In this comprehensive guide, we compare Stonly and Voiceflow across various parameters including features, pricing, performance, and customer support to help you make the best decision for your business needs.
Overview
When choosing between Stonly and Voiceflow, understanding their unique strengths and architectural differences is crucial for making an informed decision. Both platforms serve the RAG (Retrieval-Augmented Generation) space but cater to different use cases and organizational needs.
Quick Decision Guide
Choose Stonly if: you value exceptional ease of use - 4.8/5 g2 rating with intuitive visual editor praised in 32 reviews
Choose Voiceflow if: you value visual workflow builder enables non-technical teams to build complex agents
About Stonly
Stonly is interactive knowledge base platform with enterprise ai-powered answers. Stonly is a customer support knowledge management platform with embedded AI capabilities focused on interactive step-by-step guides and help desk agent assistance. Its AI Answers feature (Enterprise-only add-on) achieves 71% self-serve success rates, but it's fundamentally a knowledge base platform with AI features—not a pure RAG-as-a-Service solution. Founded in 2017, headquartered in San Francisco, CA, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
96/100
Starting Price
$249/mo
About Voiceflow
Voiceflow is collaborative ai agent building platform for teams. Voiceflow is a collaborative workflow-first platform for building, deploying, and scaling AI agents. Born from Alexa skill development (2017-2019), it evolved into a full-stack agent platform with visual canvas design, function calling, and enterprise-grade observability. Used by Mercedes-Benz, JP Morgan, and 200K+ teams. Founded in 2017, headquartered in Toronto, Canada, the platform has established itself as a reliable solution in the RAG space.
Overall Rating
90/100
Starting Price
$40/mo
Key Differences at a Glance
In terms of user ratings, Stonly in overall satisfaction. From a cost perspective, Voiceflow offers more competitive entry pricing. The platforms also differ in their primary focus: Knowledge Management versus AI Agent Platform. These differences make each platform better suited for specific use cases and organizational requirements.
⚠️ What This Comparison Covers
We'll analyze features, pricing, performance benchmarks, security compliance, integration capabilities, and real-world use cases to help you determine which platform best fits your organization's needs. All data is independently verified from official documentation and third-party review platforms.
Detailed Feature Comparison
Stonly
Voiceflow
CustomGPTRECOMMENDED
Data Ingestion & Knowledge Sources
PDF uploads confirmed
Public website crawling: Pages not requiring authentication
Zendesk help center content indexing
Proprietary interactive guide format as primary content model
Note: No Google Drive, Dropbox, Notion, or SharePoint integrations for data ingestion
Note: No YouTube transcript extraction (videos can be embedded but not processed)
Note: No direct Word document (.docx) or HTML file imports confirmed
Note: No automatic content syncing from external sources - updates are manual through Stonly's visual editor
Content limits by tier: Basic (5 guides, 400 views/mo), Small Business (unlimited guides, 4K views/mo), Enterprise (custom)
Content versioning: Side-by-side comparison and instant restore on Business and Enterprise plans
Knowledge Base (KB) feature with RAG-powered document retrieval
Supports file uploads: PDF, Word docs, plain text, CSV
Website crawling with sitemap ingestion
Note: Accuracy concerns: User reviews note KB "often inaccurate" and "too general"
Manual document chunking and preprocessing required for optimal results
Integrations for knowledge: Google Drive, Notion, Confluence, Zendesk
Auto-sync available for connected sources (Pro+)
Vector search with semantic matching for knowledge retrieval
Custom metadata tagging for organized knowledge management
No explicit document limits on plans - scales based on storage tier
Lets you ingest more than 1,400 file formats—PDF, DOCX, TXT, Markdown, HTML, and many more—via simple drag-and-drop or API.
Crawls entire sites through sitemaps and URLs, automatically indexing public help-desk articles, FAQs, and docs.
Turns multimedia into text on the fly: YouTube videos, podcasts, and other media are auto-transcribed with built-in OCR and speech-to-text.
View Transcription Guide
Connects to Google Drive, SharePoint, Notion, Confluence, HubSpot, and more through API connectors or Zapier.
See Zapier Connectors
Supports both manual uploads and auto-sync retraining, so your knowledge base always stays up to date.
L L M Model Options
Note: Undisclosed proprietary LLM - Stonly does not disclose the specific model powering AI Answers
Note: No model selection - users cannot choose between GPT-3.5, GPT-4, Claude, or other models
Note: No temperature controls, fine-tuning, or model routing
AI Profiles: Up to 20 per team for tone and behavior customization
Custom Instructions: Up to 100 per team defining boundaries and style
Guided AI Answers: Define specific questions that trigger predetermined answers, bypassing AI generation for sensitive scenarios
Automatic fallback: When AI confidence is low, system falls back to ML-powered search rather than forcing an answer
Knowledge-grounded approach: AI responses anchored in Stonly guides, external websites, and selected PDFs to reduce hallucinations
Documentation: Comprehensive guides, video tutorials, API docs
Training resources: Voiceflow Academy with certification programs
Partner program: Agency partnerships for white-label development
Supplies rich docs, tutorials, cookbooks, and FAQs to get you started fast.
Developer Docs
Offers quick email and in-app chat support—Premium and Enterprise plans add dedicated managers and faster SLAs.
Enterprise Solutions
Benefits from an active user community plus integrations through Zapier and GitHub resources.
No- Code Interface & Usability
4.8/5 ease of use rating on G2
"Ease of use" mentioned 32 times in G2 reviews
Visual drag-and-drop editor requires no coding
Small learning curve - non-technical teams productive quickly
Guide creation in under 30 minutes reported by users
Pre-built templates for common scenarios
Intuitive interface for support teams
Note: Some navigation confusion reported in admin interface
Note: Cannot edit on mobile devices
Visual canvas builder with drag-and-drop simplicity
Google Docs-style collaboration: 10+ people editing simultaneously
Real-time cursor tracking, comments, and mentions
Block-based architecture: 50+ pre-built blocks for common tasks
No coding required for 80% of use cases
Custom code option: JavaScript blocks for advanced logic when needed
Template library: Start from 100+ pre-built templates
Component library for reusable workflow sections
Testing tools: Built-in chat simulator for real-time testing
One-click deployment: Publish to channels with single button
Ease of use rating: 8.7/10 (G2 reviews) - complex features require training
Voiceflow Academy provides certification and training for team ramp-up
Offers a wizard-style web dashboard so non-devs can upload content, brand the widget, and monitor performance.
Supports drag-and-drop uploads, visual theme editing, and in-browser chatbot testing.
User Experience Review
Uses role-based access so business users and devs can collaborate smoothly.
R A G-as-a- Service Assessment
Note: NOT a RAG-as-a-Service platform - fundamentally a knowledge base tool with embedded AI
Data source flexibility: Limited (PDF, public web, Zendesk only) vs comprehensive RAG platforms
LLM model options: None (undisclosed proprietary model, no user selection)
API-first architecture: Weak (widget-focused, limited SDKs, no server-side SDKs)
Performance benchmarks: Not published
Self-service AI pricing: Not available (Enterprise-gated, ~$39K/year)
Help desk integration depth: Excellent (best-in-class Zendesk, Salesforce, Freshdesk)
Hallucination controls: Strong (grounded in structured content)
Best for: Customer support ticket deflection, not flexible RAG backends
Not ideal for: Developers seeking pure RAG API, multi-tenant SaaS RAG backends, use cases needing model selection/fine-tuning
Platform Type: WORKFLOW-FIRST PLATFORM WITH RAG CAPABILITIES - specialized in complex multi-step orchestration and team collaboration, NOT a pure RAG-as-a-Service platform
Core Architecture: Visual workflow canvas with 50+ drag-and-drop blocks combining intent-based approaches with RAG integration for knowledge-based responses (hybrid Intent + RAG architecture)
RAG Integration: Knowledge Base feature with vector search (Qdrant) querying documents using GPT-4, but RAG is secondary to workflow automation capabilities
Developer Experience: Comprehensive REST API, JavaScript/TypeScript and Python SDKs, custom code blocks (JavaScript execution within workflows), GraphQL API for flexible querying
No-Code Alternative: Google Docs-style collaboration with visual canvas builder - 10+ people editing simultaneously with real-time cursor tracking, comments, and mentions
Hybrid Target Market: Enterprise teams (200K+ users, Mercedes-Benz, JP Morgan, Shopify) needing sophisticated multi-agent workflows beyond simple Q&A - less suitable for pure document retrieval use cases
RAG Limitations: Knowledge Base "often inaccurate" per reviews, no configurable RAG parameters (chunking strategy, embedding models, similarity thresholds), manual preprocessing required
Workflow Strengths: Excels at complex orchestration with API integrations, multi-agent coordination, human handoff, CRM/helpdesk integrations (15+), and sophisticated customer journeys
Industry Positioning (2024): Moved toward hybrid approaches combining workflows, intent recognition, and RAG - pure vector databases lead to low recall/hit rates, workflows remain essential for integrating systems and controlled task execution
Deployment Flexibility: 15+ channel integrations (Slack, Teams, WhatsApp, Alexa, Google Assistant), webhook support, website embed widget, native mobile SDKs (iOS/Android)
Use Case Fit: Ideal for complex multi-step workflows requiring API integrations/orchestration, real-time team collaboration (10+ editors), voice assistants (Alexa/Google/telephony); NOT ideal for simple document Q&A due to KB accuracy issues
Competitive Positioning: More sophisticated than no-code chatbots (Chatbase, WonderChat) but less specialized than pure RAG platforms (CustomGPT) - competes with Botpress, Rasa, Microsoft Power Virtual Agents
LIMITATION: Not pure RAG: Workflow-first platform where RAG is feature, not core offering - organizations needing advanced RAG controls should consider specialized platforms (CustomGPT, Ragie, Vertex AI)
LIMITATION: Pricing escalation: Per-seat charges ($15-25/user) and per-agent fees ($20-50) can escalate quickly - best value for teams needing collaboration and workflows over simple RAG
Core Architecture: Serverless RAG infrastructure with automatic embedding generation, vector search optimization, and LLM orchestration fully managed behind API endpoints
API-First Design: Comprehensive REST API with well-documented endpoints for creating agents, managing projects, ingesting data (1,400+ formats), and querying chat
API Documentation
Developer Experience: Open-source Python SDK (customgpt-client), Postman collections, OpenAI API endpoint compatibility, and extensive cookbooks for rapid integration
No-Code Alternative: Wizard-style web dashboard enables non-developers to upload content, brand widgets, and deploy chatbots without touching code
Hybrid Target Market: Serves both developer teams wanting robust APIs AND business users seeking no-code RAG deployment - unique positioning vs pure API platforms (Cohere) or pure no-code tools (Jotform)
RAG Technology Leadership: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, proprietary anti-hallucination mechanisms, and citation-backed responses
Benchmark Details
Deployment Flexibility: Cloud-hosted SaaS with auto-scaling, API integrations, embedded chat widgets, ChatGPT Plugin support, and hosted MCP Server for Claude/Cursor/ChatGPT
Enterprise Readiness: SOC 2 Type II + GDPR compliance, full white-labeling, domain allowlisting, RBAC with 2FA/SSO, and flat-rate pricing without per-query charges
Use Case Fit: Ideal for organizations needing both rapid no-code deployment AND robust API capabilities, teams handling diverse content types (1,400+ formats, multimedia transcription), and businesses requiring production-ready RAG without building ML infrastructure from scratch
Competitive Positioning: Bridges the gap between developer-first platforms (Cohere, Deepset) requiring heavy coding and no-code chatbot builders (Jotform, Kommunicate) lacking API depth - offers best of both worlds
Competitive Positioning
Unique strength: Interactive guide format for structured support content
vs CustomGPT: Not comparable - different product categories (knowledge base vs RAG-as-a-Service)
vs Zendesk: Lighter-weight alternative focused on self-service guides vs full customer service platform
vs traditional chatbots: Interactive guides provide structured paths vs free-form conversation
Target audience: Support teams using Zendesk/Salesforce, not developers building RAG applications
70-76% ticket reduction documented in case studies
71% self-serve success rate with AI Answers
Enterprise compliance suitable for regulated industries
Market position: Workflow-first conversational AI platform (founded 2017, $28M funding) specializing in complex multi-step orchestration and team collaboration, not pure RAG tool
Target customers: Enterprise teams (200K+ users, customers: Mercedes-Benz, JP Morgan, Shopify) needing sophisticated multi-agent workflows, organizations requiring team collaboration (10+ simultaneous editors), and companies building voice assistants for Alexa/Google/telephony beyond simple Q&A
Key competitors: Botpress, Rasa, Microsoft Power Virtual Agents, and workflow automation platforms; less comparable to pure RAG tools (CustomGPT, Botsonic)
Competitive advantages: Visual workflow canvas with 50+ drag-and-drop blocks for complex orchestration, Google Docs-style real-time collaboration (10+ editors), multi-model support (GPT-4, GPT-3.5, Claude, Gemini) with per-step selection, 15+ native integrations (CRM, helpdesk, messaging, e-commerce), SOC 2/GDPR/HIPAA compliance with on-prem deployment, comprehensive API/SDKs (JS, Python) with webhook system, 99.9% uptime SLA (Enterprise), A/B testing framework, and Voiceflow Academy for training/certification
Pricing advantage: Free Sandbox tier (2 agents, unlimited interactions); Pro at $50/month reasonable for startups; Team ($625/month) and Enterprise (custom) can escalate quickly with per-seat charges ($15-25/user) and per-agent fees ($20-50); best value for teams needing complex workflows and collaboration over simple RAG; Knowledge Base accuracy concerns make it less suitable for pure document Q&A
Use case fit: Ideal for enterprises building complex multi-step workflows requiring API integrations and orchestration, teams needing real-time collaboration (10+ people) on conversational AI development, and organizations building voice assistants (Alexa, Google) or sophisticated customer journeys; NOT ideal for simple document Q&A due to Knowledge Base accuracy issues ("often inaccurate" per reviews)
Market position: Leading all-in-one RAG platform balancing enterprise-grade accuracy with developer-friendly APIs and no-code usability for rapid deployment
Target customers: Mid-market to enterprise organizations needing production-ready AI assistants, development teams wanting robust APIs without building RAG infrastructure, and businesses requiring 1,400+ file format support with auto-transcription (YouTube, podcasts)
Key competitors: OpenAI Assistants API, Botsonic, Chatbase.co, Azure AI, and custom RAG implementations using LangChain
Competitive advantages: Industry-leading answer accuracy (median 5/5 benchmarked), 1,400+ file format support with auto-transcription, SOC 2 Type II + GDPR compliance, full white-labeling included, OpenAI API endpoint compatibility, hosted MCP Server support (Claude, Cursor, ChatGPT), generous data limits (60M words Standard, 300M Premium), and flat monthly pricing without per-query charges
Pricing advantage: Transparent flat-rate pricing at $99/month (Standard) and $449/month (Premium) with generous included limits; no hidden costs for API access, branding removal, or basic features; best value for teams needing both no-code dashboard and developer APIs in one platform
Use case fit: Ideal for businesses needing both rapid no-code deployment and robust API capabilities, organizations handling diverse content types (1,400+ formats, multimedia transcription), teams requiring white-label chatbots with source citations for customer-facing or internal knowledge projects, and companies wanting all-in-one RAG without managing ML infrastructure
A I Models
Undisclosed Proprietary LLM: Stonly does not publicly disclose the specific model powering AI Answers feature
No Model Selection: Users cannot choose between GPT-3.5, GPT-4, Claude, Gemini, or other LLM providers
No Temperature Controls: No user-facing controls for adjusting response creativity, randomness, or formatting
No Fine-Tuning or Model Routing: Cannot customize model behavior beyond predefined AI Profiles and Custom Instructions
AI Profiles (Up to 20): Define tone, boundaries, and behavior for different use cases or audiences
Custom Instructions (Up to 100): Set specific rules and style guidelines for AI response generation
Guided AI Answers: Predefined responses for specific questions bypassing AI generation for sensitive scenarios
Automatic Fallback: Low-confidence scenarios trigger fallback to ML-powered search rather than forcing unreliable AI answer
Knowledge-Grounded Approach: AI responses anchored in Stonly guides, external websites, and PDFs to reduce hallucinations
Multi-model support: GPT-4, GPT-3.5-turbo, Claude (Anthropic), Google Gemini with per-agent or per-step model selection
Function calling: GPT-4 and Claude function calling for real-time action triggering during conversations
Custom model integration: Integrate proprietary LLMs via API for specialized domain requirements
Temperature and token controls: Configurable per request for balancing creativity vs predictability (0.0-2.0 range)
Automatic fallback models: Configure backup models for reliability when primary model unavailable
Cost optimization routing: Route simple queries to GPT-3.5, complex queries to GPT-4 for cost management
Prompt engineering tools: System prompts, few-shot examples, response formatting templates for domain-specific behavior
Primary models: GPT-4, GPT-3.5 Turbo from OpenAI, and Anthropic's Claude for enterprise needs
Automatic model selection: Balances cost and performance by automatically selecting the appropriate model for each request
Model Selection Details
Proprietary optimizations: Custom prompt engineering and retrieval enhancements for high-quality, citation-backed answers
Managed infrastructure: All model management handled behind the scenes - no API keys or fine-tuning required from users
Anti-hallucination technology: Advanced mechanisms ensure chatbot only answers based on provided content, improving trust and factual accuracy
R A G Capabilities
AI Answers (Enterprise Add-On): Generative AI responses grounded in Stonly guides, external websites, and selected PDFs
Knowledge-Grounding: Responses anchored to structured content (interactive guides, decision trees, checklists) reducing hallucinations vs generic chatbots
Confidence-Based Fallback: Automatic switch to ML-powered search when AI confidence is low preventing unreliable answers
Multi-Source Ingestion: PDF uploads, public website crawling, Zendesk help center content indexing
Interactive Guide Format: Proprietary content model combining structured workflows with AI-generated answers
Limited Data Sources: No Google Drive, Dropbox, Notion, SharePoint, or YouTube transcript extraction
Manual Content Updates: Updates through Stonly's visual editor—no automatic syncing from external sources
71% Self-Serve Success Rate: Documented effectiveness of AI Answers in reducing support escalations
Hallucination Controls: Strong grounding in structured content vs open-ended conversational AI
Knowledge Base feature: RAG-powered document retrieval with vector search and semantic matching
Document support: PDF, Word docs, plain text, CSV with manual preprocessing required for optimal results
Website crawling: Sitemap ingestion for automated knowledge base building from URLs
Cloud integrations: Google Drive, Notion, Confluence, Zendesk with auto-sync on Pro+ plans
Custom metadata tagging: Organize knowledge management with structured metadata fields
LIMITATION: Accuracy concerns: User reviews note Knowledge Base "often inaccurate" and "too general" - manual preprocessing recommended
LIMITATION: No RAG parameter controls: Cannot configure chunking strategy, embedding models, or similarity thresholds
Multi-turn context: Maintains conversation context across sessions for coherent multi-turn dialogues
Core architecture: GPT-4 combined with Retrieval-Augmented Generation (RAG) technology, outperforming OpenAI in RAG benchmarks
RAG Performance
Anti-hallucination technology: Advanced mechanisms reduce hallucinations and ensure responses are grounded in provided content
Benchmark Details
Automatic citations: Each response includes clickable citations pointing to original source documents for transparency and verification
Optimized pipeline: Efficient vector search, smart chunking, and caching for sub-second reply times
Scalability: Maintains speed and accuracy for massive knowledge bases with tens of millions of words
Context-aware conversations: Multi-turn conversations with persistent history and comprehensive conversation management
Source verification: Always cites sources so users can verify facts on the spot
Use Cases
Customer Support Ticket Deflection: 70-76% ticket reduction through interactive self-service guides and AI Answers
Help Desk Integration: Deep Zendesk, Salesforce Service Cloud, Freshdesk, ServiceNow integration for unified support workflows
Interactive Onboarding: Step-by-step guides, decision trees, and checklists for product onboarding and user education
Knowledge Base Enhancement: Augment traditional help centers with interactive guides and AI-powered search
Agent Assistance: Provide support agents with guided workflows and AI answers during live interactions
Multi-Language Support: Auto-translation on Enterprise plan for global support teams and multilingual customers
Complex Troubleshooting: Decision tree logic guides users through multi-step troubleshooting processes
Compliance & Training: Structured guides ensuring consistent information delivery for regulated industries
Complex multi-step workflows: API integrations, orchestration, and multi-agent coordination requiring sophisticated flow logic
Team collaboration: Real-time simultaneous editing (10+ people) with Google Docs-style cursor tracking and comments
Voice assistants: Alexa, Google Assistant, custom telephony integration for voice-based conversational AI
Customer service automation: 15+ native integrations (Zendesk, Salesforce, HubSpot, Intercom, Freshdesk) for support workflows
Lead generation: Conversational marketing with Calendly scheduling, form-based data collection, CRM sync
E-commerce: Shopify integration for order management and product recommendations within conversation flows
NOT ideal for: Simple document Q&A (Knowledge Base accuracy issues), teams needing advanced RAG features, budget-constrained startups (pricing escalates with seats/agents)
Customer support automation: AI assistants handling common queries, reducing support ticket volume, providing 24/7 instant responses with source citations
Internal knowledge management: Employee self-service for HR policies, technical documentation, onboarding materials, company procedures across 1,400+ file formats
Sales enablement: Product information chatbots, lead qualification, customer education with white-labeled widgets on websites and apps
Documentation assistance: Technical docs, help centers, FAQs with automatic website crawling and sitemap indexing
Educational platforms: Course materials, research assistance, student support with multimedia content (YouTube transcriptions, podcasts)
Healthcare information: Patient education, medical knowledge bases (SOC 2 Type II compliant for sensitive data)
Per-seat charges: Additional editors $50/month on Pro, $15-25/month on Team tier
Per-agent fees: Extra agents $20-50/month depending on tier beyond plan limits
Annual discount: ~20% savings when billed annually vs monthly across all paid tiers
Note: Call costs separate: Pricing does not include Twilio/Vonage telephony fees ($0.01-$0.03/minute)
Standard Plan: $99/month or $89/month annual - 10 custom chatbots, 5,000 items per chatbot, 60 million words per bot, basic helpdesk support, standard security
View Pricing
Premium Plan: $499/month or $449/month annual - 100 custom chatbots, 20,000 items per chatbot, 300 million words per bot, advanced support, enhanced security, additional customization
Enterprise Plan: Custom pricing - Comprehensive AI solutions, highest security and compliance, dedicated account managers, custom SSO, token authentication, priority support with faster SLAs
Enterprise Solutions
7-Day Free Trial: Full access to Standard features without charges - available to all users
Annual billing discount: Save 10% by paying upfront annually ($89/mo Standard, $449/mo Premium)
Flat monthly rates: No per-query charges, no hidden costs for API access or white-labeling (included in all plans)
Managed infrastructure: Auto-scaling cloud infrastructure included - no additional hosting or scaling fees
Support & Documentation
4.8/5 G2 Rating: 132 reviews with consistently high satisfaction scores
Ease of Use Praised: "Ease of use" mentioned 32 times in G2 reviews indicating intuitive platform
Help Center Documentation: Comprehensive guides and tutorials for platform features
Email and Chat Support: Standard support channels for all paid plans
Dedicated Support (Enterprise): Priority support with dedicated account team and faster response times
Pre-Built Templates: Common support scenario templates accelerating guide creation
Quick Onboarding: Users report creating guides in under 30 minutes with small learning curve
REST API Documentation: API reference for user provisioning, content management, and widget control
Mobile SDKs (Enterprise): iOS, Android, React Native, Flutter for native app integration
Limited Developer Resources: No Python/Node.js SDKs, GraphQL, OpenAPI specs, or API Explorer/sandbox
Company background: Founded 2017, $28M raised (Series A: $20M from Felicis, OpenAI Startup Fund, Tiger Global)
Customer base: 200K+ teams including Mercedes-Benz, JP Morgan, Shopify demonstrating enterprise validation
Community: 15K+ developers on Discord/Slack with active forum for peer support and knowledge sharing
Template marketplace: 100+ pre-built agent templates for common use cases and rapid deployment
Support tiers: Sandbox (community), Pro (priority email 24-48hr), Team (priority email + chat), Enterprise (dedicated Slack, CSM, 24/7, SLA)
Documentation: Comprehensive guides, video tutorials, API docs at docs.voiceflow.com
Training: Voiceflow Academy with certification programs for team ramp-up and skill development
Partner program: Agency partnerships for white-label development and reseller opportunities
Documentation hub: Rich docs, tutorials, cookbooks, FAQs, API references for rapid onboarding
Developer Docs
Email and in-app support: Quick support via email and in-app chat for all users
Premium support: Premium and Enterprise plans include dedicated account managers and faster SLAs
Code samples: Cookbooks, step-by-step guides, and examples for every skill level
API Documentation
No Real-Time Analytics: Flow reports update every 15 minutes—not true real-time monitoring
Limited Developer API: No Python/Node.js SDKs, GraphQL, Swagger specs, or API sandbox for testing
Overage Pricing Escalation: View limits can trigger expensive automatic upgrades after 2 consecutive months
Not Ideal For: Developers seeking pure RAG API, multi-tenant SaaS RAG backends, use cases needing model selection/fine-tuning, or flexible data source integration
Knowledge Base accuracy issues: Multiple reviews cite KB as "often inaccurate" - not ideal for pure document Q&A use cases
Workflow-first, not RAG-first: Excels at complex orchestration but lags specialized RAG platforms for knowledge retrieval
Steep learning curve: More complex than simple chatbot builders despite visual interface - requires training
Pricing complexity: Per-seat charges and per-agent fees can escalate quickly beyond base plan costs
Visual canvas overwhelm: Very complex agents (100+ blocks) become difficult to manage and visualize
No SOC 2 on lower tiers: SOC 2 compliance only available on Enterprise tier, blocking some enterprise sales
Limited analytics depth: 8.7/10 ease of use but analytics require improvement for enterprise needs
99.9% uptime SLA Enterprise-only: No SLA guarantees on Pro/Team tiers for mission-critical deployments
Managed service approach: Less control over underlying RAG pipeline configuration compared to build-your-own solutions like LangChain
Vendor lock-in: Proprietary platform - migration to alternative RAG solutions requires rebuilding knowledge bases
Model selection: Limited to OpenAI (GPT-4, GPT-3.5) and Anthropic (Claude) - no support for other LLM providers (Cohere, AI21, open-source models)
Pricing at scale: Flat-rate pricing may become expensive for very high-volume use cases (millions of queries/month) compared to pay-per-use models
Customization limits: While highly configurable, some advanced RAG techniques (custom reranking, hybrid search strategies) may not be exposed
Language support: Supports 90+ languages but performance may vary for less common languages or specialized domains
Real-time data: Knowledge bases require re-indexing for updates - not ideal for real-time data requirements (stock prices, live inventory)
Enterprise features: Some advanced features (custom SSO, token authentication) only available on Enterprise plan with custom pricing
Core Agent Features
Conversational AI Bot: Delivers confident answers backed by verified structured knowledge unlike generic LLMs that can hallucinate or invent answers
Knowledge-grounded responses: Provides answers backed by verified structured knowledge from guides you create preventing fabricated information
AI Agent Assist: Automatically summarizes tickets, suggests right path to resolution, and generates responses for support agents
Three core automation functions: Automatically analyzes and summarizes support ticket content, recommends most relevant Stonly guide/knowledge path to resolve issues, drafts complete responses for agents to review/edit/send
Process automation: Define processes to be followed and link them to different back-office tools to resolve customer requests before they reach support
Personalized knowledge: AI-powered solutions and process automation allow creation of guides, walkthroughs, checklists, knowledge bases adapting to each customer's needs
71% self-serve success rate: With AI Answers feature documented in company data
Hallucination reduction: Knowledge-grounding approach vs generic chatbots reduces off-topic responses
Agent step (2024): Autonomous AI conversation flow with tool use and decision making - Agent step decides when to use tools, access knowledge base, or call other Agent steps
Multi-agent orchestration: Connect multiple Agent steps to create sophisticated frameworks including Supervisor pattern where specialized agents handle different conversation aspects
Conversation context management: Multi-turn conversations with context preservation across sessions, persistent history, and comprehensive conversation management
Hybrid architecture: Combine hard business logic with Agent networks layered on top for both risk mitigation and conversational flexibility
Human handoff protocols: Smooth transitions for complex situations with full conversation history transfer, enabling training sales teams to take over seamlessly when prospects request "real person"
Lead capture & CRM integration: Automatic lead creation in HubSpot, Salesforce, or Pipedrive, log call outcomes, and update deal stages based on conversation results
Multi-channel orchestration: Combine outbound calling with email sequences and SMS outreach for comprehensive customer engagement
Custom Action step: Trigger live chat handoff when customers request human assistance, with services like hitlchat enabling WhatsApp integration with live agents
Intent recognition & entity extraction: NLU models with slot filling for form-based data collection and hybrid Intent + RAG capabilities (March 2024 research)
100+ language support: Leverages underlying LLM multilingual capabilities with locale-based routing for global deployments
Analytics & optimization: Dashboard tracking sessions, users, completion rates, drop-offs with A/B testing framework for agent performance optimization
LIMITATION: Knowledge Base accuracy: User reviews note KB "often inaccurate" and "too general" - manual document chunking and preprocessing required for optimal results
LIMITATION: Workflow complexity: Steep learning curve despite visual interface - more complex than simple chatbot builders, requires training for team ramp-up
Custom AI Agents: Build autonomous agents powered by GPT-4 and Claude that can perform tasks independently and make real-time decisions based on business knowledge
Decision-Support Capabilities: AI agents analyze proprietary data to provide insights, recommendations, and actionable responses specific to your business domain
Multi-Agent Systems: Deploy multiple specialized AI agents that can collaborate and optimize workflows in areas like customer support, sales, and internal knowledge management
Memory & Context Management: Agents maintain conversation history and persistent context for coherent multi-turn interactions
View Agent Documentation
Tool Integration: Agents can trigger actions, integrate with external APIs via webhooks, and connect to 5,000+ apps through Zapier for automated workflows
Hyper-Accurate Responses: Leverages advanced RAG technology and retrieval mechanisms to deliver context-aware, citation-backed responses grounded in your knowledge base
Continuous Learning: Agents improve over time through automatic re-indexing of knowledge sources and integration of new data without manual retraining
Additional Considerations
Limited UI customization: Limited ability to customize user interface and workflows to match specific brand requirements is primary user concern
Basic collaboration tools: Without real-time editing or advanced team management features can hinder team productivity when multiple people need to work together
No offline access: Guides unavailable without internet connectivity reducing usability in areas with unreliable internet
Performance degradation: Can degrade with very large or complex guides causing slower responsiveness indicating scalability concerns
Restricted language options: Limit efficient creation of multilingual content which may be barrier for global organizations
Mixed media support missing: Users find missing features wishing for mixed media support and enhanced reporting tools
Step ordering difficulties: Users report limitations in feature usability and difficulties with step ordering though support offers helpful workarounds
Requires coding knowledge: Unlike most competitors, doesn't advertise as no-code platform - need coding knowledge to track events, target users, stream data, and style content
Image workflow limitations: Inability to use images in base offering limits utility in some workflows with some advanced features requiring extra costs
View-based pricing: Charges additional fees based on guide views - customers exceeding 4,000 guide views/month pay extra $250-500 monthly depending on volume
Integration reliability: Users find lack of integrations limits ability to fully connect Stonly with other tools - Stonly/Zendesk integration isn't as reliable as desired (stops working every few weeks)
Workflow-first vs. RAG-first: Voiceflow excels at complex workflows, but KB accuracy lags specialized RAG platforms
Learning curve: Steeper than simple chatbot builders despite visual interface
Visual canvas can become overwhelming for very complex agents (100+ blocks)
Best use case: Multi-step workflows requiring orchestration, API integrations, and team collaboration
Not ideal for: Simple document Q&A or pure knowledge retrieval use cases
Competitive positioning: More sophisticated than no-code chatbots (Chatbase, WonderChat), less specialized than pure RAG (CustomGPT)
Voice capabilities: Strong for voice assistants (Alexa, Google), but not general telephony
Enterprise customers praise collaboration features and workflow flexibility
Pricing can escalate quickly with additional seats and agents
Slashes engineering overhead with an all-in-one RAG platform—no in-house ML team required.
Gets you to value quickly: launch a functional AI assistant in minutes.
Stays current with ongoing GPT and retrieval improvements, so you’re always on the latest tech.
Balances top-tier accuracy with ease of use, perfect for customer-facing or internal knowledge projects.
CSS and HTML customization: Change layout and look of knowledge base with custom code capabilities
Intuitive customization tools: Easy-to-use tools that don't require code for basic customization
Layout customization: Decide how content is structured and presented with flexible options
Design controls: Manage visual components like colors, logo, or cover image for brand alignment
Personalized content: Use customer data to show personalized content from knowledge base for targeted experiences
Data-driven personalization: Customers see what they need right away when first accessing knowledge base
Analytics insights: Guide usage analytics provide insight into customer behavior for continuous improvement
Highly flexible platform: Users appreciate ability to use Stonly for knowledge bases and guided tours with target properties based on specific user needs
Rich media support: Add images, GIFs, videos, and annotations to bring knowledge base content to life
Third-party scripts: Install scripts from other tools like Google Analytics for extended functionality
Real-time updates: Workflow changes deploy instantly (no rebuild)
Version control: Git-style versioning with rollback capabilities (Team+)
Environment management: Dev, Staging, Production environments
Component reusability: Save workflow sections as reusable components
After analyzing features, pricing, performance, and user feedback, both Stonly and Voiceflow are capable platforms that serve different market segments and use cases effectively.
When to Choose Stonly
You value exceptional ease of use - 4.8/5 g2 rating with intuitive visual editor praised in 32 reviews
Deep help desk integrations - bidirectional Zendesk, Salesforce, Freshdesk, ServiceNow connections
Strong compliance - SOC 2 Type 2, GDPR, HIPAA, ISO 27001, PCI, CSA Star Level 1
Best For: Exceptional ease of use - 4.8/5 G2 rating with intuitive visual editor praised in 32 reviews
When to Choose Voiceflow
You value visual workflow builder enables non-technical teams to build complex agents
Real-time collaboration features rival Figma - 10+ people editing simultaneously
Function calling and API integrations allow true action-taking agents
Best For: Visual workflow builder enables non-technical teams to build complex agents
Migration & Switching Considerations
Switching between Stonly and Voiceflow requires careful planning. Consider data export capabilities, API compatibility, and integration complexity. Both platforms offer migration support, but expect 2-4 weeks for complete transition including testing and team training.
Pricing Comparison Summary
Stonly starts at $249/month, while Voiceflow begins at $40/month. Total cost of ownership should factor in implementation time, training requirements, API usage fees, and ongoing support. Enterprise deployments typically see annual costs ranging from $10,000 to $500,000+ depending on scale and requirements.
Our Recommendation Process
Start with a free trial - Both platforms offer trial periods to test with your actual data
Define success metrics - Response accuracy, latency, user satisfaction, cost per query
Test with real use cases - Don't rely on generic demos; use your production data
Evaluate total cost - Factor in implementation time, training, and ongoing maintenance
Check vendor stability - Review roadmap transparency, update frequency, and support quality
For most organizations, the decision between Stonly and Voiceflow comes down to specific requirements rather than overall superiority. Evaluate both platforms with your actual data during trial periods, focusing on accuracy, latency, ease of integration, and total cost of ownership.
📚 Next Steps
Ready to make your decision? We recommend starting with a hands-on evaluation of both platforms using your specific use case and data.
• Review: Check the detailed feature comparison table above
• Test: Sign up for free trials and test with real queries
• Calculate: Estimate your monthly costs based on expected usage
• Decide: Choose the platform that best aligns with your requirements
Last updated: December 4, 2025 | This comparison is regularly reviewed and updated to reflect the latest platform capabilities, pricing, and user feedback.
The most accurate RAG-as-a-Service API. Deliver production-ready reliable RAG applications faster. Benchmarked #1 in accuracy and hallucinations for fully managed RAG-as-a-Service API.
DevRel at CustomGPT.ai. Passionate about AI and its applications. Here to help you navigate the world of AI tools and make informed decisions for your business.
People Also Compare
Explore more AI tool comparisons to find the perfect solution for your needs
Join the Discussion
Loading comments...