SimplyRetrieve vs Supavec

Make an informed decision with our comprehensive comparison. Discover which RAG solution perfectly fits your needs.

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT.ai

Fact checked and reviewed by Bill Cava

Published: 01.04.2025Updated: 25.04.2025

In this comprehensive guide, we compare SimplyRetrieve and Supavec across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.

Overview

When choosing between SimplyRetrieve and Supavec, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.

Quick Decision Guide

  • Choose SimplyRetrieve if: you value completely free and open source
  • Choose Supavec if: you value 100% open source with no vendor lock-in

About SimplyRetrieve

SimplyRetrieve Landing Page Screenshot

SimplyRetrieve is lightweight retrieval-centric generative ai platform. SimplyRetrieve is an open-source tool providing a fully localized, lightweight, and user-friendly GUI and API platform for Retrieval-Centric Generation (RCG). It emphasizes privacy and can run on a single GPU while maintaining clear separation between LLM context interpretation and knowledge memorization. Founded in 2019, headquartered in Tokyo, Japan, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
82/100
Starting Price
Custom

About Supavec

Supavec Landing Page Screenshot

Supavec is the open source rag as a service platform. SupaVec is an open-source RAG platform that serves as an alternative to Carbon.ai. Built on transparency and data sovereignty, it allows developers to build powerful RAG applications with complete control over their infrastructure, supporting any data source at any scale. Founded in 2024, headquartered in Remote, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
84/100
Starting Price
Custom

Key Differences at a Glance

In terms of user ratings, both platforms score similarly in overall satisfaction. From a cost perspective, pricing is comparable. The platforms also differ in their primary focus: RAG Platform versus RAG Platform. These differences make each platform better suited for specific use cases and organizational requirements.

⚠️ What This Comparison Covers

We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.

Detailed Feature Comparison

logo of simplyretrieve
SimplyRetrieve
logo of supavec
Supavec
logo of customGPT logo
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
  • Uses a hands-on, file-based flow: drop PDFs, text, DOCX, PPTX, HTML, etc. into a folder and run a script to embed them.
  • A new GUI Knowledge-Base editor lets you add docs on the fly, but there’s no web crawler or auto-refresh yet.
  • Drop content in via REST: upload PDFs, Markdown, or TXT [Upload File] or send raw text [Upload Text].
  • No one-click Google Drive or Notion connectors—you’ll script the fetch and hit the API yourself.
  • Because it’s open source, you can build connectors to anything—Postgres, Mongo, S3, you name it.
  • Runs on Supabase and scales sideways, chunking millions of docs for fast retrieval.
  • Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
  • Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
  • Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text. View Transcription Guide
  • Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier. See Zapier Connectors
  • Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
Integrations & Channels
  • Ships with a local Gradio GUI and Python scripts for queries—no out-of-the-box Slack or site widget.
  • Want other channels? Write a small wrapper that forwards messages to your local chatbot.
  • Pure REST for retrieval and generation—no built-in widget or Slack bot.
  • You code the chat UI or Slack bridge, calling Supavec for answers.
  • No Zapier—webhooks and automations are DIY inside your app.
  • If it speaks HTTP, it can talk to Supavec—you just handle the front-end.
  • Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
  • Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more. Explore API Integrations
  • Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
  • Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
  • Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc. Read more here.
  • Supports OpenAI API Endpoint compatibility. Read more here.
Core Chatbot Features
  • Runs a retrieval-augmented chatbot on open-source LLMs, streaming tokens live in the Gradio UI.
  • Primarily single-turn Q&A; long-term memory is limited in this release.
  • Includes a “Retrieval Tuning Module” so you can see—and tweak—how answers are built from the data.
  • Just the essentials: retrieve chunks + LLM answer. Calls are stateless, no baked-in chat history.
  • No lead capture or human handoff—add those in your own layer.
  • Pulls the right text fast, then lets your LLM craft the reply.
  • Perfect if you only need raw RAG and will build the conversation bits yourself.
  • Reduces hallucinations by grounding replies in your data and adding source citations for transparency. Benchmark Details
  • Handles multi-turn, context-aware chats with persistent history and solid conversation management.
  • Speaks 90+ languages, making global rollouts straightforward.
  • Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Customization & Branding
  • Default Gradio interface is pretty plain, with minimal theming.
  • For a branded UI you’ll tweak source code or build your own front end.
  • No pre-made UI, no theming—branding lives in whatever front-end you create.
  • Open source means zero “Supavec” label to hide—your app, your look.
  • Add domain checks or auth however you like in your code.
  • It’s “white-label” by default because Supavec is API-only.
  • Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand. White-label Options
  • Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
  • Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
  • Uses domain allowlisting to ensure the chatbot appears only on approved sites.
L L M Model Options
  • Defaults to WizardVicuna-13B, but you can swap in any Hugging Face model if you have the GPUs.
  • Full control over model choice, though smaller open models won’t match GPT-4 for depth.
  • Model-agnostic: defaults to GPT-3.5, but switch to GPT-4 or any self-hosted model if you’d like.
  • No fancy toggle—just change a config or prompt path in code.
  • No extra prompt magic or anti-hallucination layer—plain RAG.
  • Quality rests on the LLM you choose and how you prompt it.
  • Taps into top models—OpenAI’s GPT-5.1 series, GPT-4 series, and even Anthropic’s Claude for enterprise needs (4.5 opus and sonnet, etc ).
  • Automatically balances cost and performance by picking the right model for each request. Model Selection Details
  • Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
  • Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Developer Experience ( A P I & S D Ks)
  • Interaction happens via Python scripts—there’s no formal REST API or SDK.
  • Integrations usually call those scripts as subprocesses or add your own wrapper.
  • Straightforward REST endpoints for file uploads, text uploads, and search. [Examples]
  • No official SDKs—use fetch/axios or roll your own wrapper.
  • Docs are concise with JS snippets; Postman collection included.
  • Full source is on GitHub, welcoming community tweaks.
  • Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat. API Documentation
  • Offers open-source SDKs—like the Python customgpt-client—plus Postman collections to speed integration. Open-Source SDK
  • Backs you up with cookbooks, code samples, and step-by-step guides for every skill level.
Performance & Accuracy
  • Open-source models run slower than managed clouds—expect a few to 10 + seconds per reply on a single GPU.
  • Accuracy is fine when the right doc is found, but smaller models can struggle on complex, multi-hop queries.
  • Accuracy = GPT quality + standard RAG lift—no extra guardrails.
  • Postgres vector search keeps retrieval snappy, even with millions of chunks.
  • No public head-to-head benchmarks yet; expect “typical GPT-3.5/4 RAG” results.
  • If you want citations or extra checks, you’ll prompt-engineer them yourself.
  • Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
  • Independent tests rate median answer accuracy at 5/5—outpacing many alternatives. Benchmark Results
  • Always cites sources so users can verify facts on the spot.
  • Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
Customization & Flexibility ( Behavior & Knowledge)
  • Lets you tweak everything—KnowledgeBase weight, retrieval params, system prompts—for deep control.
  • Encourages devs to swap embedding models or hack the pipeline code as needed.
  • Upload or overwrite docs any time—re-embeds almost instantly.
  • Behavior lives in your prompts; there’s no GUI for personas.
  • Multi-lingual works fine—just tell the LLM in your prompt.
  • Add metadata, tweak chunking—then build logic around it as needed.
  • Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
  • Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus. Learn How to Update Sources
  • Supports multiple agents per account, so different teams can have their own bots.
  • Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.
Pricing & Scalability
  • Free, MIT-licensed open source—no fees, but you supply the GPUs or cloud servers.
  • Scaling means spinning up more hardware and managing it yourself.
  • MIT-licensed open source: self-host for free (pay your own infra).
  • Hosted plans: Free (100 calls/mo), Basic $190/yr (750 calls/mo), Enterprise $1,490/yr (5 k calls/mo). [Pricing]
  • Need more calls? Negotiate or self-host to ditch caps.
  • Storage isn’t metered—only query volume counts toward the plan.
  • Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
  • Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates. View Pricing
  • Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
  • Entirely local: all docs and chat data stay on your own machine—great for sensitive use cases.
  • No built-in auth or enterprise security—lock things down in your own deployment setup.
  • Self-hosting keeps everything on your servers—great for tight compliance. [Privacy note]
  • Hosted Supavec runs on Supabase with row-level security—each team’s data is fenced off.
  • No training on your docs—data stays yours.
  • Enterprises can go dedicated or on-prem for HIPAA/GDPR peace of mind.
  • Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
  • Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private. Security Certifications
  • Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Observability & Monitoring
  • An “Analysis” tab shows which docs were pulled and how the query was built; logs print to the console.
  • No fancy dashboard—add your own logging or monitoring if you need broader stats.
  • No dashboard baked in—log requests yourself or use Supabase metrics when self-hosting.
  • Hosted plan shows basic call counts; no transcript analytics out of the box.
  • Need deep insights? Wire up your own monitoring layer.
  • Designed to play nicely with external logging tools, not ship its own.
  • Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
  • Lets you export logs and metrics via API to plug into third-party monitoring or BI tools. Analytics API
  • Provides detailed insights for troubleshooting and ongoing optimization.
Support & Ecosystem
  • Open-source on GitHub; support is community-driven via issues and lightweight docs.
  • Smaller ecosystem: you’re free to fork or extend, but there’s no paid SLA or enterprise help desk.
  • Community help via GitHub/Discord; paid plans unlock email or priority support. [Docs]
  • Open-source means forks, PRs, and home-grown connectors are welcome.
  • Docs are lean—mostly endpoint references rather than big tutorials.
  • Code samples pop up in the community, but it’s not a huge library yet.
  • Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast. Developer Docs
  • Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs. Enterprise Solutions
  • Benefits from an active user community plus integrations through Zapier and GitHub resources.
Additional Considerations
  • Great for offline / on-prem labs where data never leaves the server—perfect for tinkering.
  • Takes more hands-on upkeep and won’t match proprietary giants in sheer capability out of the box.
  • No vendor lock-in: transparent code, offline option, host wherever you like.
  • Focuses on core RAG—no SSO, dashboards, or fancy UI included.
  • Great for devs who want full control or must keep data in-house.
  • Conversation flow, advanced prompts, fancy UI—all yours to build.
  • Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
  • Gets you to value quickly: launch a functional AI assistant in minutes.
  • Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
  • Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
No- Code Interface & Usability
  • Basic Gradio UI is developer-focused; non-tech users might find the settings overwhelming.
  • No slick, no-code admin—if you need polish or branding, you'll build your own front end.
  • No drag-and-drop dashboard—everything's via API or CLI.
  • Meant for code-first teams who'll bolt it into their own chat or workflow.
  • Self-hosters can craft custom GUIs on top, but Supavec keeps the slate blank.
  • If you want a business-user UI like CustomGPT, you'll layer that yourself.
  • Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
  • Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing. User Experience Review
  • Uses role-based access so business users and devs can collaborate smoothly.
Competitive Positioning
  • Market position: MIT-licensed open-source local RAG solution running entirely on-premises with open-source LLMs (no cloud dependency), designed for developers and tinkerers
  • Target customers: Developers experimenting with RAG locally, organizations with strict data isolation requirements (healthcare, government, defense), and teams wanting complete control without cloud costs or vendor dependencies
  • Key competitors: LangChain/LlamaIndex (frameworks), PrivateGPT, LocalGPT, and cloud RAG platforms for teams needing simplicity
  • Competitive advantages: Completely free and open-source (MIT license) with no fees or subscriptions, 100% local execution keeping all data on-premises, full control over model choice (any Hugging Face model), Python-based with full source code access for customization, "Retrieval Tuning Module" for transparency into answer generation, and zero external dependencies beyond local compute
  • Pricing advantage: Completely free with MIT license; only cost is GPU hardware or cloud compute; best value for teams with existing GPU infrastructure wanting to avoid subscription costs; requires technical expertise and hands-on maintenance
  • Use case fit: Ideal for offline/air-gapped environments requiring complete data isolation (defense, healthcare with strict PHI requirements), developers learning RAG internals and experimenting locally, and organizations with GPU infrastructure wanting zero cloud costs and complete control over LLM stack without vendor dependencies
  • Market position: MIT-licensed open-source RAG API built on Supabase, offering lightweight alternative to Carbon.ai with self-hosting capability and minimal API surface
  • Target customers: Developers building custom RAG applications on budget, startups wanting to avoid RAG platform costs, and organizations requiring self-hosted solutions with Supabase infrastructure for data sovereignty
  • Key competitors: Carbon.ai, LangChain, SimplyRetrieve, and hosted RAG APIs like CustomGPT/Pinecone Assistant
  • Competitive advantages: MIT open-source license with no vendor lock-in, Supabase foundation for familiar infrastructure, model-agnostic with easy LLM swapping (GPT-3.5, GPT-4, self-hosted), REST API simplicity with straightforward endpoints, privacy-focused with self-hosting option keeping data on your servers, and minimal abstraction enabling deep customization
  • Pricing advantage: Free (MIT license) for self-hosting; hosted plans extremely affordable ($190/year Basic for 750 calls/month, $1,490/year Enterprise for 5K calls/month); best value for low-volume applications or teams with Supabase expertise wanting to avoid expensive RAG platforms; 40-90% cheaper than commercial alternatives
  • Use case fit: Perfect for developers wanting lightweight RAG backend without heavy frameworks, startups minimizing costs with self-hosting on existing Supabase infrastructure, and teams building custom chatbot front-ends needing simple REST API for retrieval without paying for unused dashboard features
  • Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
  • Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
  • Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
  • Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
  • Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
  • Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
  • Default Model: WizardVicuna-13B-Uncensored (instruction-fine-tuned open-source model)
  • Hugging Face Compatibility: Swap in any Hugging Face model with sufficient GPU resources (Llama 2, Falcon, Mistral, etc.)
  • Full Local Control: Models run entirely on-premises with no external API calls or cloud dependencies
  • Embedding Model: Default multilingual-e5-base for retrieval with option to swap for other embedding models
  • Model Customization: Fine-tune or quantize models for specific use cases and hardware constraints
  • No Vendor Lock-In: Complete flexibility to use any open-source LLM without subscription fees or API limits
  • GPU Requirements: Smaller models may not match GPT-4 depth but enable complete data isolation and zero operational costs
  • Model-agnostic architecture: Defaults to GPT-3.5 Turbo for cost-effectiveness, with full support for GPT-4, GPT-4-turbo, and any OpenAI-compatible models
  • Self-hosted model support: Bring your own LLM - compatible with self-hosted models like Llama, Mistral, or custom fine-tuned models via API endpoints
  • No model lock-in: Switch between models by changing configuration or prompt path in code without platform restrictions
  • No markup on AI costs: Users connect their own OpenAI API keys or self-hosted endpoints, paying providers directly without Supavec markup
  • Note: No built-in model routing: No automatic model selection or load balancing - developers must implement routing logic manually
  • Note: No prompt optimization layer: Plain RAG implementation without advanced prompt engineering or anti-hallucination guardrails
  • Quality dependency: Output quality rests entirely on chosen LLM and developer's prompt engineering skills
  • Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
  • Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request Model Selection Details
  • Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
  • Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
  • Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
  • Retrieval-Centric Generation (RCG): Research-backed approach explicitly separating LLM roles from knowledge memorization for more efficient implementation
  • Retrieval Tuning Module: Transparency into answer generation showing which documents were retrieved and how queries were built
  • Mixtures-of-Knowledge-Bases (MoKB): Multiple selectable knowledge bases with intelligent routing between knowledge sources
  • Explicit Prompt-Weighting (EPW): Control over retrieved knowledge base weighting in final answer generation
  • FAISS Vector Search: Fast approximate nearest neighbor search using Facebook's FAISS library for efficient retrieval
  • On-the-Fly Knowledge Base Creation: Drag-and-drop documents in GUI to create knowledge bases without manual preprocessing
  • Analysis Tab: Visual debugging showing document retrieval process and query construction for transparency
  • Multiple Document Support: Handles PDFs, text files, DOCX, PPTX, HTML, and other common formats
  • Standard RAG architecture: Document chunking with vector embeddings stored in Postgres pgvector extension for semantic search
  • Embedding generation: Automatic embedding creation during document upload using OpenAI embedding models or custom embedding endpoints
  • Vector search: Postgres vector search with cosine similarity for retrieval, handling millions of chunks efficiently
  • Re-indexing speed: Almost instant document re-embedding when updating or overwriting knowledge sources
  • Metadata support: Custom metadata tagging and filtering capabilities for organized knowledge management
  • Note: No advanced RAG features: No hybrid search (semantic + keyword), no reranking, no multi-query retrieval, no query expansion
  • Note: No hallucination detection: No built-in citation validation, factual consistency scoring, or confidence thresholds - developers must implement manually
  • Note: No retrieval parameter controls: Chunking strategy, similarity thresholds, and top-k configuration require code-level changes
  • Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks RAG Performance
  • Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content Benchmark Details
  • Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
  • Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
  • Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
  • Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
  • Source verification: Always cites sources so users can verify facts on the spot
Use Cases
  • Air-Gapped Environments: Defense, classified research, and secure facilities requiring complete offline operation without external connectivity
  • Healthcare PHI Compliance: HIPAA-regulated organizations needing 100% data isolation for protected health information
  • RAG Research & Education: Developers learning RAG internals with full visibility into retrieval and generation processes
  • Local Experimentation: Prototype RAG applications locally before committing to cloud infrastructure and subscription costs
  • Data Sovereignty: Organizations with strict data residency requirements preventing cloud storage or processing
  • Zero-Cost RAG: Teams with existing GPU infrastructure wanting to avoid subscription fees for RAG capabilities
  • Custom Model Development: Research teams fine-tuning and testing custom LLMs and embedding models for specific domains
  • Custom chatbot backends: Ideal for developers building custom chat interfaces needing simple RAG API without heavy platform overhead
  • Self-hosted knowledge retrieval: Perfect for organizations requiring data sovereignty with Supabase infrastructure for compliance (GDPR, HIPAA when self-hosted)
  • Budget-conscious RAG applications: Startups and small teams minimizing costs with MIT open-source license and affordable hosted plans ($190-$1,490/year)
  • Supabase-native projects: Teams already using Supabase can integrate Supavec seamlessly without additional infrastructure complexity
  • Developer-first RAG: Code-first teams wanting full control over RAG implementation, eschewing GUI dashboards for API-driven workflows
  • Not ideal for: Non-technical users requiring no-code interfaces, enterprises needing advanced RAG features (hybrid search, reranking), or teams requiring built-in analytics/monitoring
  • Not ideal for: Production applications requiring hallucination detection, citation validation, or confidence scoring without custom development
  • Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
  • Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
  • Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
  • Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
  • Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
  • Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
  • Financial services: Product guides, compliance documentation, customer education with GDPR compliance
  • E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
  • SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
  • 100% Local Execution: All data and processing stays on-premises with zero external transmission or cloud dependencies
  • No Third-Party APIs: No external API calls to OpenAI, Anthropic, or other cloud LLM providers
  • Complete Data Isolation: Ideal for classified, PHI, PII, or confidential data requiring air-gapped processing
  • No Built-In Authentication: Security implementation is user responsibility in deployment environment
  • Open-Source Auditing: MIT license with full source code transparency for security reviews and compliance validation
  • Self-Managed Security: Organization controls all security layers (network, authentication, encryption, access control)
  • Compliance Flexibility: Can be configured to meet HIPAA, FedRAMP, GDPR, or other regulatory requirements through deployment architecture
  • Self-hosting advantage: MIT license enables complete data sovereignty - all data stays on your servers for strict compliance requirements [Privacy note]
  • Supabase security foundation: Row-level security (RLS) fences off each team's data when using hosted Supavec on Supabase infrastructure
  • No model training: Your documents never used for LLM training - data remains yours with zero retention by OpenAI or other providers
  • GDPR/HIPAA ready: Self-hosting enables GDPR and HIPAA compliance when deployed on compliant infrastructure - enterprises can go dedicated or on-premises
  • Encryption: Standard HTTPS encryption for API calls; at-rest encryption depends on hosting infrastructure (Supabase provides AES-256)
  • Note: No SOC 2 certification: Open-source project lacks formal SOC 2 Type II, ISO 27001, or other enterprise compliance certifications for hosted plans
  • Note: No built-in access controls: Authentication, authorization, and RBAC must be implemented by developers in their application layer
  • Note: Limited hosted security features: Hosted plans lack SSO/SAML, IP whitelisting, or advanced security controls without custom configuration
  • Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
  • SOC 2 Type II certification: Industry-leading security standards with regular third-party audits Security Certifications
  • GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
  • Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
  • Data isolation: Customer data stays isolated and private - platform never trains on user data
  • Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
  • Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
  • Completely Free: MIT open-source license with no subscription fees, API charges, or usage limits
  • Infrastructure Costs Only: GPU hardware or cloud compute (AWS/GCP/Azure GPU instances) are the only expenses
  • No Per-Query Charges: Unlimited queries without per-request pricing or rate limits
  • No Vendor Fees: Zero payments to SaaS providers or LLM API vendors (OpenAI, Anthropic, etc.)
  • GPU Requirements: Single GPU sufficient for development; scale hardware based on throughput needs
  • Open-Source Ecosystem: Leverage free Hugging Face models, FAISS library, and PyTorch without licensing costs
  • Best Value For: Teams with existing GPU infrastructure or ability to provision cloud GPU instances economically
  • Open-source (Free): MIT-licensed for self-hosting - pay only your infrastructure costs (Supabase, server, storage) with unlimited API calls and no vendor fees
  • Hosted Free tier: 100 API calls per month for development and testing [Pricing]
  • Basic Plan: $190/year ($15.83/month equivalent) - 750 API calls per month, hosted infrastructure, automatic backups, email support
  • Enterprise Plan: $1,490/year ($124.17/month equivalent) - 5,000 API calls per month, priority support, SLA guarantees, dedicated resources
  • No per-document charges: Storage not metered separately - only query volume counts toward plan limits
  • No user seat fees: Pricing based purely on API call volume, not team size or number of developers
  • Need more calls? Negotiate custom limits with hosted provider or self-host to eliminate caps entirely
  • Value proposition: 40-90% cheaper than commercial RAG platforms - Basic plan costs less than 1 month of competing platforms while providing annual service
  • Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security View Pricing
  • Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
  • Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs Enterprise Solutions
  • 7-Day Free Trial: Full access to Standard features without charges - available to all users
  • Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
  • Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
  • Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
  • GitHub Repository: Open-source at github.com/RCGAI/SimplyRetrieve with code, documentation, and examples
  • Research Paper: Academic publication on arXiv (2308.03983) explaining RCG approach and architecture
  • Community Support: GitHub Issues for bug reports, feature requests, and community troubleshooting
  • Lightweight Documentation: README and docs directory with setup instructions and usage examples
  • No Paid Support: Community-driven support only; no SLAs or enterprise help desk available
  • Code Examples: Example scripts and Jupyter notebooks demonstrating core functionality
  • Academic Background: Built on established libraries (Hugging Face, Gradio, PyTorch, FAISS) with extensive external documentation
  • Documentation: Lean API reference docs focusing on endpoint usage with JavaScript code snippets - mostly technical rather than tutorial-heavy [Docs]
  • Community support: GitHub Discussions and Discord for free tier and self-hosted users - community-driven help and troubleshooting
  • Email support: Paid plan users (Basic/Enterprise) get email support with priority levels based on tier
  • No dedicated CSM: No Customer Success Manager or account management even on Enterprise tier - support ticket-based
  • GitHub repository: Open-source code welcomes PRs, issues, and community contributions - active maintainer responses
  • Postman collection: API documentation includes Postman collection for quick testing and integration
  • Code samples: Community-contributed examples and integrations appearing in GitHub issues and Discord, but not extensive official library
  • Learning curve: Requires developer skills - no video tutorials, webinars, or certification programs like commercial platforms
  • Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding Developer Docs
  • Email and in-app support: Quick support via email and in-app chat for all users
  • Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
  • Code samples: Cookbooks, step-by-step guides, and examples for every skill level API Documentation
  • Open-source resources: Python SDK (customgpt-client), Postman collections, GitHub integrations Open-Source SDK
  • Active community: User community plus 5,000+ app integrations through Zapier ecosystem
  • Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
  • Developer-Only Tool: Requires Python expertise, GPU knowledge, and technical setup—not suitable for non-technical users
  • GPU Infrastructure Required: Needs dedicated GPU hardware or cloud GPU instances with associated costs and management overhead
  • Basic UI: Gradio interface is functional but not polished—requires custom front-end development for production use
  • Limited Scalability: Scaling requires manual infrastructure management and load balancing vs auto-scaling cloud platforms
  • No Enterprise Features: Missing multi-tenancy, user management, advanced analytics, and production-grade monitoring
  • Slower Inference: Open-source models on single GPU (few to 10+ seconds per reply) vs sub-second cloud API responses
  • Manual Knowledge Base Updates: No automatic web crawling, syncing, or scheduled reindexing capabilities
  • No Pre-Built Integrations: Requires custom development to integrate with Slack, websites, or support platforms
  • Limited Context Memory: Primarily single-turn Q&A with minimal conversation history retention
  • Maintenance Burden: User responsible for updates, model management, troubleshooting, and infrastructure maintenance
  • No GUI/dashboard: Everything via API or CLI - no business-user interface for content management, analytics, or configuration
  • Developer-only tool: Requires coding skills for setup, integration, and maintenance - non-technical teams cannot use without developer support
  • Basic RAG only: Standard retrieval-augmented generation without advanced features like hybrid search, query reranking, multi-query fusion, or query expansion
  • No observability built-in: No metrics dashboard, conversation analytics, or performance monitoring - must wire up your own logging layer
  • Manual hallucination handling: No built-in citation validation, confidence scoring, or factual consistency checks - developers must implement safeguards
  • Limited connectors: No one-click Google Drive, Notion, or cloud storage integrations - must script data fetching and API uploads manually
  • No conversation management: Stateless API calls without chat history, multi-turn context, or session management - build conversation layer yourself
  • Infrastructure knowledge required: Self-hosting requires Supabase, Postgres, and vector database expertise - not plug-and-play for non-DevOps teams
  • Minimal abstraction: Intentionally low-level API design provides control but requires more integration work than higher-level RAG platforms
  • Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
  • Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
  • Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
  • Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
  • Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
  • Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
  • Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
  • Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
  • Retrieval-Centric Generation (RCG): Research-backed approach separating LLM reasoning capabilities from knowledge memorization—more efficient than traditional RAG architectures
  • Retrieval Tuning Module: Developer-focused transparency layer showing which documents were retrieved, how queries were constructed, and how answers were generated
  • Knowledge Base Mixing (MoKB): Route queries across multiple selectable knowledge bases with intelligent source selection and weighting
  • Explicit Prompt Weighting (EPW): Fine-grained control over retrieved knowledge base influence in final answer generation
  • Single-Turn Q&A Focus: Primarily designed for single-turn question answering—limited multi-turn conversation and context memory
  • Analysis Tab Transparency: Visual debugging interface showing document retrieval process and query construction for answer inspection
  • Local Agent Execution: All agent processing happens on-premises with zero external API calls—complete control over agent behavior and data
  • LIMITATION - No Chatbot UI: Gradio interface for developers only—no polished conversational interface for end users or production deployment
  • LIMITATION - No Lead Capture: No built-in lead generation, email collection, or CRM integration capabilities—manual implementation required
  • LIMITATION - No Human Handoff: No escalation workflows, live agent transfer, or fallback mechanisms for complex queries—developer must build these features
  • LIMITATION - No Multi-Channel Support: No native integrations with Slack, Teams, WhatsApp, or website widgets—requires custom wrapper development
  • LIMITATION - No Session Management: Stateless interactions without conversation history tracking or multi-turn context retention
  • Stateless RAG Architecture: Pure retrieval and generation without built-in conversation state—developers implement multi-turn context and session management in application layer
  • Model-Agnostic Generation: Defaults to GPT-3.5 but supports GPT-4, self-hosted LLMs (Llama, Mistral), and any OpenAI-compatible models—no vendor lock-in for generation
  • Postgres Vector Search: Fast approximate nearest neighbor search using pgvector extension with cosine similarity—handles millions of chunks efficiently at enterprise scale
  • Metadata Filtering: Custom metadata tagging and filtering capabilities enabling organized knowledge management and multi-tenant architectures
  • Real-Time Re-Indexing: Almost instant document re-embedding when updating or overwriting knowledge sources—no lengthy reprocessing delays
  • REST API Foundation: Straightforward endpoints for file uploads, text uploads, and search with plain-JSON responses—easy integration from any programming language
  • Supabase Integration: Built on Supabase infrastructure leveraging PostgreSQL, Row-Level Security (RLS), and battle-tested backend for familiar deployment
  • LIMITATION - No Built-In Chat UI: API-only platform requiring developers to build custom chat interfaces—not a turnkey chatbot solution with widgets
  • LIMITATION - No Lead Capture: No built-in lead generation, email collection, or CRM integration capabilities—must be implemented at application layer
  • LIMITATION - No Human Handoff: No escalation workflows, live agent transfer, or fallback mechanisms—conversational features are developer responsibility
  • LIMITATION - No Multi-Channel Integrations: No native Slack, Teams, WhatsApp, or messaging platform connectors—developers build integration layer
  • LIMITATION - No Session Management: Stateless API design without conversation history tracking or multi-turn context retention—application must manage state
  • LIMITATION - No Advanced RAG: Missing hybrid search, reranking, knowledge graphs, multi-query retrieval, query expansion found in enterprise platforms
  • LIMITATION - No Observability Dashboard: No analytics, conversation metrics, or performance monitoring UI—must integrate external logging tools
  • Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
  • Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
  • Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
  • Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions View Agent Documentation
  • Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
  • Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
  • Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
R A G-as-a- Service Assessment
  • Platform Type: NOT A RAG-AS-A-SERVICE PLATFORM - Open-source academic research project for local Retrieval-Centric Generation experimentation and learning
  • Core Mission: Provide localized, lightweight, user-friendly interface to Retrieval-Centric Generation (RCG) approach for machine learning community exploration and research
  • Academic Foundation: Published research tool from RCGAI with arXiv paper (2308.03983) explaining RCG methodology and architectural design decisions
  • Target Market: Researchers, developers, and organizations experimenting with RAG locally without cloud dependencies—NOT commercial service users
  • Self-Hosted Infrastructure: MIT-licensed tool requiring user-managed GPU hardware or cloud compute—no managed infrastructure, APIs, or service-level agreements
  • Developer-First Design: Python-based with Gradio GUI and script execution—intended for technical users comfortable with GPU infrastructure and model management
  • RAG Implementation: Retrieval-Centric Generation (RCG) philosophy emphasizing retrieval over memorization—FAISS vector search with open-source LLMs (WizardVicuna-13B default, any Hugging Face model supported)
  • API Availability: NO formal REST API or SDKs—interaction via Python scripts and local Gradio interface requiring subprocess calls or custom wrappers
  • Data Privacy Advantage: 100% local execution with zero external transmission—ideal for classified, PHI, PII, or confidential data requiring air-gapped processing
  • Pricing Model: Completely free (MIT license) with no subscription fees—only cost is GPU hardware or cloud compute infrastructure
  • Support Model: Community-driven GitHub Issues and lightweight documentation—no paid support, SLAs, or customer success teams
  • LIMITATION vs Managed Services: NO managed infrastructure, automatic scaling, production-grade monitoring, enterprise security controls, or commercial support—users responsible for all operational aspects
  • LIMITATION - No Service Features: NO authentication systems, multi-tenancy, user management, analytics dashboards, or SaaS conveniences—pure research/development tool
  • Comparison Validity: Architectural comparison to commercial RAG-as-a-Service platforms like CustomGPT.ai is MISLEADING—SimplyRetrieve is open-source research tool for on-premises experimentation, not production service
  • Use Case Fit: Perfect for offline/air-gapped RAG research, developers learning RAG internals with full transparency, organizations with strict data isolation requirements (defense, healthcare PHI compliance), and teams wanting zero cloud costs with existing GPU infrastructure
  • Platform Type: TRUE RAG-AS-A-SERVICE API - Lightweight MIT-licensed open-source RAG backend built on Supabase with self-hosting capability and minimal API surface
  • Core Mission: Provide transparent, open-source alternative to proprietary RAG services (Carbon.ai shutdown response) with full cost control and no vendor lock-in
  • Target Market: Developers building custom RAG applications on budget, startups minimizing costs with self-hosting, organizations requiring data sovereignty with Supabase infrastructure
  • RAG Implementation: Standard RAG architecture with document chunking, OpenAI embeddings, Postgres pgvector semantic search—focused on simplicity over advanced techniques
  • API-First Design: Pure REST API for retrieval and generation without GUI, widgets, or conversational features—intentionally minimal abstraction for developer control
  • Self-Hosting Advantage: MIT license enables complete on-premises deployment keeping all data on your servers—ideal for GDPR, HIPAA, data residency compliance
  • Managed Service Option: Cloud-hosted plans (Free: 100 calls/month, Basic: $190/year for 750 calls/month, Enterprise: $1,490/year for 5K calls/month) eliminate infrastructure management
  • Pricing Model: Free self-hosting (MIT license) or extremely affordable hosted plans—40-90% cheaper than commercial RAG platforms with no per-document charges or user seat fees
  • Data Sources: File uploads (PDF, Markdown, TXT) via REST API or raw text ingestion—NO pre-built Google Drive, Notion, or cloud storage connectors (manual scripting required)
  • Model Flexibility: Model-agnostic with GPT-3.5 default, GPT-4, or self-hosted LLM support—users connect own OpenAI API keys without Supavec markup on AI costs
  • Security Foundation: Supabase Row-Level Security (RLS) for multi-tenant data isolation, HTTPS encryption, AES-256 at-rest encryption—self-hosting enables GDPR/HIPAA compliance
  • Support Model: Community GitHub/Discord support for free tier, email support for paid plans—no dedicated CSMs, SLAs, or enterprise account management
  • Open-Source Ecosystem: Transparent code on GitHub welcoming PRs, forks, and community contributions—no proprietary components or vendor lock-in
  • LIMITATION - Developer-Only Platform: Requires coding skills for setup, integration, and maintenance—non-technical teams cannot use without developer support
  • LIMITATION - Basic RAG Features: Standard retrieval without hybrid search, reranking, knowledge graphs, multi-query fusion, or hallucination detection—advanced features require custom development
  • LIMITATION - No Turnkey Features: No GUI dashboard, conversation management, lead capture, analytics, or multi-channel integrations—pure RAG API requiring application layer development
  • Comparison Validity: Architectural comparison to full-featured chatbot platforms like CustomGPT.ai requires context—Supavec is lightweight RAG backend API vs complete no-code chatbot builder
  • Use Case Fit: Perfect for developers wanting lightweight RAG backend without heavy frameworks, startups minimizing costs with Supabase self-hosting, teams building custom chatbots needing simple REST API for retrieval without paying for unused dashboard features
  • Platform Type: TRUE RAG-AS-A-SERVICE PLATFORM - all-in-one managed solution combining developer APIs with no-code deployment capabilities
  • Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
  • API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat API Documentation
  • Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
  • No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
  • Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
  • RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses Benchmark Details
  • Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
  • Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
  • Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
  • Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds

Ready to experience the CustomGPT difference?

Start Free Trial →

Final Thoughts

Final Verdict: SimplyRetrieve vs Supavec

After analyzing features, pricing, performance, and user feedback, both SimplyRetrieve and Supavec are capable platforms that serve different market segments and use cases effectively.

When to Choose SimplyRetrieve

  • You value completely free and open source
  • Strong privacy focus - fully localized
  • Lightweight - runs on single GPU

Best For: Completely free and open source

When to Choose Supavec

  • You value 100% open source with no vendor lock-in
  • Complete control over data and infrastructure
  • Strong privacy with Supabase RLS integration

Best For: 100% open source with no vendor lock-in

Migration & Switching Considerations

Switching between SimplyRetrieve and Supavec requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.

Pricing Comparison Summary

SimplyRetrieve starts at custom pricing, while Supavec begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.

Our Recommendation Process

  1. Start with a free trial - Both platforms offer trial periods to test with your actual data
  2. Define success metrics - Response accuracy, latency, user satisfaction, cost per query
  3. Test with real use cases - Don't rely on generic demos; use your production data
  4. Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
  5. Check vendor stability - Review roadmap transparency, update frequency, and support quality

For most organizations, the decision between SimplyRetrieve and Supavec comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.

📚 Next Steps

Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.

  • Review: Check the detailed feature comparison table above
  • Test: Sign up for free trials and test with real queries
  • Calculate: Estimate your monthly costs based on expected usage
  • Decide: Choose the platform that best aligns with your requirements

Last updated: December 11, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.

Ready to Get Started with CustomGPT?

Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.

Why Choose CustomGPT?

97% Accuracy

Industry-leading benchmarks

5-Min Setup

Get started instantly

24/7 Support

Expert help when you need it

Enterprise Ready

Scale with confidence

Trusted by leading companies worldwide

Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us

Join the Discussion

Loading comments...

Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.

Watch: Understanding AI Tool Comparisons