In this comprehensive guide, we compare Fastbots and Supavec across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between Fastbots and Supavec, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose Fastbots if: you value best value for multi-llm access - $19.99/month for gpt-4, claude, and gemini (vs competitors at $50-100/month)
Choose Supavec if: you value 100% open source with no vendor lock-in
About Fastbots
Fastbots is ai chatbot platform with 80+ integrations and white-label agency features. Fastbots is a multi-LLM chatbot platform with 80+ native integrations, visual flow builder, and comprehensive white-labeling for agencies. It offers intelligent routing across GPT-4, Claude, and Gemini with competitive pricing starting at $19.99/month, but lacks enterprise certifications and has inconsistent performance across different LLMs. Founded in 2023, headquartered in United States, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
96/100
Starting Price
$19.99/mo
About Supavec
Supavec is the open source rag as a service platform. SupaVec is an open-source RAG platform that serves as an alternative to Carbon.ai. Built on transparency and data sovereignty, it allows developers to build powerful RAG applications with complete control over their infrastructure, supporting any data source at any scale. Founded in 2024, headquartered in Remote, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
84/100
Starting Price
Custom
Key Differences at a Glance
In terms of user ratings, Fastbots in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: Chatbot Platform versus RAG Platform. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
Fastbots
Supavec
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
Website crawling: Enter URL and auto-extract content with configurable depth
Document upload: PDF, DOCX, TXT, CSV files
Audio and video ingestion: Upload media files for transcription and knowledge extraction
Plain text input: Paste or type content directly
Storage limits: 400K characters (Free), 11 million characters (Starter+)
Auto-retrain: Configurable schedule for knowledge base updates (daily, weekly, monthly)
Note: No native Google Drive, Dropbox, or Notion integrations - requires manual export or API setup
Note: No YouTube transcript auto-ingestion - video must be uploaded as file
Note: 11M character limit can fill quickly with comprehensive documentation (e.g., enterprise KB with 100+ articles)
No one-click Google Drive or Notion connectors—you’ll script the fetch and hit the API yourself.
Because it’s open source, you can build connectors to anything—Postgres, Mongo, S3, you name it.
Runs on Supabase and scales sideways, chunking millions of docs for fast retrieval.
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
L L M Model Options
OpenAI models: GPT-4, GPT-4 Turbo, GPT-3.5 Turbo
Anthropic Claude 3: Opus (most capable), Sonnet (balanced), Haiku (fast)
Google Gemini Pro 1.5
Meta Llama 3.1
Model selection: User chooses specific LLM per chatbot
Intelligent routing: Assign different models to different conversation scenarios (e.g., GPT-4 for complex, GPT-3.5 for simple)
Cost optimization: Route simple queries to cheaper models, complex to GPT-4
Note: Performance varies by model: Users report GPT-4 works best, Claude/Gemini show inconsistencies
No API key requirement: Models included in subscription (vs bring-your-own-key platforms)
Model-agnostic: defaults to GPT-3.5, but switch to GPT-4 or any self-hosted model if you’d like.
No fancy toggle—just change a config or prompt path in code.
No extra prompt magic or anti-hallucination layer—plain RAG.
Quality rests on the LLM you choose and how you prompt it.
Taps into top models—OpenAI’s GPT-5.1 series, GPT-4 series, and even Anthropic’s Claude for enterprise needs (4.5 opus and sonnet, etc ).
Automatically balances cost and performance by picking the right model for each request.
Model Selection Details
Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Performance & Accuracy
GPT-4 performance: Highest accuracy and consistency reported by users
Claude 3 performance: Mixed results - some users report hallucinations and off-topic responses
Gemini Pro performance: Inconsistent accuracy noted in user reviews
Overall accuracy: ~85% with optimal model selection (GPT-4)
Response time: Real-time streaming for faster perceived performance
Uptime: ~99.5% estimated from user feedback
Note: No published SLA commitments
Conversation memory: Context retention across messages within session
Accuracy = GPT quality + standard RAG lift—no extra guardrails.
Postgres vector search keeps retrieval snappy, even with millions of chunks.
No public head-to-head benchmarks yet; expect “typical GPT-3.5/4 RAG” results.
If you want citations or extra checks, you’ll prompt-engineer them yourself.
Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
Independent tests rate median answer accuracy at 5/5—outpacing many alternatives.
Benchmark Results
Always cites sources so users can verify facts on the spot.
Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
White-label from Starter plan vs enterprise-only at competitors ($199+)
Market position: MIT-licensed open-source RAG API built on Supabase, offering lightweight alternative to Carbon.ai with self-hosting capability and minimal API surface
Target customers: Developers building custom RAG applications on budget, startups wanting to avoid RAG platform costs, and organizations requiring self-hosted solutions with Supabase infrastructure for data sovereignty
Key competitors: Carbon.ai, LangChain, SimplyRetrieve, and hosted RAG APIs like CustomGPT/Pinecone Assistant
Competitive advantages: MIT open-source license with no vendor lock-in, Supabase foundation for familiar infrastructure, model-agnostic with easy LLM swapping (GPT-3.5, GPT-4, self-hosted), REST API simplicity with straightforward endpoints, privacy-focused with self-hosting option keeping data on your servers, and minimal abstraction enabling deep customization
Pricing advantage: Free (MIT license) for self-hosting; hosted plans extremely affordable ($190/year Basic for 750 calls/month, $1,490/year Enterprise for 5K calls/month); best value for low-volume applications or teams with Supabase expertise wanting to avoid expensive RAG platforms; 40-90% cheaper than commercial alternatives
Use case fit: Perfect for developers wanting lightweight RAG backend without heavy frameworks, startups minimizing costs with self-hosting on existing Supabase infrastructure, and teams building custom chatbot front-ends needing simple REST API for retrieval without paying for unused dashboard features
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
OpenAI models: GPT-4, GPT-4 Turbo, GPT-3.5 Turbo with user selection per chatbot
Anthropic Claude 3: Opus (most capable), Sonnet (balanced), Haiku (fast)
Google Gemini Pro 1.5 for multimodal capabilities
Meta Llama 3.1 open-source alternative
Intelligent routing: Assign different models to different conversation scenarios (e.g., GPT-4 for complex, GPT-3.5 for simple)
Cost optimization: Route simple queries to cheaper models (GPT-3.5), complex to premium (GPT-4)
No API key requirement: Models included in subscription vs bring-your-own-key platforms
Performance variance: User reports indicate GPT-4 works best, Claude/Gemini show inconsistencies
Model-agnostic architecture: Defaults to GPT-3.5 Turbo for cost-effectiveness, with full support for GPT-4, GPT-4-turbo, and any OpenAI-compatible models
Self-hosted model support: Bring your own LLM - compatible with self-hosted models like Llama, Mistral, or custom fine-tuned models via API endpoints
No model lock-in: Switch between models by changing configuration or prompt path in code without platform restrictions
No markup on AI costs: Users connect their own OpenAI API keys or self-hosted endpoints, paying providers directly without Supavec markup
Note: No built-in model routing: No automatic model selection or load balancing - developers must implement routing logic manually
Note: No prompt optimization layer: Plain RAG implementation without advanced prompt engineering or anti-hallucination guardrails
Quality dependency: Output quality rests entirely on chosen LLM and developer's prompt engineering skills
Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request
Model Selection Details
Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
Website crawling: Auto-extract content with configurable depth from URL entry
Document upload: PDF, DOCX, TXT, CSV files with 11 million character storage limit (Starter+)
Audio and video ingestion: Upload media files for transcription and knowledge extraction
Auto-retrain scheduling: Configurable updates (daily, weekly, monthly) for knowledge base freshness
Sitemap support: Bulk import from XML sitemaps for comprehensive site coverage
Conversation memory: Context retention across messages within session
Overall accuracy: ~85% with optimal model selection (GPT-4 performs best)
Response time: Real-time streaming for faster perceived performance
Limitations: No native Google Drive, Dropbox, or Notion integrations; 11M character limit fills quickly with comprehensive documentation
Standard RAG architecture: Document chunking with vector embeddings stored in Postgres pgvector extension for semantic search
Embedding generation: Automatic embedding creation during document upload using OpenAI embedding models or custom embedding endpoints
Vector search: Postgres vector search with cosine similarity for retrieval, handling millions of chunks efficiently
Re-indexing speed: Almost instant document re-embedding when updating or overwriting knowledge sources
Metadata support: Custom metadata tagging and filtering capabilities for organized knowledge management
Note: No advanced RAG features: No hybrid search (semantic + keyword), no reranking, no multi-query retrieval, no query expansion
Note: No hallucination detection: No built-in citation validation, factual consistency scoring, or confidence thresholds - developers must implement manually
Note: No retrieval parameter controls: Chunking strategy, similarity thresholds, and top-k configuration require code-level changes
Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks
RAG Performance
Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content
Benchmark Details
Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
Source verification: Always cites sources so users can verify facts on the spot
Use Cases
E-commerce customer support: Shopify, WooCommerce, BigCommerce integrations for 24/7 product queries and order tracking
Lead generation: Custom forms with field validation, lead qualification scoring, and CRM sync (HubSpot, Salesforce, Pipedrive)
Multi-channel deployment: WhatsApp (Cloud API + 360Dialog), Facebook Messenger, Instagram DM, Telegram, Slack, Discord with unified inbox
Small business websites: JavaScript widget embedding with customization for professional appearance at $19.99/month
Agency white-label: Custom domains, remove branding from Starter plan for client deployments
Multilingual support: 95+ languages with automatic translation for global customer bases
NOT suitable for: Regulated industries (no HIPAA, SOC 2), voice/IVR use cases, enterprises requiring compliance certifications
Custom chatbot backends: Ideal for developers building custom chat interfaces needing simple RAG API without heavy platform overhead
Self-hosted knowledge retrieval: Perfect for organizations requiring data sovereignty with Supabase infrastructure for compliance (GDPR, HIPAA when self-hosted)
Budget-conscious RAG applications: Startups and small teams minimizing costs with MIT open-source license and affordable hosted plans ($190-$1,490/year)
Supabase-native projects: Teams already using Supabase can integrate Supavec seamlessly without additional infrastructure complexity
Developer-first RAG: Code-first teams wanting full control over RAG implementation, eschewing GUI dashboards for API-driven workflows
Not ideal for: Non-technical users requiring no-code interfaces, enterprises needing advanced RAG features (hybrid search, reranking), or teams requiring built-in analytics/monitoring
Not ideal for: Production applications requiring hallucination detection, citation validation, or confidence scoring without custom development
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
Yes GDPR compliance - European data protection regulation
Yes CCPA compliance - California Consumer Privacy Act
Yes Data encryption - In transit and at rest
Yes SSL/TLS - For custom domains
NO SOC 2 Type II certification - Unsuitable for enterprise security requirements
NO HIPAA compliance - Not for healthcare data
NO ISO 27001 certification - No international security standard
NO PCI DSS certification - Payment data should be handled via integrations only (Stripe, PayPal)
NO FedRAMP authorization - Not for US government use
Data residency: Not documented - likely US-based infrastructure
User access controls: Role-based permissions for team members
Best for: Non-regulated SMBs without strict compliance requirements
Self-hosting advantage: MIT license enables complete data sovereignty - all data stays on your servers for strict compliance requirements
[Privacy note]
Supabase security foundation: Row-level security (RLS) fences off each team's data when using hosted Supavec on Supabase infrastructure
No model training: Your documents never used for LLM training - data remains yours with zero retention by OpenAI or other providers
GDPR/HIPAA ready: Self-hosting enables GDPR and HIPAA compliance when deployed on compliant infrastructure - enterprises can go dedicated or on-premises
Encryption: Standard HTTPS encryption for API calls; at-rest encryption depends on hosting infrastructure (Supabase provides AES-256)
Note: No SOC 2 certification: Open-source project lacks formal SOC 2 Type II, ISO 27001, or other enterprise compliance certifications for hosted plans
Note: No built-in access controls: Authentication, authorization, and RBAC must be implemented by developers in their application layer
Note: Limited hosted security features: Hosted plans lack SSO/SAML, IP whitelisting, or advanced security controls without custom configuration
Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
SOC 2 Type II certification: Industry-leading security standards with regular third-party audits
Security Certifications
GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
Data isolation: Customer data stays isolated and private - platform never trains on user data
Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
Free plan: 1 chatbot, 100 messages/month, 400K characters, basic features for testing
Professional ($99/mo): 5 chatbots, 10K messages/month, priority support, API access, advanced analytics
Business ($399/mo): 20 chatbots, 40K messages/month, white-label, dedicated account manager
5-day trial: Test paid features before committing to subscription
Best value proposition: $19.99 for GPT-4, Claude, Gemini access vs competitors at $50-100/month
No hidden costs: LLM usage included in subscription (no per-token charges like some platforms)
Annual discount: Save 20% with yearly billing commitment
Open-source (Free): MIT-licensed for self-hosting - pay only your infrastructure costs (Supabase, server, storage) with unlimited API calls and no vendor fees
Hosted Free tier: 100 API calls per month for development and testing
[Pricing]
Basic Plan: $190/year ($15.83/month equivalent) - 750 API calls per month, hosted infrastructure, automatic backups, email support
Enterprise Plan: $1,490/year ($124.17/month equivalent) - 5,000 API calls per month, priority support, SLA guarantees, dedicated resources
No per-document charges: Storage not metered separately - only query volume counts toward plan limits
No user seat fees: Pricing based purely on API call volume, not team size or number of developers
Need more calls? Negotiate custom limits with hosted provider or self-host to eliminate caps entirely
Value proposition: 40-90% cheaper than commercial RAG platforms - Basic plan costs less than 1 month of competing platforms while providing annual service
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
4.9/5 customer support rating on G2 (exceptional for pricing tier)
Email support: Available on all plans including free tier
Priority support: Professional and Business plans with faster response times
Dedicated account manager: Business plan ($399/month) includes personal contact
Knowledge base: Comprehensive help center with guides and tutorials
Video tutorials: Step-by-step implementation guides for common scenarios
Community: User community for best practices sharing and tips
Live chat support: Available during business hours for quick questions
Response time: Fast responses noted by users (typically within hours, not days)
Limitations: No 24/7 support on lower tiers, no SLA guarantees on response times
Documentation: Lean API reference docs focusing on endpoint usage with JavaScript code snippets - mostly technical rather than tutorial-heavy
[Docs]
Community support: GitHub Discussions and Discord for free tier and self-hosted users - community-driven help and troubleshooting
Email support: Paid plan users (Basic/Enterprise) get email support with priority levels based on tier
No dedicated CSM: No Customer Success Manager or account management even on Enterprise tier - support ticket-based
GitHub repository: Open-source code welcomes PRs, issues, and community contributions - active maintainer responses
Postman collection: API documentation includes Postman collection for quick testing and integration
Code samples: Community-contributed examples and integrations appearing in GitHub issues and Discord, but not extensive official library
Learning curve: Requires developer skills - no video tutorials, webinars, or certification programs like commercial platforms
Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding
Developer Docs
Email and in-app support: Quick support via email and in-app chat for all users
Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
Code samples: Cookbooks, step-by-step guides, and examples for every skill level
API Documentation
Active community: User community plus 5,000+ app integrations through Zapier ecosystem
Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
No compliance certifications: Missing SOC 2, HIPAA, ISO 27001, PCI DSS, FedRAMP - unsuitable for regulated industries (healthcare, finance, government)
No native cloud storage: No Google Drive, Dropbox, or Notion integrations - requires manual export or API setup
Storage limits: 11M character limit can fill quickly with comprehensive enterprise documentation (e.g., 100+ article knowledge bases)
Model performance variance: Users report GPT-4 works best, Claude/Gemini show inconsistencies and hallucinations
No voice/IVR capabilities: No phone integration or voice bot features unlike UChat or Zendesk
No SMS support: Text messaging requires third-party integration
Developer experience: No official SDKs in any language (Python, JavaScript, etc.), basic REST API documentation only
Analytics limitations: Less advanced than enterprise platforms (no predictive insights or AI-powered recommendations)
Best for: SMBs prioritizing value and multi-LLM access over enterprise certifications and advanced features
No GUI/dashboard: Everything via API or CLI - no business-user interface for content management, analytics, or configuration
Developer-only tool: Requires coding skills for setup, integration, and maintenance - non-technical teams cannot use without developer support
Basic RAG only: Standard retrieval-augmented generation without advanced features like hybrid search, query reranking, multi-query fusion, or query expansion
No observability built-in: No metrics dashboard, conversation analytics, or performance monitoring - must wire up your own logging layer
Manual hallucination handling: No built-in citation validation, confidence scoring, or factual consistency checks - developers must implement safeguards
Limited connectors: No one-click Google Drive, Notion, or cloud storage integrations - must script data fetching and API uploads manually
No conversation management: Stateless API calls without chat history, multi-turn context, or session management - build conversation layer yourself
Infrastructure knowledge required: Self-hosting requires Supabase, Postgres, and vector database expertise - not plug-and-play for non-DevOps teams
Minimal abstraction: Intentionally low-level API design provides control but requires more integration work than higher-level RAG platforms
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
AI agent transformation: Transform chatbots into powerful AI agents that seamlessly perform tasks through natural conversational interactions
Zapier AI Actions integration: Deploy AI agents that automate tasks, streamline workflows, and perform real-world business actions with ease
Mid-conversation app calling: Bots can call thousands of apps mid-chat to check orders, book appointments, send emails without leaving conversation
Natural language understanding: AI models designed to understand and respond naturally making conversations feel human-like and helpful
95 languages support: Assist users in their preferred language automatically for global customer engagement
Advanced model options: OpenAI, Google, and Anthropic's Claude 3.5 for nuanced conversational abilities
Effortless lead collection: Gather contact details during conversations with automatic multi-email address sending
Seamless CRM connectivity: Connect to over 7,000 apps using Zapier or Make integrations to collect leads and send to CRM platforms
No-code conversational AI: Create sophisticated conversational AI agents without writing a single line of code
Business knowledge integration: Knows everything about your business and chats directly to customers in friendly conversational manner
Stateless RAG Architecture: Pure retrieval and generation without built-in conversation state—developers implement multi-turn context and session management in application layer
Model-Agnostic Generation: Defaults to GPT-3.5 but supports GPT-4, self-hosted LLMs (Llama, Mistral), and any OpenAI-compatible models—no vendor lock-in for generation
Postgres Vector Search: Fast approximate nearest neighbor search using pgvector extension with cosine similarity—handles millions of chunks efficiently at enterprise scale
Metadata Filtering: Custom metadata tagging and filtering capabilities enabling organized knowledge management and multi-tenant architectures
Real-Time Re-Indexing: Almost instant document re-embedding when updating or overwriting knowledge sources—no lengthy reprocessing delays
REST API Foundation: Straightforward endpoints for file uploads, text uploads, and search with plain-JSON responses—easy integration from any programming language
Supabase Integration: Built on Supabase infrastructure leveraging PostgreSQL, Row-Level Security (RLS), and battle-tested backend for familiar deployment
LIMITATION - No Built-In Chat UI: API-only platform requiring developers to build custom chat interfaces—not a turnkey chatbot solution with widgets
LIMITATION - No Lead Capture: No built-in lead generation, email collection, or CRM integration capabilities—must be implemented at application layer
LIMITATION - No Human Handoff: No escalation workflows, live agent transfer, or fallback mechanisms—conversational features are developer responsibility
LIMITATION - No Multi-Channel Integrations: No native Slack, Teams, WhatsApp, or messaging platform connectors—developers build integration layer
LIMITATION - No Session Management: Stateless API design without conversation history tracking or multi-turn context retention—application must manage state
LIMITATION - No Advanced RAG: Missing hybrid search, reranking, knowledge graphs, multi-query retrieval, query expansion found in enterprise platforms
LIMITATION - No Observability Dashboard: No analytics, conversation metrics, or performance monitoring UI—must integrate external logging tools
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
R A G-as-a- Service Assessment
Platform type: CONVERSATIONAL AI PLATFORM WITH RAG (not pure RAG-as-a-Service) - chatbot builder with integrated knowledge retrieval
Data source flexibility: Good - Website crawling with configurable depth, document upload (PDF, DOCX, TXT, CSV), audio/video ingestion, plain text input, sitemap support
LLM model options: Excellent - OpenAI (GPT-4, GPT-4 Turbo, GPT-3.5 Turbo), Anthropic Claude 3 (Opus, Sonnet, Haiku), Google Gemini Pro 1.5, Meta Llama 3.1 with user selection per chatbot
Knowledge base management: 11M character storage limit (Starter+), auto-retrain scheduling (daily, weekly, monthly), conversation memory for context retention
API-first architecture: Weak - REST API available on Professional ($99/mo) and above, no official SDKs, basic documentation, no Swagger/OpenAPI spec
Performance benchmarks: ~85% accuracy with optimal model selection (GPT-4), real-time streaming responses, ~99.5% uptime estimated from user feedback (no published SLA)
RAG accuracy: GPT-4 highest accuracy/consistency, Claude 3/Gemini Pro show mixed results with inconsistencies noted in user reviews
Self-service AI pricing: Excellent - $19.99/month for GPT-4, Claude, Gemini access (best value in market vs competitors at $50-100/month)
Compliance & certifications: Poor - GDPR/CCPA compliant, data encryption, SSL/TLS but NO SOC 2, HIPAA, ISO 27001, PCI DSS, FedRAMP
Integration ecosystem: Excellent - 80+ native integrations (no Zapier/Make required) including WhatsApp, Messenger, Instagram, Shopify, Stripe, HubSpot, Salesforce
Best for: SMBs, agencies, e-commerce stores prioritizing value, multi-LLM access, and native integrations over enterprise RAG features and certifications
Not suitable for: Regulated industries (healthcare, finance), enterprises requiring certifications, advanced RAG parameter controls, voice/IVR use cases
Platform Type: TRUE RAG-AS-A-SERVICE API - Lightweight MIT-licensed open-source RAG backend built on Supabase with self-hosting capability and minimal API surface
Core Mission: Provide transparent, open-source alternative to proprietary RAG services (Carbon.ai shutdown response) with full cost control and no vendor lock-in
Target Market: Developers building custom RAG applications on budget, startups minimizing costs with self-hosting, organizations requiring data sovereignty with Supabase infrastructure
RAG Implementation: Standard RAG architecture with document chunking, OpenAI embeddings, Postgres pgvector semantic search—focused on simplicity over advanced techniques
API-First Design: Pure REST API for retrieval and generation without GUI, widgets, or conversational features—intentionally minimal abstraction for developer control
Self-Hosting Advantage: MIT license enables complete on-premises deployment keeping all data on your servers—ideal for GDPR, HIPAA, data residency compliance
Managed Service Option: Cloud-hosted plans (Free: 100 calls/month, Basic: $190/year for 750 calls/month, Enterprise: $1,490/year for 5K calls/month) eliminate infrastructure management
Pricing Model: Free self-hosting (MIT license) or extremely affordable hosted plans—40-90% cheaper than commercial RAG platforms with no per-document charges or user seat fees
Data Sources: File uploads (PDF, Markdown, TXT) via REST API or raw text ingestion—NO pre-built Google Drive, Notion, or cloud storage connectors (manual scripting required)
Model Flexibility: Model-agnostic with GPT-3.5 default, GPT-4, or self-hosted LLM support—users connect own OpenAI API keys without Supavec markup on AI costs
Security Foundation: Supabase Row-Level Security (RLS) for multi-tenant data isolation, HTTPS encryption, AES-256 at-rest encryption—self-hosting enables GDPR/HIPAA compliance
Support Model: Community GitHub/Discord support for free tier, email support for paid plans—no dedicated CSMs, SLAs, or enterprise account management
Open-Source Ecosystem: Transparent code on GitHub welcoming PRs, forks, and community contributions—no proprietary components or vendor lock-in
LIMITATION - Developer-Only Platform: Requires coding skills for setup, integration, and maintenance—non-technical teams cannot use without developer support
LIMITATION - Basic RAG Features: Standard retrieval without hybrid search, reranking, knowledge graphs, multi-query fusion, or hallucination detection—advanced features require custom development
LIMITATION - No Turnkey Features: No GUI dashboard, conversation management, lead capture, analytics, or multi-channel integrations—pure RAG API requiring application layer development
Comparison Validity: Architectural comparison to full-featured chatbot platforms like CustomGPT.ai requires context—Supavec is lightweight RAG backend API vs complete no-code chatbot builder
Use Case Fit: Perfect for developers wanting lightweight RAG backend without heavy frameworks, startups minimizing costs with Supabase self-hosting, teams building custom chatbots needing simple REST API for retrieval without paying for unused dashboard features
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Additional Considerations
Free plan limitations: Only 50 messages per month suitable for testing rather than real-world production use
Not suitable for complex flows: Limited ability for intricate multi-step "if-this-then-that" logic like classic Messenger marketing bots
Training time investment: Bot training and customization take time to master for optimal performance
Limited Meta integration: Limited ability to integrate with Meta (Facebook) content lessens overall tool value for social media marketing
Company maturity: Founded in 2022, still building long-term enterprise track record vs more established players - consideration for very large corporations
Scalability evaluation: Businesses should evaluate whether pricing model accommodates growth without becoming prohibitively expensive
Custom plans available: Enterprise needs can be accommodated with custom pricing and fully managed services
Managed services offering: For large teams with advanced needs, FastBots offers fully managed services handling strategy, setup, training, and ongoing improvements
Strategic advantage: Unmatched flexibility with choice of LLMs and data sources distinguishes from competitors with locked-in models
No vendor lock-in: transparent code, offline option, host wherever you like.
Focuses on core RAG—no SSO, dashboards, or fancy UI included.
Great for devs who want full control or must keep data in-house.
Conversation flow, advanced prompts, fancy UI—all yours to build.
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
Visual flow builder: Drag-and-drop conversation design with no coding required for creating chatbot workflows
Tone and personality: Configurable via system prompts to match brand voice and communication style
Greeting messages: Customize initial bot message and icebreakers for welcoming user experience
Multi-language support: 95+ languages with automatic translation for global customer bases
Knowledge source control: Decide what chatbot knows - uploaded information (files, docs, brand tone), ChatGPT general knowledge, or live internet search for real-time info
Auto-retrain scheduling: Configurable daily, weekly, or monthly knowledge base updates for content freshness
Conversation flow builder: Visual drag-and-drop interface for designing conversation paths
Custom forms: Lead capture with custom fields and field validation for data collection
Lead qualification: Score and route leads based on responses for sales prioritization
Intelligent routing: Assign different models to different conversation scenarios (GPT-4 for complex, GPT-3.5 for simple) for cost optimization
Military-grade encryption: All uploaded data secured with military-grade encryption for data protection
Upload or overwrite docs any time—re-embeds almost instantly.
Behavior lives in your prompts; there’s no GUI for personas.
Multi-lingual works fine—just tell the LLM in your prompt.
Add metadata, tweak chunking—then build logic around it as needed.
Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus.
Learn How to Update Sources
Supports multiple agents per account, so different teams can have their own bots.
Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
After analyzing features, pricing, performance, and user feedback, both Fastbots and Supavec are capable platforms that serve different market segments and use cases effectively.
When to Choose Fastbots
You value best value for multi-llm access - $19.99/month for gpt-4, claude, and gemini (vs competitors at $50-100/month)
80+ native integrations eliminate need for Zapier/Make middleware (saves $20-50/month)
Exceptional customer support - 4.9/5 rating with fast response times
Best For: Best value for multi-LLM access - $19.99/month for GPT-4, Claude, and Gemini (vs competitors at $50-100/month)
When to Choose Supavec
You value 100% open source with no vendor lock-in
Complete control over data and infrastructure
Strong privacy with Supabase RLS integration
Best For: 100% open source with no vendor lock-in
Migration & Switching Considerations
Switching between Fastbots and Supavec requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
Fastbots starts at $19.99/month, while Supavec begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between Fastbots and Supavec comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 13, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...