Stonly vs Vertex AI

Make an informed decision with our comprehensive comparison. Discover which RAG solution perfectly fits your needs.

Priyansh Khodiyar's avatar
Priyansh KhodiyarDevRel at CustomGPT.ai

Fact checked and reviewed by Bill Cava

Published: 01.04.2025Updated: 25.04.2025

In this comprehensive guide, we compare Stonly and Vertex AI across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.

Overview

When choosing between Stonly and Vertex AI, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.

Quick Decision Guide

  • Choose Stonly if: you value exceptional ease of use - 4.8/5 g2 rating with intuitive visual editor praised in 32 reviews
  • Choose Vertex AI if: you value industry-leading 2m token context window with gemini models

About Stonly

Stonly Landing Page Screenshot

Stonly is interactive knowledge base platform with enterprise ai-powered answers. Stonly is a customer support knowledge management platform with embedded AI capabilities focused on interactive step-by-step guides and help desk agent assistance. Its AI Answers feature (Enterprise-only add-on) achieves 71% self-serve success rates, but it's fundamentally a knowledge base platform with AI features—not a pure RAG-as-a-Service solution. Founded in 2017, headquartered in San Francisco, CA, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
96/100
Starting Price
$249/mo

About Vertex AI

Vertex AI Landing Page Screenshot

Vertex AI is google's unified ml platform with gemini models and automl. Vertex AI is Google Cloud's comprehensive machine learning platform that unifies data engineering, data science, and ML engineering workflows. It offers state-of-the-art Gemini models with industry-leading context windows up to 2 million tokens, AutoML capabilities, and enterprise-grade infrastructure for building, deploying, and scaling AI applications. Founded in 2008, headquartered in Mountain View, CA, the platform has established itself as a reliable solution in the RAG space.

Overall Rating
88/100
Starting Price
Custom

Key Differences at a Glance

In terms of user ratings, Stonly in overall satisfaction. From a cost perspective, Vertex AI offers more competitive entry pricing. The platforms also differ in their primary focus: Knowledge Management versus AI Chatbot. These differences make each platform better suited for specific use cases and organizational requirements.

⚠️ What This Comparison Covers

We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.

Detailed Feature Comparison

logo of stonly
Stonly
logo of vertexai
Vertex AI
logo of customGPT logo
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
  • PDF uploads confirmed
  • Public website crawling: Pages not requiring authentication
  • Zendesk help center content indexing
  • Proprietary interactive guide format as primary content model
  • Note: No Google Drive, Dropbox, Notion, or SharePoint integrations for data ingestion
  • Note: No YouTube transcript extraction (videos can be embedded but not processed)
  • Note: No direct Word document (.docx) or HTML file imports confirmed
  • Note: No automatic content syncing from external sources - updates are manual through Stonly's visual editor
  • Content limits by tier: Basic (5 guides, 400 views/mo), Small Business (unlimited guides, 4K views/mo), Enterprise (custom)
  • Content versioning: Side-by-side comparison and instant restore on Business and Enterprise plans
  • Pulls in both structured and unstructured data straight from Google Cloud Storage, handling files like PDF, HTML, and CSV (Vertex AI Search Overview).
  • Taps into Google’s own web-crawling muscle to fold relevant public website content into your index with minimal fuss (Towards AI Vertex AI Search).
  • Keeps everything current with continuous ingestion and auto-indexing, so your knowledge base never falls out of date.
  • Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
  • Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
  • Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text. View Transcription Guide
  • Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier. See Zapier Connectors
  • Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
L L M Model Options
  • Note: Undisclosed proprietary LLM - Stonly does not disclose the specific model powering AI Answers
  • Note: No model selection - users cannot choose between GPT-3.5, GPT-4, Claude, or other models
  • Note: No temperature controls, fine-tuning, or model routing
  • AI Profiles: Up to 20 per team for tone and behavior customization
  • Custom Instructions: Up to 100 per team defining boundaries and style
  • Guided AI Answers: Define specific questions that trigger predetermined answers, bypassing AI generation for sensitive scenarios
  • Automatic fallback: When AI confidence is low, system falls back to ML-powered search rather than forcing an answer
  • Knowledge-grounded approach: AI responses anchored in Stonly guides, external websites, and selected PDFs to reduce hallucinations
  • Connects to Google’s own generative models—PaLM 2, Gemini—and can call external LLMs via API if you prefer (Google Cloud Vertex AI Models).
  • Lets you pick models based on your balance of cost, speed, and quality.
  • Supports prompt-template tweaks so you can steer tone, format, and citation rules.
  • Taps into top models—OpenAI’s GPT-5.1 series, GPT-4 series, and even Anthropic’s Claude for enterprise needs (4.5 opus and sonnet, etc ).
  • Automatically balances cost and performance by picking the right model for each request. Model Selection Details
  • Uses proprietary prompt engineering and retrieval tweaks to return high-quality, citation-backed answers.
  • Handles all model management behind the scenes—no extra API keys or fine-tuning steps for you.
Performance & Accuracy
  • 71% self-serve success rate with AI Answers feature (company data)
  • 70-76% support ticket reduction documented in case studies
  • 99.9% uptime claimed but no published SLA details or response time data
  • Note: No published latency metrics or performance benchmarks
  • Note: No real-time analytics - Flow reports update every 15 minutes
  • Hallucination controls: Strong grounding in structured content reduces off-topic responses
  • Widget lazy loading: Minimizes impact on host website performance
  • Serves answers in milliseconds thanks to Google’s global infrastructure (Google Cloud Vertex AI RAG).
  • Combines semantic and keyword search for strong retrieval accuracy.
  • Adds advanced reranking to cut hallucinations and keep facts straight.
  • Delivers sub-second replies with an optimized pipeline—efficient vector search, smart chunking, and caching.
  • Independent tests rate median answer accuracy at 5/5—outpacing many alternatives. Benchmark Results
  • Always cites sources so users can verify facts on the spot.
  • Maintains speed and accuracy even for massive knowledge bases with tens of millions of words.
Developer Experience ( A P I & S D Ks)
  • REST API: Supports user provisioning, content management, widget control
  • Mobile SDKs (Enterprise only): iOS, Android, React Native, Flutter
  • Note: No Python SDK or server-side Node.js SDK
  • Note: No GraphQL API or OpenAPI/Swagger specification
  • Note: Rate limits not publicly documented
  • Note: No API Explorer, sandbox environment, or Postman collections
  • Note: REST API versioning strategy unclear
  • Widget API: Programmatic control including opening specific content, listening for events, user identification
  • CSP whitelisting: Instructions documented for Content Security Policy compliance
  • Widget versioning documented
  • Offers full REST APIs plus client libraries for Python, Java, JavaScript, and more (Google Cloud Vertex AI SDK).
  • Backs you up with rich docs, sample notebooks, and quick-start guides.
  • Uses Google Cloud IAM for secure API calls and supports CLI tooling for local dev work.
  • Ships a well-documented REST API for creating agents, managing projects, ingesting data, and querying chat. API Documentation
  • Offers open-source SDKs—like the Python customgpt-client—plus Postman collections to speed integration. Open-Source SDK
  • Backs you up with cookbooks, code samples, and step-by-step guides for every skill level.
Integrations & Channels
  • Deep help desk integrations: Zendesk, Salesforce Service Cloud, Freshdesk, ServiceNow
  • Zendesk features: Update tickets from guides, preserve guide progress in tickets, launch Zendesk Chat from widget
  • Zapier integration: Webhook triggers for form submissions and guide completions
  • Analytics integrations: Segment, Google Analytics
  • Embedding options: JavaScript widget, iframe, API deployment
  • Note: No native Slack, WhatsApp, Telegram, or Microsoft Teams integrations (confirmed by multiple user reviews)
  • Note: No omnichannel messaging support
  • Website embedding: All plans support JS widget and iframe embedding
  • Ships solid REST APIs and client libraries for weaving Vertex AI into web apps, mobile apps, or enterprise portals (Google Cloud Vertex AI API Docs).
  • Plays nicely with other Google Cloud staples—BigQuery, Dataflow, and more—and even supports low-code connectors via Logic Apps and PowerApps (Google Cloud Connectors).
  • Lets you deploy conversational agents wherever you need them, whether that’s a bespoke front-end or an embedded widget.
  • Embeds easily—a lightweight script or iframe drops the chat widget into any website or mobile app.
  • Offers ready-made hooks for Slack, Zendesk, Confluence, YouTube, Sharepoint, 100+ more. Explore API Integrations
  • Connects with 5,000+ apps via Zapier and webhooks to automate your workflows.
  • Supports secure deployments with domain allowlisting and a ChatGPT Plugin for private use cases.
  • Hosted CustomGPT.ai offers hosted MCP Server with support for Claude Web, Claude Desktop, Cursor, ChatGPT, Windsurf, Trae, etc. Read more here.
  • Supports OpenAI API Endpoint compatibility. Read more here.
Customization & Branding
  • Visual editor: Intuitive no-code interface for creating guides, decision trees, checklists, forms
  • CSS customization: Available on all paid plans
  • White-labeling: Enterprise plan only - complete branding removal
  • Pre-built templates: Common support scenarios covered
  • Role-based access control: Advanced permissions on Enterprise plan
  • Learning curve: Described as "small" - users can create guides in under 30 minutes
  • Note: No formal content approval workflows documented
  • Note: Cannot edit guides on mobile devices
  • Note: Angular framework compatibility issues reported - "Stonly onboarding will work randomly" with dynamic code
  • Lets you tweak UI elements in the Cloud console so your chatbot matches your brand style.
  • Includes settings for custom themes, logos, and domain restrictions when you embed search or chat (Google Cloud Console).
  • Makes it easy to keep branding consistent by tying into your existing design system.
  • Fully white-labels the widget—colors, logos, icons, CSS, everything can match your brand. White-label Options
  • Provides a no-code dashboard to set welcome messages, bot names, and visual themes.
  • Lets you shape the AI’s persona and tone using pre-prompts and system instructions.
  • Uses domain allowlisting to ensure the chatbot appears only on approved sites.
Core Knowledge Base Features
  • Interactive step-by-step guides with visual flow builder
  • Decision trees and branching logic
  • Checklists and task management
  • Contact forms and lead capture
  • Content versioning: Side-by-side comparison, instant restore
  • Multi-language support: Auto-translation on Enterprise plan
  • Knowledge bases: 3 on Small Business, unlimited on Enterprise
  • Guide views tracking: 400 (Free), 4,000 (Small Business), custom (Enterprise)
  • NPS surveys: All plans
  • CSAT and CES surveys: Enterprise only
N/A
N/A
A I Answers Feature ( Enterprise Only)
  • Note: Available only as paid Enterprise add-on - not included in Small Business plan
  • Generative AI responses grounded in Stonly guides, external websites, and selected PDFs
  • 20 AI Profiles per team: Define tone, boundaries, and behavior
  • 100 Custom Instructions per team: Detailed response rules
  • Guided AI Answers: Predefined responses for specific questions
  • Confidence-based fallback: Automatically switches to ML-powered search when AI confidence is low
  • 71% self-serve success rate achieved with AI Answers
  • Hallucination reduction: Knowledge-grounding approach vs generic chatbots
N/A
N/A
Observability & Monitoring
  • Insights Dashboard: Guide views, unique visitors, bounce rates, step-by-step progression, drop-off analysis
  • NPS surveys: All plans
  • CSAT and CES surveys: Enterprise only
  • Flow reports: Update every 15 minutes (not real-time)
  • Data export: Integration with Segment, Zapier, Google Analytics
  • Note: No real-time visitor tracking
  • Note: No predictive analytics
  • Note: Basic compared to dedicated product analytics tools
  • Note: No heatmaps or A/B testing capabilities
  • Agent performance tracking: Relies on external help desk platform integration rather than native dashboards
  • Hooks into Google Cloud Operations Suite for real-time monitoring, logging, and alerting (Google Cloud Monitoring).
  • Includes dashboards for query latency, index health, and resource usage, plus APIs for custom analytics.
  • Lets you export logs and metrics to meet compliance or deep-dive analysis needs.
  • Comes with a real-time analytics dashboard tracking query volumes, token usage, and indexing status.
  • Lets you export logs and metrics via API to plug into third-party monitoring or BI tools. Analytics API
  • Provides detailed insights for troubleshooting and ongoing optimization.
Pricing & Scalability
  • Basic (Free): 5 guides, 400 views/month, 1 seat, single language
  • Small Business ($249/mo, $199/mo annual): Unlimited guides, 4,000 views/month, 5 seats, 3 knowledge bases, CSS customization, Zapier, NPS surveys
  • Enterprise (Custom, ~$39K/year avg): Custom views, unlimited seats, AI Answers add-on, Mobile SDKs, SAML SSO, white-label, auto-translation, CSAT/CES surveys
  • Overage pricing escalates quickly: +15K views = $200/month, +30K views = $400/month
  • Automatic tier upgrades: Exceeding limits for 2 consecutive months triggers upgrade
  • Note: AI Answers, Mobile SDK, SAML SSO, white-labeling all Enterprise-gated
  • Average enterprise contract: ~$39,000 annually according to Vendr procurement data
  • Uses pay-as-you-go pricing—charges for storage, query volume, and model compute—with a free tier to experiment (Google Cloud Pricing).
  • Scales effortlessly on Google’s global backbone, with autoscaling baked in.
  • Add partitions or replicas as traffic grows to keep performance rock-solid.
  • Runs on straightforward subscriptions: Standard (~$99/mo), Premium (~$449/mo), and customizable Enterprise plans.
  • Gives generous limits—Standard covers up to 60 million words per bot, Premium up to 300 million—all at flat monthly rates. View Pricing
  • Handles scaling for you: the managed cloud infra auto-scales with demand, keeping things fast and available.
Security & Privacy
  • Yes SOC 2 Type 2
  • Yes GDPR compliant
  • Yes HIPAA compliant
  • Yes ISO 27001
  • Yes PCI compliant
  • Yes CSA Star Level 1
  • Trust Center: trust.stonly.com with security documentation, subprocessor lists, controls information
  • SAML 2.0 SSO: Enterprise plan
  • IP allowlisting: Enterprise plan
  • Advanced RBAC: Enterprise plan
  • Two-factor authentication: SMS, email, hardware tokens, TOTP, U2F
  • Note: Data residency options not documented
  • Note: No explicit documentation on customer data usage for AI model training
  • International data transfers: Standard Contractual Clauses for EU compliance
  • Builds on Google Cloud’s security stack—encryption in transit and at rest, plus fine-grained IAM (Google Cloud Compliance).
  • Holds a long list of certifications (SOC, ISO, HIPAA, GDPR) and supports customer-managed encryption keys.
  • Offers options like Private Link and detailed audit logs to satisfy strict enterprise requirements.
  • Protects data in transit with SSL/TLS and at rest with 256-bit AES encryption.
  • Holds SOC 2 Type II certification and complies with GDPR, so your data stays isolated and private. Security Certifications
  • Offers fine-grained access controls—RBAC, two-factor auth, and SSO integration—so only the right people get in.
Support & Ecosystem
  • 4.8/5 G2 rating (132 reviews)
  • Ease of use praised in 32 G2 reviews
  • Help Center documentation
  • Email and chat support
  • Dedicated support: Enterprise plan
  • Learning resources: Pre-built templates, tutorials
  • Quick onboarding: Users report creating guides in under 30 minutes
  • Backed by Google’s enterprise support programs and detailed docs across the Cloud platform (Google Cloud Support).
  • Provides community forums, sample projects, and training via Google Cloud’s dev channels.
  • Benefits from a robust ecosystem of partners and ready-made integrations inside GCP.
  • Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast. Developer Docs
  • Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs. Enterprise Solutions
  • Benefits from an active user community plus integrations through Zapier and GitHub resources.
No- Code Interface & Usability
  • 4.8/5 ease of use rating on G2
  • "Ease of use" mentioned 32 times in G2 reviews
  • Visual drag-and-drop editor requires no coding
  • Small learning curve - non-technical teams productive quickly
  • Guide creation in under 30 minutes reported by users
  • Pre-built templates for common scenarios
  • Intuitive interface for support teams
  • Note: Some navigation confusion reported in admin interface
  • Note: Cannot edit on mobile devices
  • Offers a Cloud console to manage indexes and search settings, though there's no full drag-and-drop chatbot builder yet.
  • Low-code connectors (PowerApps, Logic Apps) make basic integrations straightforward for non-devs.
  • The overall experience is solid, but deeper customization still calls for some technical know-how.
  • Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
  • Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing. User Experience Review
  • Uses role-based access so business users and devs can collaborate smoothly.
R A G-as-a- Service Assessment
  • Note: NOT a RAG-as-a-Service platform - fundamentally a knowledge base tool with embedded AI
  • Data source flexibility: Limited (PDF, public web, Zendesk only) vs comprehensive RAG platforms
  • LLM model options: None (undisclosed proprietary model, no user selection)
  • API-first architecture: Weak (widget-focused, limited SDKs, no server-side SDKs)
  • Performance benchmarks: Not published
  • Self-service AI pricing: Not available (Enterprise-gated, ~$39K/year)
  • Help desk integration depth: Excellent (best-in-class Zendesk, Salesforce, Freshdesk)
  • Hallucination controls: Strong (grounded in structured content)
  • Best for: Customer support ticket deflection, not flexible RAG backends
  • Not ideal for: Developers seeking pure RAG API, multi-tenant SaaS RAG backends, use cases needing model selection/fine-tuning
  • Platform Type: TRUE ENTERPRISE RAG-AS-A-SERVICE PLATFORM - fully managed orchestration service for production-ready RAG implementations with developer-first APIs
  • Core Architecture: Vertex AI RAG Engine (GA 2024) streamlines complex process of retrieving relevant information and feeding it to LLMs, with managed infrastructure handling data retrieval and LLM integration
  • API-First Design: Comprehensive easy-to-use API enabling rapid prototyping with VPC-SC security controls and CMEK support (data residency and AXT not supported)
  • Managed Orchestration: Developers focus on building applications rather than managing infrastructure - handles complexities of vector search, chunking, embedding, and retrieval automatically
  • Customization Depth: Various parsing, chunking, annotation, embedding, vector storage options with open-source model integration for specialized domain requirements
  • Developer Experience: "Sweet spot" for developers using Vertex AI to implement RAG-based LLMs - balances ease of use of Vertex AI Search with power of custom RAG pipeline
  • Target Market: Enterprise developers already using GCP infrastructure wanting managed RAG without building from scratch, organizations needing PaLM 2/Gemini models with Google's search capabilities
  • RAG Technology Leadership: Hybrid search with advanced reranking, factual-consistency scoring, Google web-crawling infrastructure for public content ingestion, sub-millisecond responses globally
  • Deployment Flexibility: Public cloud, VPC, or on-premise deployments with multi-region scalability, seamless GCP integration (BigQuery, Dataflow, Cloud Functions), and unified billing
  • Enterprise Readiness: SOC 2/ISO/HIPAA/GDPR compliance, customer-managed encryption keys, Private Link, detailed audit logs, Google Cloud Operations Suite monitoring
  • Use Case Fit: Ideal for personalized investment advice and risk assessment, accelerated drug discovery and personalized treatment plans, enhanced due diligence and contract review, GCP-native organizations wanting unified AI infrastructure
  • Competitive Positioning: Positioned between no-code platforms (WonderChat, Chatbase) and custom implementations (LangChain) - offers managed RAG with enterprise-grade capabilities for GCP ecosystem
  • LIMITATION: GCP lock-in: Strongest value for GCP customers - less compelling for AWS/Azure-native organizations vs platform-agnostic alternatives like CustomGPT or Cohere
  • LIMITATION: Google models only: PaLM 2/Gemini family exclusively - no native support for Claude, GPT-4, or open-source models compared to multi-model platforms
  • Platform Type: TRUE RAG-AS-A-SERVICE PLATFORM - all-in-one managed solution combining developer APIs with no-code deployment capabilities
  • Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
  • API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat API Documentation
  • Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
  • No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
  • Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
  • RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses Benchmark Details
  • Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
  • Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
  • Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
  • Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Competitive Positioning
  • Unique strength: Interactive guide format for structured support content
  • vs CustomGPT: Not comparable - different product categories (knowledge base vs RAG-as-a-Service)
  • vs Zendesk: Lighter-weight alternative focused on self-service guides vs full customer service platform
  • vs traditional chatbots: Interactive guides provide structured paths vs free-form conversation
  • Target audience: Support teams using Zendesk/Salesforce, not developers building RAG applications
  • 70-76% ticket reduction documented in case studies
  • 71% self-serve success rate with AI Answers
  • Enterprise compliance suitable for regulated industries
  • Market position: Enterprise-grade Google Cloud AI platform combining Vertex AI Search with Conversation for production-ready RAG, deeply integrated with GCP ecosystem
  • Target customers: Organizations already invested in Google Cloud infrastructure, enterprises requiring PaLM 2/Gemini models with Google's search capabilities, and companies needing global scalability with multi-region deployment and GCP service integration
  • Key competitors: Azure AI Search, AWS Bedrock, OpenAI Enterprise, Coveo, and custom RAG implementations
  • Competitive advantages: Native Google PaLM 2/Gemini models with external LLM support, Google's web-crawling infrastructure for public content ingestion, seamless GCP integration (BigQuery, Dataflow, Cloud Functions), hybrid search with advanced reranking, SOC/ISO/HIPAA/GDPR compliance with customer-managed keys, global infrastructure for millisecond responses worldwide, and Google Cloud Operations Suite for comprehensive monitoring
  • Pricing advantage: Pay-as-you-go with free tier for development; competitive for GCP customers leveraging existing enterprise agreements and volume discounts; autoscaling prevents overprovisioning; best value for organizations with GCP infrastructure wanting unified billing and managed services
  • Use case fit: Best for organizations already using GCP infrastructure (BigQuery, Cloud Functions), enterprises needing Google's proprietary models (PaLM 2, Gemini) with web-crawling capabilities, and companies requiring global scalability with multi-region deployment and tight integration with GCP analytics and data pipelines
  • Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
  • Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
  • Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
  • Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
  • Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
  • Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
  • Undisclosed Proprietary LLM: Stonly does not publicly disclose the specific model powering AI Answers feature
  • No Model Selection: Users cannot choose between GPT-3.5, GPT-4, Claude, Gemini, or other LLM providers
  • No Temperature Controls: No user-facing controls for adjusting response creativity, randomness, or formatting
  • No Fine-Tuning or Model Routing: Cannot customize model behavior beyond predefined AI Profiles and Custom Instructions
  • AI Profiles (Up to 20): Define tone, boundaries, and behavior for different use cases or audiences
  • Custom Instructions (Up to 100): Set specific rules and style guidelines for AI response generation
  • Guided AI Answers: Predefined responses for specific questions bypassing AI generation for sensitive scenarios
  • Automatic Fallback: Low-confidence scenarios trigger fallback to ML-powered search rather than forcing unreliable AI answer
  • Knowledge-Grounded Approach: AI responses anchored in Stonly guides, external websites, and PDFs to reduce hallucinations
  • Google proprietary models: PaLM 2 (Pathways Language Model) and Gemini 2.0/2.5 family (Pro, Flash variants) optimized for enterprise workloads
  • Gemini 2.5 Pro: $1.25-$2.50 per million input tokens, $10-$15 per million output tokens for advanced reasoning and multimodal understanding
  • Gemini 2.5 Flash: $0.30 per million input tokens, $2.50 per million output tokens for cost-effective high-speed inference
  • Gemini 2.0 Flash: $0.15 per million input tokens, $0.60 per million output tokens for ultra-low-cost deployment
  • External LLM support: Can call external LLMs via API if preferring non-Google models for specific use cases
  • Model selection flexibility: Choose models based on balance of cost, speed, and quality requirements per use case
  • Prompt template customization: Configure tone, format, and citation rules through prompt engineering
  • Temperature and token controls: Adjust generation parameters (temperature, max tokens) for domain-specific response characteristics
  • Primary models: GPT-5.1 and 4 series from OpenAI, and Anthropic's Claude 4.5 (opus and sonnet) for enterprise needs
  • Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request Model Selection Details
  • Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
  • Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
  • Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
  • AI Answers (Enterprise Add-On): Generative AI responses grounded in Stonly guides, external websites, and selected PDFs
  • Knowledge-Grounding: Responses anchored to structured content (interactive guides, decision trees, checklists) reducing hallucinations vs generic chatbots
  • Confidence-Based Fallback: Automatic switch to ML-powered search when AI confidence is low preventing unreliable answers
  • Multi-Source Ingestion: PDF uploads, public website crawling, Zendesk help center content indexing
  • Interactive Guide Format: Proprietary content model combining structured workflows with AI-generated answers
  • Limited Data Sources: No Google Drive, Dropbox, Notion, SharePoint, or YouTube transcript extraction
  • Manual Content Updates: Updates through Stonly's visual editor—no automatic syncing from external sources
  • 71% Self-Serve Success Rate: Documented effectiveness of AI Answers in reducing support escalations
  • Hallucination Controls: Strong grounding in structured content vs open-ended conversational AI
  • Hybrid search: Combines semantic vector search with keyword (BM25) matching for strong retrieval accuracy across query types
  • Advanced reranking: Multi-stage reranking pipeline cuts hallucinations and ensures factual consistency in generated responses
  • Google web-crawling: Taps into Google's web-crawling infrastructure to ingest relevant public website content into indexes automatically
  • Continuous ingestion: Keeps knowledge base current with automatic indexing and auto-refresh preventing stale data
  • Fine-grained indexing control: Set chunk sizes, metadata tags, and retrieval parameters to shape semantic search behavior
  • Semantic/lexical weighting: Adjust balance between semantic and keyword search per query type for optimal retrieval
  • Structured/unstructured data: Handles both structured data (BigQuery, Cloud SQL) and unstructured documents (PDF, HTML, CSV) from Google Cloud Storage
  • Factual consistency scoring: Hybrid search + reranking returns factual-consistency score with every answer for reliability assessment
  • Custom cognitive skills: Slot in custom processing or open-source models for specialized domain requirements
  • Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks RAG Performance
  • Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content Benchmark Details
  • Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
  • Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
  • Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
  • Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
  • Source verification: Always cites sources so users can verify facts on the spot
Use Cases
  • Customer Support Ticket Deflection: 70-76% ticket reduction through interactive self-service guides and AI Answers
  • Help Desk Integration: Deep Zendesk, Salesforce Service Cloud, Freshdesk, ServiceNow integration for unified support workflows
  • Interactive Onboarding: Step-by-step guides, decision trees, and checklists for product onboarding and user education
  • Knowledge Base Enhancement: Augment traditional help centers with interactive guides and AI-powered search
  • Agent Assistance: Provide support agents with guided workflows and AI answers during live interactions
  • Multi-Language Support: Auto-translation on Enterprise plan for global support teams and multilingual customers
  • Complex Troubleshooting: Decision tree logic guides users through multi-step troubleshooting processes
  • Compliance & Training: Structured guides ensuring consistent information delivery for regulated industries
  • GCP-native organizations: Perfect for companies already using BigQuery, Cloud Functions, Dataflow wanting unified AI infrastructure
  • Global enterprise deployments: Multi-region deployment with Google's global infrastructure for millisecond responses worldwide
  • Public content ingestion: Leverage Google's web-crawling muscle to automatically fold relevant public web content into knowledge bases
  • Multimodal understanding: Gemini models process and reason over text, images, videos, and code for rich content analysis
  • Google Workspace integration: Seamless integration with Gmail, Docs, Sheets for content-heavy workflows within Workspace ecosystem
  • BigQuery analytics integration: Tight coupling with BigQuery for analytics on conversation data, user behavior, and system performance
  • Enterprise conversational AI: Build customer service bots, internal knowledge assistants, and autonomous agents grounded in company data
  • Regulated industries: Healthcare, finance, government with SOC/ISO/HIPAA/GDPR compliance and customer-managed encryption keys
  • Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
  • Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
  • Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
  • Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
  • Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
  • Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
  • Financial services: Product guides, compliance documentation, customer education with GDPR compliance
  • E-commerce: Product recommendations, order assistance, customer inquiries with API integration to 5,000+ apps via Zapier
  • SaaS onboarding: User guides, feature explanations, troubleshooting with multi-agent support for different teams
Security & Compliance
  • SOC 2 Type 2: Service Organization Control certification for security, availability, and confidentiality
  • GDPR Compliant: European data protection regulation compliance with data processing agreements
  • HIPAA Compliant: Healthcare data protection requirements for medical organizations and patient information
  • ISO 27001: International information security management system standard
  • PCI Compliant: Payment Card Industry Data Security Standard for handling payment information
  • CSA Star Level 1: Cloud Security Alliance STAR self-assessment certification
  • Trust Center: Public trust.stonly.com with security documentation, subprocessor lists, and controls information
  • SAML 2.0 SSO (Enterprise): Single sign-on integration with enterprise identity providers
  • IP Allowlisting (Enterprise): Restrict access to specific IP ranges for enhanced security
  • Advanced RBAC (Enterprise): Role-based access control with granular permissions and activity tracking
  • Two-Factor Authentication: SMS, email, hardware tokens, TOTP, U2F for account security
  • International Data Transfers: Standard Contractual Clauses for EU compliance and data protection
  • Data Residency: Options not publicly documented—may limit deployment in certain jurisdictions
  • Google Cloud security stack: Encryption in transit (TLS 1.3) and at rest (AES-256) with fine-grained IAM for access control
  • SOC 2/SOC 3 certified: Comprehensive security controls audited demonstrating enterprise-grade operational security
  • ISO 27001/27017/27018 certified: International information security management standards for cloud services and data protection
  • HIPAA compliant: Healthcare data handling with Business Associate Agreements (BAA) for protected health information (PHI)
  • GDPR compliant: EU General Data Protection Regulation compliance with data subject rights and EU data residency options
  • Customer-managed encryption keys (CMEK): Bring your own encryption keys for full cryptographic control over data
  • Private Link: Private network connectivity between on-premise infrastructure and GCP for network isolation
  • Detailed audit logs: Cloud Audit Logs track all API calls, resource access, and configuration changes for compliance
  • VPC and on-prem deployment: Deploy in public cloud, Virtual Private Cloud (VPC), or on-premise for strict data-residency rules
  • Encryption: SSL/TLS for data in transit, 256-bit AES encryption for data at rest
  • SOC 2 Type II certification: Industry-leading security standards with regular third-party audits Security Certifications
  • GDPR compliance: Full compliance with European data protection regulations, ensuring data privacy and user rights
  • Access controls: Role-based access control (RBAC), two-factor authentication (2FA), SSO integration for enterprise security
  • Data isolation: Customer data stays isolated and private - platform never trains on user data
  • Domain allowlisting: Ensures chatbot appears only on approved sites for security and brand protection
  • Secure deployments: ChatGPT Plugin support for private use cases with controlled access
Pricing & Plans
  • Basic (Free): 5 guides, 400 views/month, 1 seat, single language, Stonly branding
  • Small Business ($249/mo or $199/mo annual): Unlimited guides, 4,000 views/month, 5 seats, 3 knowledge bases, CSS customization, Zapier, NPS surveys
  • Enterprise (Custom, ~$39K/year avg): Custom views, unlimited seats, white-label, SAML SSO, auto-translation, CSAT/CES surveys, Mobile SDKs
  • AI Answers (Enterprise Add-On): Available only as paid add-on to Enterprise plan—not included in Small Business tier
  • Overage Pricing: +15K views = $200/month, +30K views = $400/month (escalates quickly)
  • Automatic Tier Upgrades: Exceeding limits for 2 consecutive months triggers automatic upgrade and billing adjustment
  • Enterprise-Gated Features: AI Answers, Mobile SDKs, SAML SSO, white-labeling all require Enterprise plan
  • Average Enterprise Contract: ~$39,000 annually according to Vendr procurement data
  • Pay-as-you-go: Charges for storage, query volume, and model compute with no upfront commitments or minimum spend
  • Free tier: New customers get up to $300 in free credits to experiment with Vertex AI and other Google Cloud products
  • Gemini 2.5 Pro: $1.25-$2.50/M input tokens, $10-$15/M output tokens (context-dependent) for advanced reasoning
  • Gemini 2.5 Flash: $0.30/M input tokens, $2.50/M output tokens for cost-effective high-speed inference
  • Gemini 2.0 Flash: $0.15/M input tokens, $0.60/M output tokens for ultra-low-cost deployment at scale
  • Imagen pricing: $0.0001 per image for specific endpoints enabling visual content generation
  • Autoscaling: Scales effortlessly on Google's global backbone with automatic resource adjustment preventing overprovisioning
  • Enterprise agreements: Volume discounts and committed use discounts for GCP customers with existing enterprise agreements
  • Unified billing: Single GCP bill for Vertex AI, BigQuery, Cloud Functions, and all Google Cloud services
  • Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security View Pricing
  • Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
  • Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs Enterprise Solutions
  • 7-Day Free Trial: Full access to Standard features without charges - available to all users
  • Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
  • Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
  • Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
  • 4.8/5 G2 Rating: 132 reviews with consistently high satisfaction scores
  • Ease of Use Praised: "Ease of use" mentioned 32 times in G2 reviews indicating intuitive platform
  • Help Center Documentation: Comprehensive guides and tutorials for platform features
  • Email and Chat Support: Standard support channels for all paid plans
  • Dedicated Support (Enterprise): Priority support with dedicated account team and faster response times
  • Pre-Built Templates: Common support scenario templates accelerating guide creation
  • Quick Onboarding: Users report creating guides in under 30 minutes with small learning curve
  • REST API Documentation: API reference for user provisioning, content management, and widget control
  • Mobile SDKs (Enterprise): iOS, Android, React Native, Flutter for native app integration
  • Limited Developer Resources: No Python/Node.js SDKs, GraphQL, OpenAPI specs, or API Explorer/sandbox
  • Google Cloud enterprise support: Multiple support tiers (Basic, Standard, Enhanced, Premium) with SLAs and dedicated technical account managers
  • 24/7 global support: Premium support includes 24/7 phone, email, and chat with 15-minute response time for P1 issues
  • Comprehensive documentation: Detailed guides at cloud.google.com/vertex-ai/docs covering APIs, SDKs, best practices, and tutorials
  • Community forums: Google Cloud Community for peer support, knowledge sharing, and best practice discussions
  • Sample projects and notebooks: Pre-built examples, Jupyter notebooks, and quick-start guides on GitHub for rapid integration
  • Training and certification: Google Cloud training programs, hands-on labs, and certification paths for Vertex AI and machine learning
  • Partner ecosystem: Robust ecosystem of Google Cloud partners offering consulting, implementation, and managed services
  • Regular updates: Continuous R&D investment from Google pouring resources into RAG and generative AI capabilities
  • Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding Developer Docs
  • Email and in-app support: Quick support via email and in-app chat for all users
  • Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
  • Code samples: Cookbooks, step-by-step guides, and examples for every skill level API Documentation
  • Open-source resources: Python SDK (customgpt-client), Postman collections, GitHub integrations Open-Source SDK
  • Active community: User community plus 5,000+ app integrations through Zapier ecosystem
  • Regular updates: Platform stays current with ongoing GPT and retrieval improvements automatically
Limitations & Considerations
  • NOT a RAG-as-a-Service Platform: Fundamentally a knowledge base tool with embedded AI—not a flexible RAG backend
  • AI Answers Enterprise-Gated: Core AI capabilities require expensive Enterprise plan (~$39K/year)—not available on $249/month Small Business tier
  • Undisclosed AI Model: No transparency on LLM provider—users cannot select or customize models
  • Limited Data Source Flexibility: PDF, public web, Zendesk only—missing Google Drive, Dropbox, Notion, SharePoint, YouTube
  • No Automatic Content Syncing: Manual updates through visual editor—no real-time integration with external knowledge sources
  • Missing Consumer Messaging: No Slack, WhatsApp, Telegram, Microsoft Teams native integrations (confirmed by user reviews)
  • No Omnichannel Messaging: Primarily website embedding and help desk integration—limited multi-channel support
  • Cannot Edit on Mobile: Guide creation and editing restricted to desktop—mobile limitation for on-the-go teams
  • Angular Compatibility Issues: Reported "random" behavior with Angular framework dynamic code
  • No Real-Time Analytics: Flow reports update every 15 minutes—not true real-time monitoring
  • Limited Developer API: No Python/Node.js SDKs, GraphQL, Swagger specs, or API sandbox for testing
  • Overage Pricing Escalation: View limits can trigger expensive automatic upgrades after 2 consecutive months
  • Not Ideal For: Developers seeking pure RAG API, multi-tenant SaaS RAG backends, use cases needing model selection/fine-tuning, or flexible data source integration
  • GCP ecosystem dependency: Strongest value for organizations already using Google Cloud - less compelling for AWS/Azure-native companies
  • No full drag-and-drop chatbot builder: Cloud console manages indexes and search settings, but not a complete no-code GUI like Tidio or WonderChat
  • Learning curve for non-GCP users: Teams unfamiliar with Google Cloud face steeper learning curve vs platform-agnostic alternatives
  • Model selection limited to Google: PaLM 2 and Gemini family only - no native Claude, GPT-4, or Llama support compared to multi-model platforms
  • Requires technical expertise: Deeper customization calls for developer skills - not suitable for non-technical teams without GCP experience
  • Pricing complexity: Pay-as-you-go model requires careful monitoring to prevent unexpected costs at scale
  • Overkill for simple use cases: Enterprise RAG capabilities and GCP integration unnecessary for basic FAQ bots or simple customer service
  • Vendor lock-in considerations: Deep GCP integration creates switching costs if migrating to alternative cloud providers in future
  • Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
  • Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
  • Model selection: Limited to OpenAI (GPT-5.1 and 4 series) and Anthropic (Claude, opus and sonnet 4.5) - no support for other LLM providers (Cohere, AI21, open-source models)
  • Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
  • Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
  • Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
  • Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
  • Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
  • Conversational AI Bot: Delivers confident answers backed by verified structured knowledge unlike generic LLMs that can hallucinate or invent answers
  • Knowledge-grounded responses: Provides answers backed by verified structured knowledge from guides you create preventing fabricated information
  • AI Agent Assist: Automatically summarizes tickets, suggests right path to resolution, and generates responses for support agents
  • Three core automation functions: Automatically analyzes and summarizes support ticket content, recommends most relevant Stonly guide/knowledge path to resolve issues, drafts complete responses for agents to review/edit/send
  • Process automation: Define processes to be followed and link them to different back-office tools to resolve customer requests before they reach support
  • Personalized knowledge: AI-powered solutions and process automation allow creation of guides, walkthroughs, checklists, knowledge bases adapting to each customer's needs
  • 71% self-serve success rate: With AI Answers feature documented in company data
  • Hallucination reduction: Knowledge-grounding approach vs generic chatbots reduces off-topic responses
  • Vertex AI Agent Engine: Build autonomous agents with short-term and long-term memory for managing sessions and recalling past conversations and preferences
  • Agent Builder (April 2024): Visual drag-and-drop interface to create AI agents without code, with advanced integrations to LlamaIndex, LangChain, and RAG capabilities combining LLM-generated responses with real-time data retrieval
  • Multi-turn conversation context: Agent Engine Sessions store individual user-agent interactions as definitive sources for conversation context, enabling coherent multi-turn interactions
  • Memory Bank: Stores and retrieves information from sessions to personalize agent interactions and maintain context across conversations
  • Agent orchestration: Agents can maintain context across systems, discover each other's capabilities dynamically, and negotiate interaction formats
  • Human handoff capabilities: Generate interaction summaries, citations, and other data to facilitate handoffs between AI apps and human agents with full conversation history
  • Observability tools: Google Cloud Trace, Cloud Monitoring, and Cloud Logging provide comprehensive understanding of agent behavior and performance
  • Action-based agents: Take actions based on conversations and interact with back-end transactional systems in an automated manner
  • Data source tuning: Tune chats with various data sources including conversation histories to enable smooth transitions and continuous improvement
  • LIMITATION: Technical expertise required: Agent Builder introduced visual interface in 2024, but deeper customization and orchestration still require GCP/developer skills
  • LIMITATION: No native lead capture: Unlike specialized chatbot platforms, Vertex AI focuses on enterprise conversational AI rather than marketing automation features
  • Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
  • Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
  • Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
  • Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions View Agent Documentation
  • Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
  • Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
  • Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
Additional Considerations
  • Limited UI customization: Limited ability to customize user interface and workflows to match specific brand requirements is primary user concern
  • Basic collaboration tools: Without real-time editing or advanced team management features can hinder team productivity when multiple people need to work together
  • No offline access: Guides unavailable without internet connectivity reducing usability in areas with unreliable internet
  • Performance degradation: Can degrade with very large or complex guides causing slower responsiveness indicating scalability concerns
  • Restricted language options: Limit efficient creation of multilingual content which may be barrier for global organizations
  • Mixed media support missing: Users find missing features wishing for mixed media support and enhanced reporting tools
  • Step ordering difficulties: Users report limitations in feature usability and difficulties with step ordering though support offers helpful workarounds
  • Requires coding knowledge: Unlike most competitors, doesn't advertise as no-code platform - need coding knowledge to track events, target users, stream data, and style content
  • Image workflow limitations: Inability to use images in base offering limits utility in some workflows with some advanced features requiring extra costs
  • View-based pricing: Charges additional fees based on guide views - customers exceeding 4,000 guide views/month pay extra $250-500 monthly depending on volume
  • Integration reliability: Users find lack of integrations limits ability to fully connect Stonly with other tools - Stonly/Zendesk integration isn't as reliable as desired (stops working every few weeks)
  • Packs hybrid search and reranking that return a factual-consistency score with every answer.
  • Supports public cloud, VPC, or on-prem deployments if you have strict data-residency rules.
  • Gets regular updates as Google pours R&D into RAG and generative AI capabilities.
  • Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
  • Gets you to value quickly: launch a functional AI assistant in minutes.
  • Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
  • Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
Core Chatbot Features
  • Interactive step-by-step guides: Visual flow builder for creating structured content paths
  • Decision trees and branching logic: Guide users through complex troubleshooting with intelligent path selection
  • Checklists and task management: Help users complete multi-step processes with progress tracking
  • Contact forms and lead capture: Integrated forms for collecting customer information during interactions
  • Content versioning: Side-by-side comparison and instant restore on Business and Enterprise plans for content management
  • Multi-language support: Auto-translation on Enterprise plan for global deployments
  • Knowledge bases: 3 on Small Business plan, unlimited on Enterprise for organizing content
  • Guide views tracking: 400 (Free), 4,000 (Small Business), custom (Enterprise) for monitoring usage
  • NPS surveys: Available on all plans for measuring customer satisfaction
  • CSAT and CES surveys: Enterprise only for comprehensive satisfaction and effort measurement
  • Pairs Vertex AI Search with Vertex AI Conversation to craft answers grounded in your indexed data (Google Developers Blog Vertex AI RAG).
  • Draws on Google’s PaLM 2 or Gemini models for rich, context-aware responses.
  • Handles multi-turn dialogue and keeps track of context so chats stay coherent.
  • Reduces hallucinations by grounding replies in your data and adding source citations for transparency. Benchmark Details
  • Handles multi-turn, context-aware chats with persistent history and solid conversation management.
  • Speaks 90+ languages, making global rollouts straightforward.
  • Includes extras like lead capture (email collection) and smooth handoff to a human when needed.
Customization & Flexibility ( Behavior & Knowledge)
  • CSS and HTML customization: Change layout and look of knowledge base with custom code capabilities
  • Intuitive customization tools: Easy-to-use tools that don't require code for basic customization
  • Layout customization: Decide how content is structured and presented with flexible options
  • Design controls: Manage visual components like colors, logo, or cover image for brand alignment
  • Personalized content: Use customer data to show personalized content from knowledge base for targeted experiences
  • Data-driven personalization: Customers see what they need right away when first accessing knowledge base
  • Analytics insights: Guide usage analytics provide insight into customer behavior for continuous improvement
  • Highly flexible platform: Users appreciate ability to use Stonly for knowledge bases and guided tours with target properties based on specific user needs
  • Rich media support: Add images, GIFs, videos, and annotations to bring knowledge base content to life
  • Third-party scripts: Install scripts from other tools like Google Analytics for extended functionality
  • Gives fine-grained control over indexing—set chunk sizes, metadata tags, and more to shape retrieval (Google Cloud Vertex AI Search).
  • Lets you adjust generation knobs (temperature, max tokens) and craft prompt templates for domain-specific flair.
  • Can slot in custom cognitive skills or open-source models when you need specialized processing.
  • Lets you add, remove, or tweak content on the fly—automatic re-indexing keeps everything current.
  • Shapes agent behavior through system prompts and sample Q&A, ensuring a consistent voice and focus. Learn How to Update Sources
  • Supports multiple agents per account, so different teams can have their own bots.
  • Balances hands-on control with smart defaults—no deep ML expertise required to get tailored behavior.

Ready to experience the CustomGPT difference?

Start Free Trial →

Final Thoughts

Final Verdict: Stonly vs Vertex AI

After analyzing features, pricing, performance, and user feedback, both Stonly and Vertex AI are capable platforms that serve different market segments and use cases effectively.

When to Choose Stonly

  • You value exceptional ease of use - 4.8/5 g2 rating with intuitive visual editor praised in 32 reviews
  • Deep help desk integrations - bidirectional Zendesk, Salesforce, Freshdesk, ServiceNow connections
  • Strong compliance - SOC 2 Type 2, GDPR, HIPAA, ISO 27001, PCI, CSA Star Level 1

Best For: Exceptional ease of use - 4.8/5 G2 rating with intuitive visual editor praised in 32 reviews

When to Choose Vertex AI

  • You value industry-leading 2m token context window with gemini models
  • Comprehensive ML platform covering entire AI lifecycle
  • Deep integration with Google Cloud ecosystem

Best For: Industry-leading 2M token context window with Gemini models

Migration & Switching Considerations

Switching between Stonly and Vertex AI requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.

Pricing Comparison Summary

Stonly starts at $249/month, while Vertex AI begins at custom pricing. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.

Our Recommendation Process

  1. Start with a free trial - Both platforms offer trial periods to test with your actual data
  2. Define success metrics - Response accuracy, latency, user satisfaction, cost per query
  3. Test with real use cases - Don't rely on generic demos; use your production data
  4. Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
  5. Check vendor stability - Review roadmap transparency, update frequency, and support quality

For most organizations, the decision between Stonly and Vertex AI comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.

📚 Next Steps

Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.

  • Review: Check the detailed feature comparison table above
  • Test: Sign up for free trials and test with real queries
  • Calculate: Estimate your monthly costs based on expected usage
  • Decide: Choose the platform that best aligns with your requirements

Last updated: December 15, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.

Ready to Get Started with CustomGPT?

Join thousands of businesses that trust CustomGPT for their AI needs. Choose the path that works best for you.

Why Choose CustomGPT?

97% Accuracy

Industry-leading benchmarks

5-Min Setup

Get started instantly

24/7 Support

Expert help when you need it

Enterprise Ready

Scale with confidence

Trusted by leading companies worldwide

Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500Fortune 500

CustomGPT

The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.

Get in touch
Contact Us

Join the Discussion

Loading comments...

Priyansh Khodiyar's avatar

Priyansh Khodiyar

DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.

Watch: Understanding AI Tool Comparisons