Fit: Perfect for offline/air-gapped RAG research, developers learning RAG internals with full transparency, organizations with strict data isolation requirements (defense, healthcare PHI compliance), and teams wanting zero cloud costs with existing GPU infrastructure
  • Platform Type: NOT A RAG-AS-A-SERVICE PLATFORM - Full-stack enterprise conversational AI with embedded RAG
  • Critical Distinction: RAG functions as embedded feature, not exposed API service - cannot use Yellow.ai purely as knowledge/RAG backend
  • Document Cognition: 75-85% accuracy with T5 model fine-tuned on SQuAD/TriviaQA for Q&A extraction
  • Knowledge Architecture: Closed system - no direct RAG query endpoints, embedding access, or vector store API
  • API Limitations: No programmatic document upload, knowledge base management, or direct retrieval capabilities
  • Query Flow: Queries must flow through platform conversation flows vs direct API calls to knowledge backend
  • Agentic RAG: Multi-checkpoint validation (input validation, context verification, policy compliance, response relevance)
  • Hallucination Prevention: Proprietary model training approach vs exposing raw retrieval controls for customization
  • Enterprise Focus: RAG integrated within complete CX automation platform, not standalone developer toolkit
  • Use Case Mismatch: Poorly suited for developers seeking API-first RAG capabilities, programmatic knowledge management, or embedding access
  • Comparison Warning: Comparing Yellow.ai to CustomGPT.ai is architecturally misleading - fundamentally different product categories
  • Platform Type: TRUE RAG-AS-A-SERVICE PLATFORM - all-in-one managed solution combining developer APIs with no-code deployment capabilities
  • Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
  • API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat API Documentation
  • Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
  • No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
  • Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
  • RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses Benchmark Details
  • Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
  • Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
  • Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
  • Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Customization & Flexibility
N/A
  • Knowledge Updates: Manual via UI only - no API for programmatic document upload or management
  • Automated Sync: Configurable intervals (hourly, daily, weekly) for external sources (Salesforce, ServiceNow, Confluence, SharePoint)
  • Conversation Flow Customization: Visual Studio drag-and-drop builder for dialogue design and orchestration
  • Policy Configuration: Multi-checkpoint validation rules for input validation, context verification, policy compliance
  • Agent Personality: Configurable tone, behavior, response style for brand voice consistency
  • Dynamic Routing: Automatic model selection and next-action determination via Dynamic AI Agent
  • Multi-Intent Detection: Context-aware handling of complex queries spanning multiple domains
  • Regional Data Storage: Customer-selected data residency across 6 regions for compliance and latency optimization
  • Limitation: No embedding customization, vector store access, or retrieval parameter tuning exposed to users
  • Closed Architecture: RAG embedded within platform - cannot customize or access underlying retrieval mechanisms
N/A
Proprietary L L M Architecture
N/A
  • YellowG LLM: Vendor claims <1% hallucination rate vs GPT-3's 22.7% (Yellow.ai internal benchmarks, no independent validation)
  • Response Speed: 0.6-second average response time optimized for conversational AI at enterprise scale
  • Orchestrator LLM: Context switching and multi-intent detection with zero-training deployment capability
  • Komodo-7B: Indonesia-focused model with 11+ regional language variants for Southeast Asian market dominance
  • T5 Fine-Tuning: SQuAD/TriviaQA training for Document Cognition Q&A extraction (75-85% accuracy claims)
  • Training Data: Anonymized historical customer interaction records with PII masking at data layer
  • Security Advantage: In-house LLM approach reduces exposure of sensitive enterprise data to external providers (OpenAI, Anthropic)
  • Enterprise Tuning: Models optimized for specific industries and use cases vs general-purpose capabilities
  • Dynamic Routing: Automatic model selection based on query complexity and context requirements
  • Limited Flexibility: Focus on enterprise-specific tuning vs raw model access and customization options
  • Benchmark Gap: No RAGAS scores, independent accuracy measurements, or third-party analyst validation published
N/A
Omnichannel Dominance
N/A
  • Messaging Platforms: WhatsApp (BSP provider status), Facebook Messenger, Instagram, Telegram, Slack, Microsoft Teams, Line, Viber, WeChat, Zalo, Google Chat
  • Voice Channels: IVR integration, Google Assistant, Amazon Alexa, telephony systems with full voice analytics
  • SMS & Email: Comprehensive support for text messaging and email communication workflows
  • Web Deployment: JavaScript widget (CDN-hosted), Progressive Web App with shareable links, iframe embedding
  • Mobile Native: SDKs for Android, iOS, React Native, Flutter, Cordova with complete code examples and demo apps
  • Unified Conversation: Cross-channel identity management and conversation continuity across all 35+ touchpoints
  • WhatsApp BSP Status: Official Business Solution Provider credentials for enhanced WhatsApp Business API features
  • Voice Analytics: IVR and telephony performance tracking with call quality metrics
  • G2 Recognition: 8.6/10 rating for omnichannel capabilities validates comprehensive channel coverage
  • Market Differentiation: 35+ channels genuinely comprehensive vs competitors with 5-15 channel integrations
  • Enterprise Focus: Channel breadth optimized for large organizations vs SMB/startup needs
N/A
Enterprise Compliance Excellence
N/A
  • Certification Portfolio: SOC 2 Type II, ISO 27001/27018/27701, HIPAA, GDPR, PCI DSS, FedRAMP - comprehensive coverage
  • Healthcare Ready: HIPAA compliance enables protected health information handling for medical use cases
  • Government Ready: FedRAMP authorization for US federal government deployments and contracts
  • Financial Services: PCI DSS certification for payment card data security and financial transaction handling
  • Global Privacy: GDPR compliance with regional data centers in US, EU, Singapore, India, Indonesia, UAE
  • Data Sovereignty: Customer-selected data residency ensures compliance with local data protection regulations
  • Encryption Standards: AES-256 at rest, TLS 1.3 in transit exceeds industry baseline requirements
  • On-Premise Options: Private cloud and complete on-premise deployment for air-gapped environments
  • Security Infrastructure: WAF, DDoS mitigation, annual penetration testing, 15-day audit log retention
  • Enterprise Identity: SSO/SAML with Google, Microsoft, Azure AD, LDAP for unified access management
  • Competitive Advantage: Compliance breadth exceeds most AI platform competitors, enables regulated industry adoption
N/A

Ready to experience the CustomGPT difference?

Start Free Trial →

Final Thoughts

Final Verdict: SimplyRetrieve vs Yellow.ai

After analyzing features, pricing, performance, and user feedback, both SimplyRetrieve and Yellow.ai are capable platforms that serve different market segments and use cases effectively.

When to Choose SimplyRetrieve

  • You value completely free and open source
  • Strong privacy focus - fully localized
  • Lightweight - runs on single GPU

Best For: Completely free and open source

When to Choose Yellow.ai

  • You value genuinely comprehensive 35+ channel coverage: whatsapp bsp, messenger, instagram, telegram, slack, teams, voice, sms
  • Exceptional compliance credentials: SOC 2, ISO 27001/27018/27701, HIPAA, GDPR, PCI DSS, FedRAMP
  • Multi-region data centers (US, EU, Singapore, India, Indonesia, UAE) with customer-selected residency

Best For: Genuinely comprehensive 35+ channel coverage: WhatsApp BSP, Messenger, Instagram, Telegram, Slack, Teams, voice, SMS

Migration & Switching Considerations

Switching between SimplyRetrieve and Yellow.ai requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.

Pricing Comparison Summary

SimplyRetrieve starts at custom pricing, while Yellow.ai begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.

Our Recommendation Process

  1. Start with a free trial - Both platforms offer trial periods to test with your actual data
  2. Define success metrics - Response accuracy, latency, user satisfaction, cost per query
  3. Test with real use cases - Don't rely on generic demos; use your production data
  4. Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
  5. Check vendor stability - Review roadmap transparency, update frequency, and support quality

For most organizations, the decision between SimplyRetrieve and Yellow.ai comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.

📚 Next Steps

Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.

  • Review: Check the detailed feature comparison table above
  • Test: Sign up for free trials and test with real queries
  • Calculate: Estimate your monthly costs based on expected usage
  • Decide: Choose the platform that best aligns with your requirements

Last updated: December 11, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.

Ready to Get Started with CustomGPT?

Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.

Why Choose CustomGPT?

97% Accuracy

Industry-leading benchmarks

5-Min Setup

Get started instantly

24/7 Support

Expert help when you need it

Enterprise Ready

Scale with confidence

Trusted by leading companies worldwide

Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us

Join the Discussion

Loading comments...

Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.

Watch: Understanding AI Tool Comparisons